Comparison of the simulated peak ground acceleration at different sites located close to each other
The problem of how much the peak accelerations differ at the same input motion at different sites located close to each other is considered. The results of modeling the transformation of the same input movement by soil layers of two different areas.
Рубрика | Геология, гидрология и геодезия |
Вид | статья |
Язык | английский |
Дата добавления | 14.08.2020 |
Размер файла | 333,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Comparison of the simulated peak ground acceleration at different sites located close to each other
Semenova Yu.
Institute of Geophysics of the National Academy of Sciences of Ukraine, Lviv, Ukraine
Abstract. The paper considers the problem of how different the peak acceleration at the same input motion (in the form of an accelerogram) at different sites located close to each other. The results of modeling the transformation of one and the same input motion by the soil strata of two different sites are presented. The sites have a similar geological structure. The bedrock is at the same depth. Under such conditions, when designing seismic resistant objects, design engineers for emergency load combination calculations usually use the same set of design accelerograms. The simulation results presented in this article showed that the transformation of the same one input movement by the soils of closely located sites with similar geology, differs significantly.
Keywords: seismic microzoning, designed accelerograms, peak ground acceleration.
Introduction. When testing buildings and structures for seismic effects by direct dynamic methods, accelerograms of earthquakes with characteristics corresponding to a specific construction site are required [1].
For the direct dynamic method of determining seismic loads at the stage when the object is not tied to a specific site, SBS V.1.1-12: 2014 [2] recommend accelerograms for testing. In practice, these accelerograms are sometimes mistakenly used for specific construction sites. The use of calculated accelerograms, which do not take into account the filtering properties of soils at a specific site [3], leads to incorrect engineering calculations of the seismic resistance of buildings.
The paper considers the problem of how different the peak ground acceleration at the same input motion (in the form of an accelerogram) at different sites located close to each other within the same city. The research was carried out using mathematical modeling software product ProShake [4], [5]. The calculation is based on the requirement of taking into account not one possible seismic impact, but an ensemble of impacts with different spectral characteristics, determined by the location of zones of possible earthquake focus relative to the site under study [6]. Seismic effects are represented by an ensemble of accelerograms were recorded on bedrock deposits or recalculated to bedrock [7].
When modeling the effect of soil layers on seismic effects, one should take into account data on tectonics, lithology, boundary geometry, as well as physicomechanical and nonlinear properties of the soil at the site. [8], [9], [10].
Main results. In fig. 1 presents the results of modeling the horizontal components of the calculated accelerograms obtained as a result of recalculation from the bedrock to the surface of the building sites at 45 Vyshgorodskaya St. and 10a Vozdukhoflotsky Ave. in Kiev. For both sites, the calculations used the same input motion in the form of an accelerogram was recorded on bedrock with maximum peak acceleration (PGA) PGA = 0.07g.
Soil strata under the site at 45 Vyshgorodskaya St. is mainly composed of sands and sandy loams, from 10 m to 85 m there are inversion layers of sandy loams (layers with reduced speeds). In the soil strata under the site at 10a Vozdukhoflotsky Ave. there are mainly sands and clays. Also at a depth of 26 m to 106 m there are inversion layers of clay with layers of water-saturated sand.
Fig. 1 - The horizontal components of the calculated accelerograms recalculated from the bedrock to the ground surface of the sites at 45 Vyshgorodskaya St. and 10a Vozdukhoflotsky Ave. in Kiev. Input ground motion with PGA of 0.07 g
Fig. 2. and Fig. 3 show the PGA versus depth curve of the same input motion at different sites at 45 Vyshgorodskaya St. and 10a Vozdukhoflotsky Ave. in Kiev.
Fig. 2 - Comparison of the PGA in the different depths at 45 Vyshgorodskaya St. in Kiev
Fig. 3 - Comparison of the PGA in the different depths at 10a Vozdukhoflotsky Ave. in Kiev
In Figure 2 and Figure 3 shows how PGA of seismic fluctuations change along depth during the same input motion at different construction sites at 45 Vyshgorodskaya St. and 10a Vozdukhoflotsky Avenue in Kiev. The depth to bedrock under both construction sites is about 330 m. At this depth, the PGA of the input motion is 0.07g. Under the site at 10a Vozdukhoflotsky Avenue, PGA decreased from 0.0889 g to 0.086 g at a depth of 105 m to 25 m. Further, in the upper 25-meter layer, it again increased to 0.090 g. Under the site at the 45 Vyshgorodskaya St. PGA smoothly increased to 0.076 g from a depth of 330 m to 198 m. From a depth of 198 m to 84.5 m, there is a rapid increase in PGA from 0.076 g to 0.123 g. Further, from 84.5 m to 36 m, the PGA slightly changes to 0.125 g, after which a rapid increase to 0.14 g is again observed.
Despite the fact that both sites are located in the same city and the distance between them is only 10 km, the soil strata of each of the sites transform the input motion according to different scenarios.
Analysis of the results presented in Figure 2 and Figure 3 allows us to make sense of the conclusions that the direct dynamic method for calculating seismic effects requires computational accelerograms that simulate earthquakes from hazardous areas of the zones of possible earthquake focus site, generated on the basis of observed accelerograms or recalculated to the bedrock as well as a seismic-geological model of the soil strata under the study site. The model will allow to take into account possible resonant and non-linear properties of soils. In real records of weak and medium-sized seismic events, nonlinear effects do not appear.
When constructing a computational seismic geological model for mathematical modeling of the effect of the soil strata on seismic effects, data on tectonics, lithology, boundary geometry, and physical-mechanical and non-linear soil properties of the site should be taken into account. On the other hand, calculations are limited by the capabilities of computational algorithms. In each case, it is necessary to find the optimal relationship between the complexity of the computational model of the geological environment and the capabilities of computational algorithms for calculating the movement of soil particles in complex models of the environment during earthquakes.
Conclusion
The article presents the results of modeling the transformation of one and the same input motion by the soil strata of two different sites. The sites have a similar geological structure. The bedrock is at the same depth. Geographically, the sites are located at a distance of 10 km from each other in Kiev on the right bank of the Dnieper. Under such conditions, when designing seismic resistant objects, design engineers for emergency load combination calculations usually use the same set of design accelerograms. The modelling results presented in this article showed that the soil amplifications of the same input motion, even on closely spaced and, at first glance, sites with similar geological structure, may differ significantly.
Thus, for the direct dynamic method of calculating seismic effects, it is necessary to use the calculated accelerograms were obtained for a specific construction (operational) site. Such accelerograms are generated using a calculated seismic geological model of the soil strata of the specific site and accelerograms recorded on bedrock (or recalculated from them) from hazardous areas of the zones of possible earthquake focus site.
Calculated accelerograms should be generated only for specific sites of the proposed seismic resistant construction. Their use will ensure an acceptable level of seismic resistance while reducing the cost of the object. The use of accelerograms, which do not take into account the resonant and nonlinear properties of soils at a specific site under study, can lead to incorrect engineering calculations of the seismic resistance of buildings.
Список литературы / References
1. Kramer S. L. Geotechnical Earthquake Engineering / Kramer S. L. N. J.: Prentice Hall, Upper Saddle River. 1996. - 672 p.
2. Строительство в сейсмических районах Украины: ДБН В.1.1-12:2014. Киев: Минрегионстрой Украины, 2014. 84 с.
3. Ishikhara K. The behavior of soils during earthquakes / Ishikhara K. St. Petersburg: NPO «Georekonstruktsiya-Fundamentproekt». - 383 p.
4. Schnabel P. B. SHAKE: A computer program for earthquake response analysis of horizontally layered sites / Schnabel P. B., Lysmer J., Seed H. B. // Report No. EERC 72- 12. Berkeley, California: Earthquake Engineering Research Center, University of California. 1972. - 102 p.
5. ProShake Ground Response Analysis Program, version 1.1. User's Manual, EduPro Civil Systems, Washington, USA, 1998, 54 p.
6. Yoshida Nozomu Seismic Ground Response Analysis, vol.36. Geotechnical, Geological and Earthquake Engineering. Dordrecht: Springer Netherlands. 2015, http://link.springer.com/10.1007/978-94-017-9460-2, accessed February 19, 2016
7. Rathje E. M. Influence of input motion and site property variabilities on seismic site response analysis / Rathje E. M., Kottke A. R.,Trent W. L.; J. Geotech. Geoenviron. 136(4). - P. 607 - 619.
8. Ikuo Towhata: Geotechnical Earthquake Engineering, ISBN 978-3-540-35782-7, Springer Verlag - Berlin Heidelberg. 2008. - 684p.
9. Budhu M. Soil Mechanics and Foundations / Budhu M. 3rd ed., Wiley, Hoboken, NJ. 2011. - 781p.
10. Кендзера О.В. Деформаційні характеристики розрахункових моделей ґрунтової товщі / Кендзера О.В., Семенова Ю.В. // Вісник Київського національного університету імені Тараса Шевченка. Геологія - 2017. - № 78 - С.17-29
Список литературы на английском языке / References in English
peak ground acceleration each
1. Kramer S. L. Geotechnical Earthquake Engineering / Kramer S. L. N. J.: Prentice Hall, Upper Saddle River. 1996. - 672 p.
2. Строительство в сейсмических районах Украины: ДБН В.1.1-12:2014. Киев: Минрегионстрой Украины, 2014. 84 с.
3. Ishikhara K. The behavior of soils during earthquakes / Ishikhara K. St. Petersburg: NPO «Georekonstruktsiya-Fundamentproekt». - 383 p.
4. Schnabel P. B. SHAKE: A computer program for earthquake response analysis of horizontally layered sites / Schnabel P. B., Lysmer J., Seed H. B. // Report No. EERC 72- 12. Berkeley, California: Earthquake Engineering Research Center, University of California. 1972. - 102 p.
5. ProShake Ground Response Analysis Program, version 1.1. User's Manual, EduPro Civil Systems, Washington, USA, 1998, 54 p.
6. Yoshida Nozomu Seismic Ground Response Analysis, vol.36. Geotechnical, Geological and Earthquake Engineering. Dordrecht: Springer Netherlands. 2015, http://link.springer.com/10.1007/978-94-017-9460-2, accessed February 19, 2016
7. Rathje E. M. Influence of input motion and site property variabilities on seismic site response analysis / Rathje E. M., Kottke A. R.,Trent W. L.; J. Geotech. Geoenviron. 136(4). - P. 607 - 619.
8. Ikuo Towhata: Geotechnical Earthquake Engineering, ISBN 978-3-540-35782-7, Springer Verlag - Berlin Heidelberg. 2008. - 684p.
9. Budhu M. Soil Mechanics and Foundations / Budhu M. 3rd ed., Wiley, Hoboken, NJ. 2011. - 781p.
10. Kendzera A. V. Deformacіjnі harakteristiki rozrahunkovih modelej ґruntovoї tovshchі [Deformation Characteristics of Computational Model of soil strata] / Kendzera A. V., Semenova Yu. V. // Visnyk of Taras Shevchenko National University of Kyiv [Vіsnik Kiїvs'kogo nacіonal'nogo unіversitetu іmenі Tarasa SHevchenka]: Geology, 78. 2017. - P. 17-29 [in Ukrainian]
Аннотация. В работе рассматривается проблема того, насколько различаются пиковые ускорения при одном и том же входном движении (в виде акселерограммы) на разных площадках, расположенных близко друг к другу. Представлены результаты моделирования трансформации одного и того же входного движения почвенными слоями двух разных участков. Участки имеют похожую геологическую структуру. Коренные породы находятся на одной глубине. В таких условиях при проектировании сейсмостойких объектов инженеры-конструкторы для расчетов сочетания аварийных нагрузок обычно используют один и тот же набор проектных акселерограмм. Результаты моделирования, представленные в этой статье, показали, что трансформация одного и того же входного движения грунтами, близко расположенных участков с похожей геологией, существенно отличается.
Ключевые слова: сейсмическое микрорайонирования, расчетные акселерограммы, пиковое ускорение грунта.
Размещено на Allbest.ru
...Подобные документы
Geographical position. The Louvre is the world's most visited art museum. The Arc de Triomphe de L’etoile is one of the most famous monuments in Paris. The Eiffel Tower located on the Champe de Mars in Paris, named after the engineer Gustave Eiffel.
презентация [1,0 M], добавлен 07.12.2013Pre-cinema inventions. Descriptions of some visual devices which anticipated the appearance of motion-picture camera. The development of cinematography. The problem of genesis of the language of cinema. The ways of organizing theatrical performances.
реферат [17,5 K], добавлен 02.02.2015Why English language so the expanded language in the world. The English countries of conversation are located in various parts of the world and differ in the different ways. Each country has own customs of history, tradition, and own national holidays.
топик [10,7 K], добавлен 04.02.2009The results of theoretical analysis and computer simulation of the amplitude and phase errors of the narrowband signal. Vector representation of input and output signals. Standard deviation of the phase. Probability distribution laws of the phase error.
реферат [469,7 K], добавлен 06.04.2011Investigation of the subjective approach in optimization of real business process. Software development of subject-oriented business process management systems, their modeling and perfection. Implementing subject approach, analysis of practical results.
контрольная работа [18,6 K], добавлен 14.02.2016The Tower of London as one of the most imposing of London's historical sites. Westminster Abbey as one of the most attractive constructions. St Paul's Cathedral is one of the most famous buildings in the world. Trafalgar Square. The British Museum.
презентация [592,8 K], добавлен 13.04.2015The structure of the human lung: diaphragmatic, rib, interlobar and medial surface; front, rear and bottom edges; tip and base. Gaseous exchange in the alveoli and bronhyoly. Lung volumes and capacities. Peak flow and causes of narrowing of the airways.
презентация [441,9 K], добавлен 21.05.2014The pillars of any degree of comparison. Morphological composition of the adjectives. An introduction on degrees of comparison. Development and stylistic potential of degrees of comparison. General notes on comparative analysis. Contrastive linguistics.
курсовая работа [182,5 K], добавлен 23.12.2014Алгоритм решения задачи: расположение значений ветора в порядке возрастания методом "Всплывающих пузырьков". Блок-схема алгоритма решения задачи. Описание блок-схемы, распечатка программы. Операторы: rem, dim, print, input, lprint using, for-next.
курсовая работа [17,4 K], добавлен 27.02.2010Among the most urgent problems are the ozone layer, acid rains, global warming, toxic pollution of atmosphere, disappearance of forests, contamination of underground waters by chemical elements, destruction of soil in some areas.
топик [5,9 K], добавлен 13.05.2002Dartmoor is an area of moorland in the centre of Devon. Peak district national park. Medieval to modern history. Tunnel on the Manchester to Sheffield line. Road network, public transport. The Broads National Park. Queen Elizabeth Park, British Columbia.
творческая работа [77,4 K], добавлен 21.12.2009Обработка курсора в PL/SQL. Объявление курсора и атрибуты курсора. Использование команд OPEN, FETCH и CLOSE. Исключительные ситуации в PL/SQL. Стандартные исключительные ситуации. Различные ситуации срабатывания триггера. Порядок активизации триггеров.
презентация [307,9 K], добавлен 14.02.2014The United States began as a nation of 13 states. The original 13 colonies were then located in the area today occupied by 16 states and 34 other states were admitted to union one by one.
реферат [543,5 K], добавлен 11.06.2007Investigation of the process of translation and its approaches. Lexical Transformations, the causes and characteristics of transformation; semantic changes. The use of generic terms in the English language for description specific objects or actions.
курсовая работа [38,0 K], добавлен 12.06.2015Charles, Prince of Wales is the child and heir apparent of Queen Elizabeth II. Prince William, Duke of Cambridge is the elder son of Charles and Diana. The British Royal Family is the family group of close relatives of the monarch of the United Kingdom.
презентация [2,9 M], добавлен 07.04.2015Concept and importance of simulation, the scope of its practical use, the direction of research. The shortage of specialists in the field of pharmacy, the way to resolve it. Master's works and their subjects. Academic modeling and simulation programs.
презентация [450,4 K], добавлен 11.03.2015The geographic characteristics of the Novaya Zemlya archipelago in the Arctic Ocean. The history of the test site at Novaya Zemlya. Learning the facts about the nuclear test site. Description of the scope and consequences of the explosion of King-bomb.
презентация [1,2 M], добавлен 18.10.2015The word "taste" has several meanings. One of them is a physical sense of perception, as, for example, in "It tastes so sweet, try it!" Taste may also be defined as aesthetic feeling towards something or understanding.
топик [4,7 K], добавлен 25.08.2006The University of Cambridge as a public research university located in Cambridge. Murry Edwards, Newham, Lucy Cavendish. Wesstcot House, Westminster college. Faculty of law. Supervision as the principal method of teaching. Schools, faculties, departments.
презентация [1,2 M], добавлен 01.11.2013Hyde Park as one of several royal parks in London connected to each other, forming one large green lung in the center of the city. Hyde Park is located on Palm Street and Natural Bridge Avenue. Rotten Row a famous bridle path. The Wellington Arch.
презентация [2,2 M], добавлен 02.04.2013