Селективная ультразвуковая обработка как эффективный метод снижения обводненности в горизонтальных скважинах
Проблематика борьбы с обводненностью скважин, которая в случае горизонтальной направленности ствола скважины имеет свои характерные особенности. Оценка достоинств, недостатков и общей эффективности метода, возможности его применения в реальных условиях.
Рубрика | Геология, гидрология и геодезия |
Вид | статья |
Язык | русский |
Дата добавления | 04.11.2020 |
Размер файла | 1,8 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Селективная ультразвуковая обработка как эффективный метод снижения обводненности в горизонтальных скважинах
Кудешов А.А.
Студент магистратуры 1 курс
Аннотация
Настоящая работа посвящена проблематике борьбы с обводненностью скважин, которая в случае горизонтальной направленности ствола скважины имеет свои характерные особенности. Рассмотрен эффективный метод селективной ультразвуковой обработки скважины, проведена оценка достоинств, недостатков и общей эффективности метода, а также сделано заключение о возможностях его применения в реальных условиях.
Ключевые слова: обводненность скважин, горизонтальная скважина, селективная ультразвуковая обработка.
селективная ультразвуковая обводненность скважина
Abstract
The present work is devoted to the problems of fighting against water cut in wells, which in the case of horizontal orientation of the wellbore has its own characteristic features. An effective method of selective ultrasonic treatment of a well is considered, the advantages, disadvantages and overall effectiveness of the method are evaluated, and a conclusion is drawn on the possibilities of its application in real conditions.
Keywords: water cut of wells, horizontal well, selective ultrasonic treatment.
Запасы природных ресурсов России зачастую не позволяют экономически эффективно добывать нефть с использованием традиционных методов. В первую очередь это относится к пластам с низкой проницаемостью, так как большая часть запасов нефти будет не вовлечена в разработку. В этих условиях улучшение эффективности добычи может быть достигнуто за счет использования горизонтальных скважин, которые имеют большую зону дренирования пласта.
Горизонтальные скважины особенно эффективны в трещиноватых коллекторах. Такие скважины, проходя через несколько сотен метров продуктивного пласта, могут вскрыть трещиноватые зоны с более высокой проницаемостью в неоднородном пласте, что часто приводит к значительному преимуществу над вертикальными скважинами с точки зрения добычи.
Особенно важно использовать горизонтальное бурение в случае неоднородных пластов. Таким образом, бурение и эксплуатация горизонтальных скважин в настоящее время является одной из наиболее важных тем научно-технических исследований в области нефтедобычи.
При бурении таких скважин, даже с применением новейших геофизических приборов возможно отклонение реальной траектории скважины от запланированной идеальной траектории. В результате такого отклонения скважина может очень близко подойти к водонефтяному контакту, как показано на рис. 1.
Рисунок 1. Профили реальной и идеальной скважины
В таком случае обводнение скважины неизбежно. Для уменьшения обводненности прежде всего необходимо проводить геофизические исследования, которые проводятся в автономном режиме, т.е. интерпретация полученных данных производится после извлечения инструмента, т.к. сбор данных через интернет невозможен, поэтому требуются дополнительные спускоподъемные операции, которые довольно дорогие.
Для предотвращения поступления воды в скважину, необходимый интервал обрабатывают специальной кольматирующей пачкой, либо применяют специальные изоляторы зоны обводнения. Обе технологии уменьшения поступления воды основаны на общем снижении дебита скважины, что может привести к невозможности извлечь часть потенциально извлекаемых запасов, таким образом, возможно снижение коэффициента восстановления.
В институте общей и неорганической химии им. Н.С. Курнакова Российской академии наук были проведены исследования влияния акустических методов на увеличение притока пластовых флюидов к скважине [1]. Было замечено, что побочным эффектом повышения притока является снижение обводненности. До этих исследований об использовании ультразвуковой обработки для снижения обводненности никогда не сообщалось в литературе.
На основании полученных результатов было предложено использовать селективную ультразвуковую обработку зоны перфорации горизонтальных нефтяных скважин для снижения обводненности.
Использовалось специально разработанное оборудование для обработки зон перфорации горизонтальных скважин. Это оборудование, включало в себя специальный ультразвуковой генератор, скважинный прибор диаметром 44 мм и специально разработанный кабель (рис. 2), установленный на «мини - гибкой трубе» (рис. 3).
Рисунок 2. Кабель для проведения ультразвуковой обработки
Рисунок 3. Установка «мини-гибкая труба»
Скважинный инструмент включал в себя сонотрод с магнитострикцией, преобразователи, зонд для онлайн измерения необходимых параметров и специальный струйный насос для горизонтальных скважин.
Частота звука была 18 кГц. Во время обработки зондом были измерены следующие параметры: давление, температура, естественное излучение породы, поток жидкости, магнитное расположение муфт и другие параметры.
Проведены замеры распределения амплитуды давления вокруг скважины в двух случаях:
Инструмент расположен в середине скважины, это тот случай, когда скважина расположена вертикально;
Инструмент расположен рядом с боковой стенкой скважины, что имеет место, если скважина горизонтальная
Согласно результатам моделирования, ультразвук распределяется в радиальном направлении, и по меньшей мере один метр пласта обрабатывается эффективно. Во время обработки инструмент можно перемещать вдоль скважины, что позволит обрабатывать необходимые интервалы зоны перфорации. Интервалы выбираются на основании геофизических исследований.
Радиального проникновения в один метр достаточно, чтобы удалить отложения из зоны перфорации ствола скважины [2]. В случае горизонтальной скважины, когда инструмент расположен вблизи нижней боковой стенки, распределение амплитуды давления вокруг скважины более однородна.
Для полевых испытаний была выбрана типовая горизонтальная скважина Западной Сибири на Самотлорском месторождении с высокой обводненностью.
В случае данной скважины по данным нефтедобывающей компании продуктивный слой был расположен в интервале 1972,03 - 2049,48 м. Геофизические исследования показали, что в интервале 1955 - 2049,48 м годами добывалась, в основном, вода, вероятно, из-за его близости к ВНК. После проведения селективной ультразвуковой обработки обводненность снизилась на 20,7%, объем добываемого флюида увеличился на 30,1 баррелей в сутки.
На основании исследований, проведенных в институте общей и неорганической химии им. Н.С. Курнакова Российской академии наук, можно сделать вывод о том, что проведение селективной ультразвуковой обработки способствует снижению обводненности в горизонтальных скважинах, и данный метод применим на различных месторождениях Западной Сибири со схожим геологическим строением [3].
Библиографический список
Vladimir O. Abramov, Anna V. Abramova, Vadim M. Bayazitov, Alexander V. Marnosov. Selective ultrasonic treatment of perforation zones in horizontal oil wells for water cut reduction. AppliedAcoustics, 2016, 103: 214-220.
Апасов, Т.К. Анализ и перспективы применения ультразвукового воздействия на пласт на месторождениях Западной Сибири / В.О. Абрамов, М.С. Муллакаев, Ю.А. Салтыков, Г.Т. Апасов, В.М. Баязитов // Проблемы нефтегазового комплекса Западной Сибири и пути повышения его эффективности. Сб. докладов III науч.-практ. Конф. - Тюмень: Изд-во ОГУП «Шадринский Дом Печати», - 2012. - 584с.
Вопросы геологии, бурения и разработки нефтяных и газонефтянных месторождений Сургутского региона: Сборник научных трудов. Вып. 12/ Сургут НИПИ нефть, ОАО «Сургутнефтегаз». - М.: Нефтяное хозяйство, 2012. - 160 с.
Размещено на Allbest.ru
...Подобные документы
Геолого-промысловая характеристика продуктивных пластов. Оценка и обоснование длины горизонтальной части ствола скважины. Прибор для оценки сложного многофазного потока в горизонтальных скважинах. Методики расчета продуктивности секции ствола скважин.
дипломная работа [2,6 M], добавлен 13.06.2016Краткая геолого-промысловая характеристика Оренбургского НГКМ. Газогидродинамические исследования газоконденсатных скважин. Методы определения забойного давления в горизонтальных скважинах различных конструкций. Оценка эффективности бурения скважин.
дипломная работа [2,1 M], добавлен 13.10.2013Коллекторские свойства продуктивных пластов. Физико-химические свойства пластовых флюидов. Конструкции горизонтальных скважин Ромашкинского месторождения. Анализ текущего состояния разработки. Выбор и проектирование профиля горизонтальной скважины.
дипломная работа [3,2 M], добавлен 19.05.2012Разбуривание месторождений горизонтальными скважинами, а также эффективность применения горизонтальных скважин в условиях Талаканского нефтегазоконденсатного месторождения. Исследование стационарного притока к одиночной скважине в анизотропном пласте.
статья [54,5 K], добавлен 19.05.2014Измерение кривизны ствола скважины. Построение инклинограммы и геологических карт. Проведение измерения диаметра скважины. Возможные причины повреждения обсадных колонн. Определение места нарушения колонны. Исследование скважин по шумовым эффектам.
реферат [5,6 M], добавлен 27.12.2016Определение параметров пластовой смеси. Теоретические основы для расчета распределения температуры по стволу газоконденсатной скважины. Расчет забойных давлений и температуры по стволу горизонтальной скважины с приемлемой для практики точностью.
курсовая работа [1010,0 K], добавлен 13.04.2016Геологическое строение северо-уренгойского месторождения. Проектирование профиля ствола скважины. Буровые промывочные жидкости. Технологические решения, принятые по проводке скважин на Северо-Уренгойском месторождении. Параметры телесистемы "Orienteer".
дипломная работа [3,3 M], добавлен 12.11.2014Оценка уровня экологичности при бурении скважин. Способы зарезки бокового ствола. Ожидаемые осложнения по разрезу скважины. Расчет срока окупаемости бокового ствола. Организация безопасности производства и меры по охране недр при проводке скважин.
доклад [15,8 K], добавлен 21.08.2010Методы исследования скважин н технические средства для их осуществления. Электрокаротаж и его разновидности. Результаты реальных исследований скважин при разной обводненности продукции и содержании газа. Подъем жидкости из скважин нефтяных месторождений.
презентация [1,0 M], добавлен 29.08.2015Причины и механизм самопроизвольного искривления ствола скважин, их предупреждение. Назначение и область применения наклонно-направленных скважин. Цели и способы направленного бурения. Факторы, определяющие траекторию перемещения забоя скважины.
курсовая работа [1,4 M], добавлен 21.12.2012Геолого-физическая характеристика Ромашкинского месторождения НГДУ "ЛН". Коллекторские свойства продуктивных пластов, пластовых флюидов. Анализ фонда скважин, текущих дебитов и обводненности. Применяемые горизонтальные технологии на объекте разработки.
дипломная работа [1,3 M], добавлен 02.06.2010Состояние современного применения способа добычи нефти штанговыми насосами. Разработка Туймазинского месторождения. Особенности применения технологии борьбы с отложениями парафинов в скважинах, эксплуатируемых УШГН, на примере НГДУ "Туймазанефть".
курсовая работа [229,6 K], добавлен 14.11.2013Литолого–стратиграфическая характеристика разреза скважины. Обоснование конструкции скважины на данной площади. Оборудование устья скважины и технологическая оснастка обсадной колонны. Подготовка ствола к спуску, спуск и расчет обсадных колонн.
курсовая работа [2,6 M], добавлен 13.07.2010Особенности работы тандемной установки погружных электрических центробежных насосов в скважинах со сложным пространственным профилем ствола и составом продукции. Повышение технологической эффективности ее эксплуатации. Расчет параметров струйного насоса.
курсовая работа [591,3 K], добавлен 12.03.2015Определение устьевого давления при различных длинах и диаметрах обсадных колонн, фонтанных труб и радиусах кривизны, обеспечивающих минимальные потери давления по стволу горизонтальной скважины. Расчёт оптимальных вариантов соотношения этих параметров.
дипломная работа [2,1 M], добавлен 15.10.2013Добыча полезных ископаемых методом подземного выщелачивания и о геотехнологических скважинах. Технология бурения геотехнологических скважин. Буровое оборудование для сооружения геотехнологических скважин. Конструкции и монтаж скважин для ПВ металлов.
реферат [4,4 M], добавлен 17.12.2007Виды скважин, способы добычи нефти и газа. Вскрытие пласта в процессе бурения. Причины перехода газонефтепроявлений в открытые фонтаны. Общие работы по ремонту скважин. Обследование и подготовка ствола скважины. Смена электрического центробежного насоса.
учебное пособие [1,1 M], добавлен 24.03.2011Теория подъема жидкости в скважин. Эксплуатация фонтанных скважин, регулирование их работы. Принципы газлифтной эксплуатации скважин. Методы расчета промысловых подъемников. Расчет кривой распределения давления в подъемных трубах газлифтной скважины.
курсовая работа [1,5 M], добавлен 07.05.2015Геологическое строение продуктивного горизонта. Параметры продуктивных пластов. Физико-химические свойства флюидов. Причины снижения продуктивности и технологической эффективности скважин. Использование двухрастворной кислотной обработки в скважинах.
курсовая работа [30,2 K], добавлен 24.06.2011Восстановление скважин из бездействия методом зарезки и бурения второго ствола для доразработки залежей и использования фонда бездействующих скважин. Зарезка и бурение непосредственно из-под башмака технической колонны без применения отклонителя.
курсовая работа [19,8 K], добавлен 14.02.2008