Свойства пористых сред и насыщающих их жидкостей и газов

Влияние естественного уплотнения пород на их пористость. Радиальная фильтрация нефти и газа в пористой среде. Механические и тепловые свойства пород. Состав и физические свойства газа, нефти и пластовых вод. Вытеснение из пласта нефти водой и газом.

Рубрика Геология, гидрология и геодезия
Вид дипломная работа
Язык русский
Дата добавления 08.08.2020
Размер файла 1,1 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

Нефть стала известна людям более четырёх тысяч лет тому назад.

На заре цивилизации нефть не играла большой роли в быту и технике. До нас дошли скупые сведения о том, что она применялась греками, египтянами и ассирийцами преимущественно для медицинских целей, в строительном деле (асфальт), при изготовлении туши, в военном деле ("греческий огонь"), а также для освещения комнат и смазки колёс.

Признание как дешёвого топлива и источника ценных продуктов нефть получила только за последние сто лет. В данный момент развитие техники и промышленности невозможно себе представить без использования нефти и продуктов её переработки.

Из нефти вырабатываются горючее для двигателей внутреннего сгорания, топлива для газовых турбин и котельных установок, смазочные масла, битумы для дорожных покрытий, сажа для резиновой промышленности, кокс для электродов и множество других промышленных и потребительских товаров.

Газы - попутные, природные, газы нефтепереработки, ароматические углеводороды, жидкие и твёрдые парафины - незаменимое сырьё для нефтехимической промышленности.

На базе этого дешёвого газового и нефтяного сырья производятся полимерные материалы, синтетические волокна, каучук, моющие средства, спирты, альдегиды и многие другие ценные материалы.

Развитие научно-технической базы человечества, освоение и ввод в эксплуатацию крупнейших по запасам нефти и газа месторождений осуществляется на основе достижений прогресса в области физики нефтяного пласта. Полученные новые данные относительно нефтяных и газовых пластов, коллекторских и фильтрационных свойств горных пород (пористость, проницаемость, насыщенность, электропроводность), физических свойств пластовых жидкостей и газов, фазовых состояний предельных углеводородных систем успешно применяются на практике.

Прогресс в области физики пласта, посредством более совершенного проектирования системы разработки, способствует поведению грамотной эксплуатации нефтяных и газовых месторождений, разработке и внедрению методов повышения компонентоотдачи пластов.

Современный инженер-нефтяник, занимающийся рациональной разработкой нефтяных и газовых месторождений, должен хорошо знать геологическое строение залежи, её физическую характеристику, физические и физико-химические свойства насыщающих породу нефти, газа и воды; должен уметь правильно обработать и оценить данные, которые получены при вскрытии пласта и при его последующей эксплуатации. Эти данные позволяют определить начальные запасы углеводородов в залежи и необходимы для объективного представления о процессах, происходящих в пласте на различных стадиях его разработки. На этом комплексе сведений основывается проектирование разработки месторождения, выбор тех или иных методов искусственного воздействия на залежь, если это признаётся необходимым.

Настоящий учебник посвящен описанию свойств пористых сред и насыщающих их жидкостей и газов и их использованию в практических расчётах.

1. Коллекторские свойства горных пород

1.1 Типы пород-коллекторов

Подавляющая часть нефтяных и газовых месторождений приурочена к коллекторам трёх типов - гранулярным, трещинным и смешанного строения. К первому типу относятся коллекторы, сложенные песчано-алевритовыми породами, поровое пространство которых состоит из межзерновых полостей. Подобным строением порового пространства характеризуются также некоторые пласты известняков и доломитов. В чисто трещиноватых коллекторах (сложенных преимущественно карбонатами) поровое пространство образуется системой трещин. При этом участки коллектора между трещинами представляют собой плотные малопроницаемые нетрещиноватые блоки пород, поровое пространство которых практически не участвует в процессах фильтрации. На практике, однако, чаще всего встречаются трещиноватые коллекторы смешанного типа, поровое пространство которых включает как системы трещин, так и поровое пространство блоков, а также каверны и карст.

Анализ показывает, что около 60% запасов нефти в мире приурочено к песчаным пластам и песчаникам, 39% - к карбонатным отложениям, 1% - к выветренным метаморфическим и изверженным породам. Следовательно, породы осадочного происхождения - основные коллекторы нефти и газа.

В связи с разнообразием условий формирования осадков коллекторские свойства пластов различных месторождений могут изменяться в широких пределах. Характерные особенности большинства коллекторов - слоистость их строения и изменение во всех направлениях свойств пород, толщины пластов и других параметров.

Нефтяной пласт представляет собой горную породу, пропитанную нефтью, газом и водой.

Свойства горной породы вмещать (обусловлено пористостью горной породы) и пропускать (обусловлено проницаемостью) через себя жидкость называются фильтрационно-ёмкостными свойствами (ФЕС).

Фильтрационные и коллекторские свойства пород нефтяных пластов характеризуются следующими основными показателями:

- пористостью;

- проницаемостью;

- капиллярными свойствами;

- удельной поверхностью;

- механическими свойствами.

Рассмотрим подробнее каждый из этих параметров.

1.2 Пористость

Под пористостью горной породы понимается наличие в ней пор (пустот). Пористость характеризует способность горной породы вмещать жидкости и газы.

В зависимости от происхождения различают следующие виды пор:

1. Поры между зёрнами обломочного материала (межкристаллические). Это первичные поры, образовавшиеся одновременно с формированием породы.

2. Поры растворения - образовались в результате циркуляции подземных вод.

3. Пустоты и трещины, образованные за счёт процессов растворения минеральной составляющей породы активными флюидами и образование карста.

4. Поры и трещины, возникшие под влиянием химических процессов, например, превращение известняка (СаСО3) в доломит (МgСО3) - при доломитизации идёт сокращение объёмов породы на 12%.

5. Пустоты и трещины, образованные за счёт выветривания, эрозионных процессов, закарстовывания.

Виды пор (2)-(5) - это так называемые вторичные поры, возникшие при геолого-химических процессах.

Объём пор зависит от:

- формы зёрен;

- сортировки зёрен (чем лучше отсортирован материал, тем выше пористость);

- размера зёрен;

- укладки зёрен - при кубической укладке пористость составляет 47,6%, при ромбической укладке - 25,96% (см. рис. 1.1);

- однородности и окатанности зёрен;

- вида цемента (см. рис. 1.2).

Рис. 1.1 Различная укладка сферических зёрен одного размера, составляющих пористый материал: а - менее плотная кубическая укладка, б - более компактная ромбическая укладка

Размещено на http://www.allbest.ru/

Рис. 1.2 Разновидности цемента горных пород

Не все виды пор заполняются флюидами, газами, нефтью. Часть пор бывает изолирована, в основном, это внутренние поры.

1.2.1 Виды пористости

Общая (полная, абсолютная) пористость - суммарный объём всех пор (Vпор), открытых и закрытых.

Пористость открытая эквивалентна объёму сообщающихся (Vсообщ) между собой пор.

На практике для характеристики пористости используется коэффициент пористости (m), выраженный в долях или в процентах.

Коэффициент общей (полной, абсолютной) пористости (mп) в процентах зависит от объема всех пор:

.(1.1)

Коэффициент открытой пористости (mо) зависит от объёма сообщающихся между собой пор:

. (1.2)

Коэффициент эффективной пористости (mэф.) оценивает фильтрацию в породе жидкости или газа, и зависит от объёма пор (Vпор фильтр), через которые идёт фильтрация.

(1.3)

Для зернистых пород, содержащих малое или среднее количество цементирующего материала, общая и эффективная пористость примерно равны. Для пород, содержащих большое количество цемента, между эффективной и общей пористостью наблюдается существенное различие.

Для коэффициентов пористости всегда выполняется соотношение:

mп > mo > mэф. (1.4)

Для хороших коллекторов пористость лежит в пределах 15-25%

Поровые каналы нефтяных пластов условно подразделяются на три группы:

субкапиллярные (размер пор < 0,0002 мм) - практически непроницаемые: глины, глинистые сланцы, эвапориты (соль, гипс, ангидрит);

капиллярные (размер пор от 0,0002 до 0,5 мм);

сверхкапиллярные > 0,5 мм.

По крупным (сверхкапиллярным) каналам и порам движение нефти, воды, газа происходит свободно, а по капиллярам - при значительном участии капиллярных сил.

В субкапиллярных каналах жидкость удерживается межмолекулярными силами (силой притяжения стенок каналов), поэтому практически никакого движения не происходит.

Породы, поры которых представлены в основном субкапиллярными каналами, независимо от пористости практически непроницаемы для жидкостей и газов (глины, глинистые сланцы).

Таблица 1.1

Коэффициенты пористости некоторых осадочных пород

Горная порода

Пористость, %

Глинистые сланцы

0,54-1,4

Глины

6,0-50,0

Пески

6,0-52

Песчаники

3,5-29,0

Известняки

до 33

Доломиты

до 39

Известняки и доломиты, как покрышки

0,65-2,5

Пористость пород продуктивных пластов определяют в лабораторных условиях по керновому материалу. Пористость пласта на больших участках определяется статистически по большому числу исследованных образцов керна.

С пористостью связаны величины насыщения пласта флюидами: водонасыщенность (Sв), газонасыщенность (Sг), нефтенасыщенность (Sн), величины, выраженные в долях или в процентах.

Связь пористости и коэффициента насыщенности (в долях):

.(1.5)

Sнасыщ = 1; Sг = 1 - (SB + SH).(1.6)

Размещено на http://www.allbest.ru/

Рис. 1.3 Влияние естественного уплотнения пород на их пористость: 1. - песчаники, 2. - глины

Общая и открытая пористость зависят от:

­ глубины залегания, падает с увеличением глубины (рис. 1.3.);

­ от плотности пород;

­ количества цемента и др.

1.3 Проницаемость

Проницаемость - это фильтрующий параметр горной породы, характеризующий её способность пропускать через себя жидкости и газы при перепаде давления.

Абсолютно непроницаемых тел в природе нет. При сверхвысоких давлениях все горные породы проницаемы. Однако при сравнительно небольших перепадах давления в нефтяных пластах многие породы в результате незначительных размеров пор оказываются практически непроницаемыми для жидкостей и газов (глины, сланцы и т.д.).

Хорошо проницаемыми породами являются: песок, песчаники, доломиты, доломитизированные известняки, алевролиты, а так же глины, имеющие массивную пакетную упаковку (рис. 1.4).

Размещено на http://www.allbest.ru/

Рис. 1.4 Пример массивной пакетной упаковки глин - фильтрация происходит через каналы между пакетами

Размещено на http://www.allbest.ru/

Рис. 1.5 Пример упорядоченной пакетной упаковки глин - фильтрация практически не происходит

К плохо проницаемым относятся: глины, с упорядоченной пакетной упаковкой, глинистые сланцы, мергели, песчаники, с обильной глинистой цементацией (рис. 1.5).

1.3.1 Линейная фильтрация нефти и газа в пористой среде

Для оценки проницаемости горных пород обычно пользуются линейным законом фильтрации Дарси. Дарси в 1856 году, изучая течение воды через песчаный фильтр (рис. 1.6), установил зависимость скорости фильтрации жидкости от градиента давления..

Рис. 1.6 Схема экспериментальной установки Дарси для изучения течения воды через песок

Согласно уравнению Дарси, скорость фильтрации воды в пористой среде пропорциональна градиенту давления:

, (1.7)

где Q - объёмная скорость воды;

v - линейная скорость воды;

F - площадь сечения, F = d2/4;

L - длина фильтра;

k - коэффициент пропорциональности.

Нефть - неидеальная система (компоненты нефти взаимодействуют между собой), поэтому линейный закон фильтрации для нефти, содержит вязкость, учитывающую взаимодействие компонентов внутри нефтяной системы:

,(1.8)

где - вязкость нефти.

В этом уравнении способность породы пропускать жидкости и газы характеризуется коэффициентом пропорциональности k (1.7), который называется коэффициентом проницаемости (kпр).

Размерность коэффициента проницаемости (система СИ) вытекает из соотношения:

,(1.9)

Таблица 1.2

Размерность параметров уравнения Дарси в разных системах единиц

Параметры уравнения

Размерность

СИ

СГС

НПГ

Объемный дебит, Q

м3 / с

см3 / с

см3 / с

Площадь поперечного сечения фильтра, F

м2

см2

см2

Длина фильтра, L

м

см

см

Перепад давления, ?P

Па

дн / см2

атм

Вязкость жидкости, µ

Па · с

дн · с / см2

спз (сантипуаз)

В системе СИ коэффициент проницаемости измеряется в м2; в системе СГС [kпр] = см2; в системе НПГ (нефтепромысловой геологии) [kпр] = Д (Дарси).

1 Дарси = 1,0210-8 см2 = 1,02 · 10-12 м2 1 мкм2.

Проницаемостью в 1 м2 называется проницаемость пористой среды при фильтрации через образец площадью 1 м2 длиной 1 м и при перепаде давления 1 Па, при которой расход жидкости вязкостью 1 Пас составляет 1 м3.

Пористая среда имеет проницаемость 1 Дарси, если при однофазной фильтрации жидкости вязкостью 1 спз (спуаз) при ламинарном режиме фильтрации через сечение образца площадью 1 см2 и перепаде давления 1 атм., расход жидкости на 1 см длины породы составляет 1 см3/сек.

Физический смысл размерности проницаемости - это площадь сечения каналов пористой среды, через которые идет фильтрация.

Существует несколько типов каналов:

- субкапиллярные;

- капиллярные;

- трещины;

- разрывы.

Приведённые выше уравнения справедливы при условии движения несжимаемой жидкости по линейному закону Дарси.

В случае фильтрации газа это условие не выполняется. При перепаде давления объём газа изменяется, и оценивается по закону Бойля-Мариотта:

При Т = const, P·V = const(1.10)

При линейной фильтрации газа оценивается средняя скорость фильтрации (Vср):

Vcр· Pср = Vо ·Pо = V1· P1 = V2 · P2, (1.11)

Pср = (P1 + P2) / 2, (1.12)

Vcр = Vо·Pо / Pср = 2·Vо·Pо / (P1 + P2). (1.13)

Тогда, средний объёмный расход газа будет равен:

.(1.14)

Отсюда уравнение коэффициента проницаемости для газа:

.(1.15)

1.3.2 Радиальная фильтрация нефти и газа в пористой среде

Процесс притока пластовых флюидов из пласта в скважину описывается моделью радиальной фильтрации. В этом случае образец породы представляется в виде цилиндрического кольца с проводящими каналами в осевом направлении (рис. 1.7).

Размещено на http://www.allbest.ru/

Рис. 1.7 Схема радиального притока жидкости в скважину

Площадь боковой поверхности цилиндра: F=2rh, таким образом уравнение Дарси для радиальной фильтрации будет иметь следующий вид:

. (1.16)

Отсюда, дебит при радиальной фильтрации жидкости:

. (1.17)

Таким образом, коэффициент проницаемости при радиальной фильтрации:

.(1.18)

1.3.3 Оценка проницаемости пласта, состоящего из нескольких пропластков различной проницаемости

Пласт состоит, как правило, из отдельных пропластков, поэтому общая проницаемость пласта (kпр) оценивается с учетом проницаемости пропластков и направления фильтрации.

Рис. 1.8 Линейная фильтрация в пласте, состоящем из нескольких изолированных пропластков различной мощности и проницаемости

При линейной фильтрации жидкости в пласте, состоящем из нескольких изолированных пропластков различной мощности и проницаемости (рис. 1.8), средняя проницаемость пласта рассчитывается следующим образом:

,(1.19)

где hi - мощность i-го пропластка;

ki - проницаемость i-го пропластка.

Рис. 1.9 Линейная фильтрация через пласт, имеющий несколько последовательно расположенных зон различной проницаемости

При линейной фильтрации жидкости через пласт, имеющий несколько последовательно расположенных зон различной проницаемости (рис. 1.9), коэффициент проницаемости пласта рассчитывается следующим образом:

,(1.20)

где Li - длина i-го пропластка;

ki - проницаемость i-го пропластка.

Рис. 1.10 Радиальная фильтрация через пласт, имеющий несколько концентрически расположенных зон различной проницаемости

При радиальной фильтрации жидкости через пласт, имеющий несколько концентрически расположенных зон различной проницаемости (рис. 1.10), средняя проницаемость пласта оценивается следующим образом:

(1.21)

где rk - радиус контура;

rс - радиус скважины;

ri - радиус i-го пропластка;

ki - проницаемость i-го пропластка.

1.3.4 Классификация проницаемых пород

По характеру проницаемости (классификация Теодоровича Г. И.) различают коллектора:

- равномерно проницаемые;

- неравномерно проницаемые;

- трещиноватые.

По величине проницаемости (мкм2) для нефти выделяют 5 классов коллекторов:

1. очень хорошо проницаемые (>1);

2. хорошо проницаемые (0,1 - 1);

3. средне проницаемые (0,01 - 0,1);

4. слабопроницаемые (0,001 - 0,01);

5. плохопроницаемые (<0,001).

Для классификации коллекторов газовых месторождений используют 1-4 классы коллекторов.

1.3.5 Зависимость проницаемости от пористости

Теоретически, для хорошо отсортированного материала (песок мономиктовый) проницаемость не зависит от пористости.

Для реальных коллекторов в общем случае более пористые породы являются более проницаемыми.

Зависимость проницаемости от размера пор для фильтрации через капиллярные поры идеально пористой среды оценивается из соотношения уравнений Пуазейля и Дарси. В этом случае пористая среда представляется в виде системы прямых трубок одинакового сечения длиной L, равной длине пористой среды.

Уравнение Пуазейля описывает объёмную скорость течения жидкости через такую пористую среду:

,(1.22)

где r - радиус порового канала;

L - длина порового канала;

n - число пор, приходящихся на единицу площади фильтрации;

F - площадь фильтрации;

- вязкость жидкости;

Р - перепад давлений.

Коэффициент пористости среды, через которую проходит фильтрация:

.(1.23)

Следовательно, уравнение (1.22) можно переписать следующим образом:

.(1.24)

Из уравнения Дарси следует, что:

.(1.25)

Приравняв правые части уравнений (1.24) и (1.25) получим взаимосвязь пористости и проницаемости:

.(1.26)

Из чего следует, что размер порового канала будет равен:

. (1.27)

Если выразить проницаемость в мкм2, то радиус поровых каналов (в мкм) будет равен:

.(1.28)

Оценка проницаемости для фильтрации через трещиноватые поры оценивается из соотношения уравнений Букингема и Дарси.

Потери давления при течении жидкости через щель очень малой высоты оцениваются уравнением Букингема:

,(1.29)

где h - высота трещины;

v - линейная скорость фильтрации.

Подставив это выражение в уравнение Дарси, получим:

.(1.30)

Соотношения (1.25) и (1.26) справедливы только для идеальной пористой среды (например, кварцевый песок).

Для реальных условий используется эмпирическое уравнение Котяхова:

,(1.31)

где R - радиус пор;

- структурный коэффициент, описывающий извилистость порового пространства.

Значение можно оценить путём измерения электросопротивления пород. Для керамических пористых сред при изменении пористости от 0,39 до 0,28, по экспериментальным данным, изменяется от 1,7 до 2,6. Структурный коэффициент для зернистых пород можно приблизительно оценить по эмпирической формуле:

.(1.32)

1.3.6 Виды проницаемости

Проницаемость абсолютная (физическая) - проницаемость пористой среды для газа или однородной жидкости при следующих условиях:

1. Отсутствие физико-химического взаимодействия между пористой средой и этим газом или жидкостью.

2. Полное заполнение всех пор среды этим газом или жидкостью.

Для продуктивных нефтяных пластов эти условия не выполняются.

Проницаемость фазовая (эффективная) - проницаемость пористой среды для данного газа или жидкости при одновременном наличии в порах другой фазы или системы (газ-нефть, газ-нефть-вода).

При фильтрации смесей коэффициент фазовой проницаемости намного меньше абсолютной проницаемости и неодинаков для пласта в целом.

Относительная проницаемость - отношение фазовой проницаемости к абсолютной.

Проницаемость горной породы зависит от степени насыщения породы флюидами, соотношения фаз, физико-химических свойств породы и флюидов.

Фазовая и относительная проницаемости для различных фаз зависят от нефте-, газо- и водонасыщенности порового пространства породы, градиента давления, физико-химических свойств жидкостей и пористых фаз.

Насыщенность - ещё один важный параметр продуктивных пластов, тесно связанный с фазовой проницаемостью.

Предполагается, что продуктивные пласты сначала были насыщены водой. Водой были заполнены капилляры, трещины, каналы.

При миграции углеводороды, вследствие меньшей плотности, стремятся к верхней части пласта, выдавливая вниз воду. Вода легче всего уходит из трещин и каналов, из капилляров вода не уходит в силу капиллярных явлений. Таким образом, в пласте остаётся связанная вода.

Чтобы определить количество углеводородов, содержащихся в продуктивном пласте, необходимо определить насыщенность порового пространства породы нефтью, водой и газом.

Водонасыщенность SВ - отношение объёма открытых пор, заполненных водой к общему объёму пор горной породы. Аналогично определение нефте- и газонасыщенности:

.(1.33)

Обычно для нефтяных месторождений SВ = 6-35%; SН = 65-94%, в зависимости от созревания пласта.

Для нефтяных месторождений справедливо следующее соотношение:

SН + SВ = 1.(1.34)

Для газонефтяных месторождений:

SВ + SН + SГ = 1.(1.35)

Пласт считается созревшим для разработки, если остаточная водонасыщенность SВ < 25%.

Остаточная водонасыщенность, обусловленная капиллярными силами, не влияет на основную фильтрацию нефти и газа.

При водонасыщенности до 25% нефте- и газонасыщенность пород максимальная: 45-77%, а относительная фазовая проницаемость для воды равна нулю.

При увеличении водонасыщенности до 40%, фазовая проницаемость для нефти и газа уменьшается в 2-2,5 раза. При увеличении водонасыщенности до 80% фильтрация газа и нефти в пласте стремится к нулю.

Экспериментально изучался поток при одновременном содержании в пористой среде нефти, воды и газа. Опытами установлено, что в зависимости от объёмного насыщения порового пространства различными компонентами возможно одно-, двух- и трёхфазное движение. Результаты исследования представлены в виде треугольной диаграммы (рис. 1.11).

Вершины треугольника соответствуют стопроцентному насыщению породы одной из фаз; стороны, противолежащие вершинам, - нулевому насыщению породы этой фазой. Кривые, проведённые на диаграмме, ограничивают возможные области одно-, двух-, и трёхфазного потока.

Рис. 1.11 Области распространения одно-, двух- и трёхфазного потоков: 1. - 5% воды; 2. - 5% нефти; 3. - 5% газа.

2. Механические и тепловые свойства пород

2.1 Механические свойства горных пород

Упругость, прочность на сжатие и разрыв, пластичность - наиболее важные механические свойства горных пород, влияющие на ряд процессов, происходящих в пласте в период разработки и эксплуатации месторождений.

Упругие свойства горных пород и влияют на перераспределения давления в пласте в процессе эксплуатации месторождения. Давление в пласте, благодаря упругим свойствам пород, перераспределяется не мгновенно, а постепенно после изменения режима работы скважины.

Упругость - свойство горных пород сопротивляться изменению их объёма и формы под действием приложенных сил. Абсолютно упругое тело восстанавливает первоначальную форму мгновенно после снятия напряжения. Если тело не восстанавливает первоначальную форму или восстанавливает её в течение длительного времени, то оно называется пластичным.

2.2 Тепловые свойства горных пород

Тепловые свойства горных пород характеризуются удельной теплоёмкостью, коэффициентом температуропроводности и коэффициентом теплопроводности.

Удельная (массовая) теплоёмкость характеризуется количеством теплоты, необходимым для нагрева единицы массы породы на 1С:

.(2.1)

Этот параметр необходимо учитывать при тепловом воздействии на пласт.

Коэффициент теплопроводности (удельного теплового сопротивления) характеризует количество теплоты dQ, переносимой в породе через единицу площади S в единицу времени t при градиенте температуры dT/dx:

.(2.2)

Коэффициент температуропроводности характеризует скорость прогрева пород (или скорость распространения изотермических границ):

.(2.3)

Коэффициенты линейного (L) и объёмного (V) расширения характеризуют изменение размеров породы при нагревании:

.(2.4)

Теплоёмкость пород зависит от минералогического состава пород и не зависит от строения и структуры минералов. Удельная теплоёмкость увеличивается при уменьшении плотности породы и растёт с увеличение температуры и влажности в пределах 0,4-2 кДж/(кгК).

Теплопроводность и температуропроводность пород очень низки по сравнению с металлами. Поэтому для прогрева призабойных зон требуется очень большая мощность нагревателей. Вдоль напластования теплопроводность выше, чем поперёк напластования на 10-50%.

Коэффициенты линейного и объёмного расширения изменяются в зависимости от плотности породы аналогично теплоёмкости. Наибольшим значением коэффициентов расширения обладает кварцевый песок и другие крупнозернистые породы.

Коэффициент линейного расширения пород уменьшается с ростом плотности минералов.

Таблица 2.1

Тепловых свойства некоторых горных пород и пластовых флюидов

Горная порода

с, кДж/(кгК)

, Вт/(мК)

103, м2

L105, 1/К

глина

0,755

0,99

0,97

-

глинистые сланцы

0,772

154-218

0,97

0,9

доломит

0,93

1,1-4,98

0,86

-

известняк

1,1

2,18

0,91

0,5-0,89

кварц

0,692

2,49

1,36

1,36

песок

0,8

0,347

0,2

0,5

Пластовые флюиды

с, кДж/(кгК)

, Вт/(мК)

103, м2

L105, 1/К

нефть

2,1

0,139

0,069-0,086

-

вода

4,15

0,582

0,14

-

3. Состав и физические свойства газа, нефти и пластовых вод

3.1 Состав и физико-химические свойства природных газов

Природные газы - это вещества, которые при нормальных условиях находятся в газообразном состоянии.

Углеводородные газы, в зависимости от их состава, давления и температуры могут находиться в залежи в различных состояниях - газообразном, жидком или в виде газожидкостных смесей. Газ обычно расположен в газовой шапке в повышенной части пласта.

Если газовая шапка в нефтяной залежи отсутствует (это возможно при высоком пластовом давлении или особом строении залежи), то весь газ залежи растворён в нефти. Этот газ будет, по мере снижения давления, выделятся из нефти при разработке месторождения и будет называться попутным газом.

В пластовых условиях все нефти содержат растворённый газ. Чем выше давление в пласте, тем больше растворённого газа в нефти.

Давление, при котором весь имеющийся в залежи газ растворён в нефти, называется давлением насыщения. Оно определяется составом нефти и газа и температурой в пласте.

От давления насыщения зависит газовый фактор - количество газа (в м3), содержащееся в 1 тонне нефти.

Газы могут находиться в пласте в трёх состояниях: свободном, сорбированном, растворённом.

3.1.1 Состав природных газов

Природные газы, добываемые из газовых, газоконденсатных и нефтяных месторождений, состоят из углеводородных компонентов (СН4 - С22Н46), а также неуглеводородных компонентов (H2S, N2, CO, CO2, Ar, H2, He).

При нормальных и стандартных условиях в газообразном состоянии существуют только углеводороды С14. Углеводороды С5 и выше в нормальных условиях находятся в жидком состоянии.

Газы, добываемые из чисто газовых месторождений, содержат более 95% метана (табл. 3.1).

Таблица 3.1

Химический состав газа газовых месторождений, об. %

Месторождение

СН4

С2Н6

С3Н8

С4Н10

С5Н12

N2

СО2

Относит. плотность

Северо-Ставропольское

98,9

0,29

0,16

0,05

-

0,4

0,2

0,56

Уренгойское

98,84

0,1

0,03

0,02

0,01

1,7

0,3

0,56

Шатлыкское

95,58

1,99

0,35

0,1

0,05

0,78

1,15

0,58

Медвежье

98,78

0,1

0,02

-

-

1,0

0,1

0,56

Содержание метана на газоконденсатных месторождениях - 75-95% (табл. 3.2).

Таблица 3.2

Химический состав газа газоконденсатных месторождений, об. %

Месторождение

СН4

С2Н6

С3Н8

С4Н10

С5Н12

N2

СО2

Относит. плотность

Вуктыльское

74,80

7,70

3,90

1,80

6,40

4,30

0,10

0,882

Оренбургское

84,00

5,00

1,60

0,70

1,80

3,5

0,5

0,680

Ямбургское

89,67

4,39

1,64

0,74

2,36

0,26

0,94

0,713

Уренгойское

88,28

5,29

2,42

1,00

2,52

0,48

0,01

0,707

Газы, добываемые вместе с нефтью (попутный газ) представляют собой смесь метана, этана, пропан-бутановой фракции (сжиженного газа) и газового бензина. Содержание метана - около 35-85%. Содержание тяжёлых углеводородов в попутном газе 20-40%, реже - до 60% (табл. 3.3).

Таблица 3.3

Химический состав газа нефтяных месторождений (попутного газа), об. %

Месторождение

СН4

С2Н6

С3Н8

С4Н10

С5Н12

N2

СО2

Относит. плотность

Бавлинское

35,0

20,7

19,9

9,8

5,8

8,4

0,4

1,181

Ромашкинское

3838

19,1

17,8

8,0

6,8

8,0

1,5

1,125

Самотлорское

53,4

7,2

15,1

8,3

6,3

9,6

0,1

1,010

Узеньское

50,2

20,2

16,8

7,7

3,0

2,3

-

1,010

Тяжёлым нефтям свойственны сухие нефтяные газы (с преобладанием метана).

(3.1)

Под тяжелыми УВ понимаются углеводороды от этана (С2Н6) и выше.

Лёгким нефтям свойственны жирные газы:

(3.2)

3.1.2 Физико-химические свойства углеводородных газов

Нефтяной газ при нормальных условиях - неполярная, аддитивная система (смесь компонентов от С1 до С4). Следовательно, к нему при нормальных условиях применимы аддитивные методы расчётов физико-химических и технологических параметров (Псмеси):

,(3.3)

где gi - весовая доля;

Ni - мольная доля;

Vi - объёмная доля;

Пi - параметр i-го компонента.

Плотность смеси газов рассчитывается следующим образом:

.(3.4)

При нормальных условиях плотность газа г = Mi / 22,414.

Нефтяной газ представлен в виде смеси углеводородов, поэтому для оценки его физико-химических свойств необходимо знать, как выражается состав смеси.

Массовая доля (gi) - отношение массы i-го компонента, содержащегося в системе к общей массе системы:

(3.5)

Молярная (мольная) доля (Ni) - отношение числа молей i-го компонента к общему числу молей в системе:

(3.6)

,(3.7)

где mi - масса i-го компонента;

Мi - молекулярный вес.

(3.8)

Объёмная доля (Vi) - доля, которую занимает компонент в объёме системы.

(3.9)

Для идеального газа соблюдается соотношение Vi = Ni.

Молекулярная масса смеси рассчитывается следующим образом:

(3.10)

Относительная плотность газа по воздуху:

.(3.11)

Для нормальных условий 1,293; для стандартных условий 1,205.

Если плотность газа задана при атмосферном давлении (0,1013 МПа), то пересчёт её на другое давление (при той же температуре) для идеального газа производится по формуле:

.(3.12)

Смеси идеальных газов характеризуются аддитивностью парциальных давлений и парциальных объёмов.

Для идеальных газов давление смеси равно сумме парциальных давлений компонентов (закон Дальтона):

,(3.13)

где Р - давление смеси газов;

рi - парциальное давление i-го компонента в смеси,

или

.(3.14)

.(3.15)

Т. е. парциальное давление газа в смеси равно произведению его молярной доли в смеси на общее давление смеси газов.

Аддитивность парциальных объёмов компонентов газовой смеси выражается законом Амага:

,(3.16)

где V - объём смеси газов;

Vi - объём i-го компонента в смеси.

или

.(3.17)

Для определения многих физических свойств природных газов используется уравнение состояния.

Уравнением состояния называется аналитическая зависимость между параметрами, описывающими изменение состояние вещества. В качестве таких параметров используется давление, температура, объём.

Состояние газа при стандартных условиях характеризуется уравнением состояния Менделеева-Клайперона:

,(3.18)

где Р - абсолютное давление, Па;

V - объём, м3;

Q - количество вещества, кмоль;

Т - абсолютная температура, К;

R - универсальная газовая постоянная Пам3/(кмольград).

У этого уравнения есть свои граничные условия. Оно справедливо для идеальных газов при нормальном (1 атм.) и близких к нормальному давлениях (10-12 атм.).

При повышенном давлении газ сжимается. За счёт направленности связи С-Н происходит перераспределение электронной плотности, и молекулы газов начинают притягиваться друг к другу.

Для учёта этого взаимодействия в уравнение (3.18) вводится коэффициент сверхсжимаемости z, предложенный голландским физиком Ван-дер-Ваальсом, учитывающий отклонения реального газа от идеального состояния:

,(3.19)

где Q - количество вещества, моль.

Физический смысл коэффициента сверхсжимаемости заключается в расширении граничных условий уравнения Клайперона-Менделеева для высоких давлений.

Коэффициент z зависит от давления и температуры, природы газа (критических давлений и температуры).

Критическое давление - давление, при котором газообразный углеводород переходит в жидкое состояние.

Критическая температура - температура, при которой жидкий углеводород переходит в газообразное состояние.

Приведёнными параметрами индивидуальных компонентов называются безразмерные величины, показывающие, во сколько раз действительные параметры состояния газа отклоняются от критических:

(3.20)

(3.21)

(3.22)

Существуют графики, эмпирические формулы и зависимости для оценки коэффициента сверхсжимаемости от приведенных давлений и приведенных температур.

Зная коэффициент сверхсжимаемости, можно найти объём газа в пластовых условиях по закону Бойля-Мариотта:

.(3.23)

Объёмный коэффициент газа используется при пересчёте объёма газа в нормальных условиях на пластовые условия и наоборот (например, при подсчёте запасов):

(3.24)

Вязкость газа - свойство газа оказывать сопротивление перемещению одной части газа относительно другой.

Различают динамическую вязкость и кинематическую вязкость . Кинематическая вязкость учитывает влияние силы тяжести.

Динамическая вязкость зависит от средней длины пробега молекул газа и от средней скорости движения молекул газа:

,(3.25)

где - плотность газа;

- средняя длина пробега молекулы;

- средняя скорость молекул.

Кинематическая вязкость природного газа при нормальных условиях невелика и не превышает 0,01 сантипуаза.

Динамическая вязкость газа увеличивается с ростом температуры (при повышении температуры увеличивается средняя скорость и длина пробега молекул), однако при давлении более 3 МПа вязкость с ростом температуры начинает снижаться. От давления вязкость газа практически не зависит (снижение скорости и длины пробега молекул при увеличении давления компенсируется ростом плотности).

3.1.3 Растворимость газов в нефти и воде

От количества растворённого в пластовой нефти газазависят все её важнейшие свойства: вязкость, сжимаемость, термическое расширение, плотность и т.д.

Распределение компонентов нефтяного газа между жидкой и газообразной фазами определяется закономерностями процессов растворения. Способность газа растворятся в нефти и воде имеет большое значение на всех этапах разработки месторождений от добычи нефти до процессов подготовки и транспортировки.

Процесс растворения для идеального газа при небольших давлениях и температурах описывается законом Генри:

или ,(3.26)

где Vж - объём жидкости-растворителя;

- коэффициент растворимости газа;

Vг - количество газа, растворённого при данной температуре;

Р - давление газа над поверхностью жидкости

К - константа Генри (К=f()).

Коэффициент растворимости газа показывает, какое количество газа растворяется в единице объёма жидкости при данном давлении:

.(3.27)

Коэффициент растворимости зависит от природы газа и жидкости, давления, температуры.

Минимальное давление, при котором весь газ растворяется в жидкости (т.е. переходит в жидкое состояние), называется давлением насыщения.

Если пластовое давление меньше давления насыщения, то часть газа находится в свободном состоянии (залежь имеет газовую шапку). Если пластовое давление больше давления насыщения, то говорят, что нефть "недонасыщена" газом и весь газ растворён в нефти.

Природа воды и углеводородов различается, а, следовательно, углеводородная составляющая нефтяного газа растворяется в воде хуже, чем в нефти.

Неуглеводородные компоненты нефтяного газа, такие как СО, СО2, Н2S, N2 растворяются в воде лучше. Например, пластовая вода сеноманского горизонта очень газирована (5 м3 газа СО и СО2 на 1 т воды).

С повышением давления растворимость газа растёт, а с повышением температуры - падает. Растворимость газа зависит также от минерализации воды.

Разные компоненты нефтяного газа обладают разной способностью растворятся в жидкостях, причём с увеличением молекулярной массы газового компонента растёт коэффициент растворимости.

Количество выделившегося из нефти газа зависит не только от содержания газа в нефти, но и от способа дегазирования. Различают контактное разгазирование, когда выделившийся газ находится в контакте с нефтью, и дифференциальное разгазирование, когда выделившийся из нефти газ непрерывно отводится из системы.

Строгое соблюдение условий дифференциального дегазирования затруднено, поэтому используется многократное (ступенчатое) дегазирование.

В процессе добычи нефти встречаются оба способа дегазирования. В начальные периоды снижения давления от давления насыщения, когда газ ещё неподвижен относительно нефти, происходит контактное разгазирование. В последующий период, по мере выделения газа из нефти, газ быстрее движется к забою скважины и происходит дифференциальное разгазирование.

Коэффициент разгазирования - количество газа, выделившегося из единицы объёма нефти при снижении давления на единицу.

При движении газа по пласту наблюдается т.н. дроссельный эффект - уменьшение давления газового потока при его движении через сужения в каналах. При этом наблюдается изменение температуры. Интенсивность изменения температуры при изменении давления характеризуется коэффициентом Джоуля-Томсона:

Т=Р,(3.28)

где Т - изменение температуры:

- коэффициент Джоуля-Томсона (зависит от природы газа, давления, температуры);

Р - изменение давления.

3.2 Состав и физико-химические свойства пластовой воды

По мере эксплуатации нефтяных месторождений скважины постепенно обводняются. Содержание пластовой воды в скважинной продукции растёт и может достигать 95%. Поэтому важно знать, какое влияние оказывает пластовая вода на процесс добычи нефти и газа.

Состав пластовых вод разнообразен и зависит от природы эксплуатируемого нефтяного пласта, физико-химических свойств нефти и газа. В пластовых водах всегда растворено некоторое количество солей. Больше всего в воде содержится хлористых солей (до 80-90% от общего содержания солей).

Виды пластовых вод:

- подошвенные (вода, заполняющая поры коллектора под залежью);

- краевые (вода, заполняющая поры вокруг залежи);

- промежуточные (между пропластками);

- остаточные (оставшаяся со времён образования залежи вода).

Все эти виды вод представляют собой единую гидродинамическую систему. Пластовая вода часто является агентом, вытесняющим нефть из пласта, следовательно, её свойства влияют на количество вытесненной нефти.

3.2.1 Физико-химические свойства пластовых вод

Плотность пластовых вод сильно зависит от минерализации, т.е. содержания растворённых солей. В среднем плотность пластовой воды составляет 1010-1210 кг/м3.

Тепловое расширение воды характеризуется коэффициентом теплового расширения:

.(3.29)

Из формулы следует, что коэффициент теплового расширения воды (Е) характеризует изменение единицы объёма воды при изменении её температуры на 1С. По экспериментальным данным в пластовых условиях он колеблется в пределах (18-90)10-5 1/С. С увеличением температуры коэффициент теплового расширения возрастает, с ростом пластового давления - уменьшается.

Коэффициент сжимаемости воды характеризует изменение единицы объёма воды при изменении давления на единицу:

.(3.30)

Коэффициент сжимаемости воды изменяется в пластовых условиях в пределах 3,710-10 - 5,010-10 Па-1. При наличии растворённого газа он увеличивается, и приближённо может рассчитываться по формуле:

вг = в (1+0,05S),(3.31)

где S - количество газа, растворённого в воде, м33.

Объёмный коэффициент пластовой воды характеризует отношение удельного объёма воды в пластовых условиях к удельному объёму воды в стандартных условиях:

.(3.32)

Увеличение пластового давления способствует уменьшению объёмного коэффициента, а рост температуры - увеличению. Объёмный коэффициент изменяется в пределах 0,99-1,06.

Вязкость воды в пластовых условиях зависит, в основном, от температуры и минерализации. От давления вязкость зависит слабо. Наибольшую вязкость имеют хлоркальциевые воды (в 1,5-2 раза больше чистой воды).

Минерализация воды - содержание растворённых солей в г/л. По степени минерализации пластовые воды делятся на четыре типа:

- рассолы (Q>50 г/л);

- солёные (10<Q<50 г/л);

- солоноватые (1<Q<10 г/л);

- пресные (Q1 г/л).

Минерализация пластовой воды растёт с глубиной залегания пластов.

По типу растворённых в воде солей различают хлоркальциевые (хлоркальциево-магниевые) и щелочные (гидрокарбонатные, гидрокарбонатно-натриевые) пластовые воды. Тип пластовой воды определяется соотношением ионов растворённых солей:

- анионов: OH-; Cl-; SO42-; CO32-; HCO3-;

- катионов: H+; K+; Na+; NH4+; Mg2+; Ca2+; Fe3+;

- ионов микроэлементов: I-; Br-;

- коллоидных частиц SiO2; Fe2O3; Al2O3;

- нафтеновых кислот и их солей.

Состав воды определяет её жёсткость. Жёсткостью называется суммарное содержание растворённых солей кальция, магния, железа.

Жёсткость подразделяется на временную (карбонатную) и постоянную (некарбонатную).

Временная жёсткость или карбонатная (Жк) обусловлена содержанием в воде гидрокарбонатов двухвалентных металлов (кальция, магния, железа).

Постоянная жёсткость или некарбонатная (Жнк) обусловлена наличием в воде сульфатов и хлоридов двухвалентных металлов (кальция, магния, железа).

Общая жёсткость воды определяется как сумма карбонатной и некарбонатной:

Жо = Жк + Жнк(3.33)

Жёсткость воды оценивается содержанием в ней солей в миллиграмм-эквивалентах на литр :

,(3.34)

где mvi - концентрация i-го иона в воде (мг/л);

эi - эквивалент i-го иона.

,(3.35)

где Мi - молекулярная масса иона;

n - валентность иона.

Жо = gi(3.36)

Тип природной воды характеризуется в зависимости от содержания двухвалентных катионов:

- очень мягкая вода - до 1,5 мг-экв./л;

- мягкая вода - 1,5-3,0 мг-экв./л;

- умеренно жёсткая вода - 3,0-6,0 мг-экв./л;

- жёсткая вода - более 6 мг-экв./л.

Временную (карбонатную) жёсткость можно устранить термическим методом (длительным кипячением) или химическим методом - добавлением гидроксида кальция Са(ОН)2.

В обоих случаях выпадает в осадок карбонат кальция СаСО3.

Постоянную жёсткость устраняют химическим способом с помощью добавления соды или щёлочи.

Содержание водородных ионов в воде определяется параметром рН: , где Сн+ - концентрация ионов водорода. В зависимости от рН различают следующие типы воды:

- нейтральная (рН=7);

- щелочная (pH>7);

- кислая (p<7).

Вода, находясь в контакте с нефтью, частично в ней растворяется. Коэффициент растворимости нефти в воде зависит от наличия в воде полярных составляющих. Чем легче нефть, тем меньше в ней растворено воды. Нефти парафинового основания содержат мало воды. С ростом в нефти содержания ароматических углеводородов и гетероатомных соединений, растворимость воды в нефти растёт.

За счёт растворения воды в нефти происходят изменения в зоне водонефтяного контакта. Чёткой границы вода-нефть не существует. За счёт растворения воды образуется т.н. "переходная зона", величина которой зависит от полярности нефти.

3.3 Состав и физико-химические свойства нефтей

Нефть представляет собой сложную смесь органических соединений, преимущественно углеводородов и их производных. Вследствие изменчивости химического состава, физико-химические свойства нефтей различных месторождений и даже различных пластов одного месторождения отличаются большим разнообразием.

По консистенции нефти различаются от легко подвижных до высоковязких (почти не текучих) или застывающих при нормальных условиях. Цвет нефтей меняется от зеленовато-бурого до чёрного.

В нефти в основном содержатся следующие классы углеводородов:

Парафиновые углеводороды (алканы) - насыщенные (предельные) углеводороды с общей формулой CnH2n+2. Содержание в нефти - 30-70%. Различают алканы нормального (н-алканы) и изостроения (изоалканы). В нефти присутствуют газообразные алканы С24 (в виде растворённого газа), жидкие алканы С515 (основная масса жидких фракций нефти) и твёрдые алканы С1753, которые входят в тяжёлые нефтяные фракции и известны как парафины и церезины.

Нафтеновые углеводороды (циклоалканы) - насыщенные алициклические углеводороды с общей формулой CnH2n, CnH2n-2 (бициклические) или CnH2n-4 (трициклические). В нефти присутствуют в основном пяти- и шестичленные нафтены. Содержание в нефти - 25-75%. Содержание нафтенов растёт по мере увеличения молекулярной массы нефти.

Ароматические углеводороды - соединения, в молекулах которых присутствуют циклические полисопряжённые системы. К ним относятся бензол и его гомологи, толуол, фенантрен и др. Содержание в нефти - 10-15%.

Гетероатомные соединения - углеводороды, в состав молекул которых входят кислород, азот, сера, металлы. К ним относятся: смолы, асфальтены, меркаптаны, сульфиды, дисульфиды, тиофены, порфирины, фенолы, нафтеновые кислоты. Подавляющая часть гетероатомных соединений содержится в наиболее высокомолекулярных фракциях нефти, которые обычно называют "смолисто-асфальтеновыми веществами". На их долю приходится до 15%.

В нефти также содержатся в малых количествах неорганическая сера, различные металлы и т.д.

Фракционный состав нефти отражает содержание соединений, выкипающих в различных интервалах температур. Нефти выкипают в очень широком интервале температур - 28-550С и выше. Различают следующие фракции нефти:

- 28-180С - широкая бензиновая фракция;

- 120-240С - керосиновая фракция (150-240С - осветительный керосин; 140-200 - уайт-спирт);

- 140-340С - дизельная фракция (180-360С - летнее топливо);

- 350-500С - широкая масляная фракция;

- 380-540 - вакуумный газойль.

3.3.1 Физико-химические свойства нефти

Плотность пластовой нефти зависит от состава нефти, давления, температуры, количества растворённого газа (рис. 3.1.). Чем меньше плотность нефти, тем выше выход светлых фракций. Не все газы, растворяясь в нефти, одинаково влияют на её плотность. С повышением давления плотность нефти значительно уменьшается при насыщении её углеводородными газами. Плотность нефтей при насыщении азотом или углекислым газом несколько возрастает с увеличением давления. Обычно плотность нефтей колеблется в пределах 820-950 кг/м3.

Рис. 3.1 Изменение плотности пластовой нефти в зависимости от давления

Вязкость - сила трения (внутреннего сопротивления), возникающая между двумя смежными слоями внутри жидкости или газа на единицу поверхности при их взаимном перемещении (рис. 3.2).

Динамическая вязкость определяется через закон Ньютона:

,(3.37)

где А - площадь перемещающихся слоёв жидкости (газа) - см. рис. 3.2;

F - сила, требующаяся для поддержания разницы скоростей движения между слоями на величину dv;

dy - расстояние между движущимися слоями жидкости (газа);

dv - разность скоростей движущихся слоёв жидкости (газа).

Рис. 3.2 Движение двух слоёв жидкости относительно друг друга

Размерность вязкости определяется из уравнения Ньютона:

- система СИ - [Пас]

- система СГС - [Пуаз]=[г/(смс)]

Рис. 3.3 Изменение вязкости пластовой нефти в зависимости от давления и температуры

Вязкость пластовой нефти всегда значительно отличается от вязкости сепарированной вследствие большого количества растворённого газа, повышенного давления и температуры (рис. 3.3). При этом вязкость уменьшается с повышением количества газа в нефти и с увеличением температуры; повышение давления вызывает увеличение вязкости.

Вязкость нефти в пластовых условиях различных месторождений изменяется от сотен мПас до десятых долей мПас. В пластовых условиях вязкость нефти может быть в десятки раз меньше вязкости сепарированной нефти.

С вязкостью связан ещё один параметр - текучесть - величина обратная вязкости:

.(3.38)

Кроме динамической вязкости для расчётов используют также кинематическую вязкость - свойство жидкости оказывать сопротивление перемещению одной части жидкости относительно другой с учётом силы тяжести.

.(3.39)

Единицы измерения кинематической вязкости:

- система СИ - [м2/с]

- система СГС - [Стокс]

Неф...


Подобные документы

  • Классификация, механические и тепловые свойства пород-коллекторов. Характеристика и оценка пористости, проницаемости и насыщенности пустотного пространства жидкостью и газом. Условия залегания пород-коллекторов в ловушках нефти и газа в Западной Сибири.

    реферат [1,6 M], добавлен 06.05.2013

  • Залегание нефти, воды и газа в месторождении. Состав коллекторов, формирование и свойства. Гранулометрический состав пород, пористость, проницаемость. Коллекторские свойства трещиноватых пород. Состояние остаточной воды в нефтяных и газовых коллекторах.

    учебное пособие [3,1 M], добавлен 09.01.2010

  • Основы увеличения нефте- и газоотдачи пластов. Физические и механические свойства горных пород нефтяных и газовых коллекторов. Методы анализа пластовых жидкостей, газов и газоконденсатных смесей. Характеристика природных коллекторов нефти и газа.

    презентация [670,8 K], добавлен 21.02.2015

  • Условия залегания и свойства газа, нефти и воды в пластовых условиях. Физические свойства нефти. Главные свойства нефти в данных условиях, принципы и этапы отбора проб. Нефтенасыщенность пласта, характер и направления движения нефти внутри него.

    курсовая работа [1000,9 K], добавлен 19.06.2011

  • Исследование геологической природы нефти и газа. Изучение плотности, вязкостных свойств, застывания и плавления, загустевания и размягчения, испарения, кипения и перегонки нефти. Групповой химический состав нефти. Физические свойства природного газа.

    реферат [363,1 K], добавлен 02.12.2015

  • Исторические сведения о нефти. Геология нефти и газа, физические свойства. Элементный состав нефти и газа. Применение и экономическое значение нефти. Неорганическая теория происхождения углеводородов. Органическая теория происхождения нефти и газа.

    курсовая работа [3,2 M], добавлен 23.01.2013

  • Физико-химические свойства нефти и газа. Принципы и показатели классификации видов нефти и применение тригонограмм. Макроскопическое описание осадочных горных пород. Особенности пород-коллекторов и покрышек. Аспекты построения геологического профиля.

    методичка [379,3 K], добавлен 25.10.2012

  • Образование нефти и газа в недрах Земли. Физические свойства пластовых вод, залежей нефти, газа и вмещающих пород. Геофизические методы поисков и разведки углеводорода. Гравиразведка, магниторазведка, электроразведка, сейсморазведка, радиометрия.

    курсовая работа [3,3 M], добавлен 07.05.2014

  • Понятие природного газа и его состав. Построение всех видов залежей нефти и газа в ловушках различных типов. Физические свойства природных газов. Сущность ретроградной конденсации. Технологические преимущества природного газа как промышленного топлива.

    контрольная работа [2,0 M], добавлен 05.06.2013

  • Определение емкостных свойств пород в лабораторных условиях. Структурные, гранулометрические свойства, смачиваемость, поверхностная проводимость. Фильтрационные свойства, проницаемость для нефти, газа и воды. Методы повышения извлекаемых запасов нефти.

    курсовая работа [765,2 K], добавлен 08.01.2011

  • Характеристика источников пластовой энергии, действующей в залежи. Особенности поверхностных явлений при фильтрации жидкостей. Общая схема вытеснения нефти из плата водой и газом. Роль капиллярных процессов при вытеснении нефти водой из пористых сред.

    курсовая работа [902,7 K], добавлен 19.03.2010

  • Физические свойства горных пород-коллекторов нефти и газа. Типы осадочных пород: терригенные, хемогенные и органогенные. Гранулометрический состав как содержание в горной породе зерен крупности, выраженное в % от массы или количества зерен, его изучение.

    презентация [2,5 M], добавлен 17.04.2015

  • Коллектор - горная порода с высокой пористостью и проницаемостью, содержащая извлекаемые количества нефти и газа. Классификационные признаки коллекторов. Типы пород и залежей. Фильтрационные и емкостные свойства нефтяных и газовых пластов. Типы цемента.

    курсовая работа [2,0 M], добавлен 27.01.2014

  • Общая характеристика основных свойств нефти и газа: пористости, вязкости, плотности, сжимаемости. Использование давления насыщения нефти газом. Физические свойства коллекторов. Соотношение коэффициентов эффективной пористости и водонасыщенности.

    презентация [349,7 K], добавлен 07.09.2015

  • Орогидрография Самотлорского нефтяного месторождения. Тектоника и стратиграфия. Коллекторские свойства продуктивных пластов. Свойства нефти, газа и воды в пластовых условиях. Технология добычи нефти. Методы борьбы с осложнениями, применяемые в ОАО "СНГ".

    курсовая работа [1,2 M], добавлен 25.09.2013

  • Анализ неорганической и органической теорий происхождения нефти и газа. Залегание нефти и газа в месторождении, состав коллекторов, их формирование и свойства. Проблемы коммерческой нефте- и газодобычи на шельфе Арктики, устройство ледостойких платформ.

    презентация [3,5 M], добавлен 30.05.2017

  • Сведения о Западно-Коммунарском месторождении. Коллекторские свойства пласта. Физико-химические свойства нефти, газа и воды. Подсчет запасов нефти и газа. Характеристика системы воздействия на пласт. Определение эффективности разработки нефтяных залежей.

    курсовая работа [273,2 K], добавлен 23.10.2013

  • Общие сведения о месторождении, его стратиграфия, тектоника, нефтегазоводоностность. Свойства и состав нефти, газа, конденсата, воды. Физико-химические свойства пластовых вод. Гидравлический разрыв пласта, применяемое при нем скважинное оборудование.

    дипломная работа [1,1 M], добавлен 18.04.2014

  • Закономерности и изменения свойств нефти и газа в залежах и месторождениях. Давление и температура в залежах. Закономерности изменения свойств нефти и газа по объему залежи. Изменение пластовых давления и температуры в процессе разработки залежи.

    контрольная работа [31,2 K], добавлен 04.12.2008

  • Физические и химические свойства нефти. Теория возникновения газа. Применение продуктов крекинга. Внутреннее строение Земли. Геодинамические закономерности относительного изменения запасов и физико-химических свойств нефти различных месторождений.

    дипломная работа [3,8 M], добавлен 06.04.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.