Изотопно-геохимический (Sm-Nd, Rb-Sr, REE, HFSE) состав Университетского фойдолит-габбрового плутона, Кузнецкий Алатау, Сибирь

Расположение Университетского фойдолит-габбрового плутона среди кембрийских карбонатно-вулканогенных отложений. Особенности формирования умеренно-щелочных габброидов в раннем палеозое с внедрением даек щелочных пород среднепалеозойского возраста.

Рубрика Геология, гидрология и геодезия
Вид статья
Язык русский
Дата добавления 19.05.2021
Размер файла 1,2 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

16. Gorton, M. P. and Schandl, E. S. (2000). From continents to island arcs: a geochemical index of tectonic setting for arc-related and within-plate felsic to intermediate volcanic rocks. Canadian Mineral. 38, 1065-1073. https://doi.org/10.2113/gscanmin.38.5.1065

17. Grinev, O. M. (1987). Geology and petrography of the Belogorsk alkaline-gabbroid massif. Alkaline and subalkaline rocks of the Kuznetsk Alatau, 43-62. (In Russian)

18. Izokh, A. E., Polyakov, G. V., Shelepaev, R. A., Vrublevskii, V V., Egorova, V. V., Rudnev, S. N., Lavrenchuk, A. V, Borodina, E. V and Oyunchimeg, T. (2008). Early Paleozoic Large Igneous Province of the Central Asia Mobile Belt. Large Igneous Province Commission. Available at: http://www.largeigneousprovinces.org/08may [Accessed Nov. 16, 2020].

19. Jahn, B.-M., Wu, F. Y. and Chen, B. (2000). Massive granitoid generation in Central Asia: Nd isotope evidence and implication for continental growth in the Phanerozoic. Episodes, 23 (2), 82-92. https://doi. org/10.18814/epiiugs/2000/v23i2/001

20. Jourdan, F., Bertrand, H., Scharer, U., Blichert-Toft, J., Feraud, G. and Kampunzu, A. B. (2007). Major and Trace Element and Sr, Nd, Hf, and Pb Isotope Compositions of the Karoo Large Igneous Province, Botswana-Zimbabwe: Lithosphere vs Mantle Plume Contribution. Journal of Petrology, 48 (6), 10431077. https://doi.org/10.1093/petrology/egm010

21. Karmanova, N. G. and Karmanov, N. S. (2011). Universal XRF silicate analysis of rocks using the ARL9900XP spectrometer. In: All-Russian Conference on X-ray Spectral Analysis. Iss. 7. Novosibirsk: IGM SB RAS Publ. (In Russian)

22. Kelemen, P. B., Hanghцj, K. and Greene, A. R. (2003). One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust. Treatise on Geochemistry. Elsevier, 593-659. https://doi.org/10.1016/B0-08-043751-6/03035-8

23. Kuzmin, M. A. and Yarmolyuk, V. V. (2014). Mantle plumes of Central Asia (Northeast Asia) and their role in forming endogenous deposits. Russian Geology and Geophysics, 55, 120-143. http://doi.org/10.1016/j. rgg.2014.01.002

24. Kuzmin, M. I. and Yarmolyuk, V. V (2016). Plate tectonics and Mantle Plumes have been the basis of the endogenous tectonic activity of the Earth for the last 2 billion years. Geology and Geophysics, 57 (1), 11-30. https://doi.org/10.15372/GiG20160102 (In Russian)

25. Le Maitre, M. J., Streckeisen, A., Zanettin, B., Le Bas, M. J. et al. (2002). Igneous Rocks. UK: Cambridge University Press. Available at: https://www.researchgate.net/publication/234448684_Igneous_Rocks_A_ Classification_and_Glossary_of_Terms [Accessed Nov. 16, 2020].

26. Ludwig, K. R. (2000). User's manual for Isoplot/Ex, Version 2.2. A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication. Available at: http://www.geo.cornell.edu/geology/classes/Geo656/Isoplot%20Manual.pdf [Accessed Nov. 16, 2020].

27. Makarenko, N. A. and Kotelnikov, A. D. (2018). The Kashpar Cambrian-Ordovik gabbro-diorite-quartzmontsodiorite-syenite Complex-New Petrography Department on the Eastern Slope of the Kuznetsk Alatau. Geosphere studies, 2, 52-71. https://doi.org/10.17223/25421379/7Z4 (In Russian)

28. Middlemost, E. A. K. (1994). Naming materials in the magma/igneous rock system. Earth-Science Reviews, 37, 215-224. https://doi.org/10.1016/0012-8252(94)90029-9

29. Middlemost, E. A. K. (1997). Magmas, Rocks and Planetary Development. Taylor and Francis. https://doi. org/10.4324/9781315843698

30. Morgan, W J. (1972). Deep mantle convection plumes and plate motions. Bull. Amer. Assoc. Petrol. Geols., 56, 203-213. Available at: http://www.mantleplumes.org/WebDocuments/Morgan1972.pdf [Accessed Nov. 16, 2020].

31. Mustafayev, A. A., Gertner, I. F. and Serov, P. A. (2017). Features of geology and composition of rocks from the alkaline-gabbroic University massif (N-E Kuznetsky Alatau ridge, Siberia). Earth and Environmental Science, 319, 012026. Available at: https://iopscience.iop.org/article/10.1088/1755-1315/110/1/012016/ meta [Accessed Nov. 16, 2020].

32. Mustafayev, A. A., Gertner, I. F. and Serov, P. A. (2019). New Sm-Nd isotopic data on the University alkaline-gabbro massif (NE Kuznetsk Alatau). LIP through earth history: mantle plumes, supercontinents, climate change, metallogeny and oil-gas, planetary analogues, 90-92. Available at: https://www.elibrary. ru/item.asp?id=41503143 [Accessed Nov. 16, 2020].

33. Osipov, P. V., Makarenko, N. A., Korchagin, S. A., Gertner, I. F. and Grinev, O. M. (1989). New alkaline-gabbroid ore-bearing massif in the Kuznetsk Alatau. Russian Geology and Geophysics, 11, 79-82. (In Russian)

34. Pirajno, F. and Santosh, M. (2014). Rifting, intraplate magmatism, mineral systems and mantle dynamics in central-east Eurasia: An overview. Ore Geology Reviews, 63, 265-295. http://doi.org/10.1016/j.oregeorev.2014.05.014

35. Pirajno, F. (2015). Intracontinental anorogenic alkaline magmatism and carbonatites, associated mineral systems and the mantle plume connection. Gondwana Research, 01328. http://doi.org/10.1016Aj. gr.2014.09.008

36. Pokrovskii, B. G., Andreeva, E. D., Vrublevskii, V. V. and Grinev, O. M. (1998). Contamination mechanisms of alkaline-gabbro intrusions in the southern periphery of the Siberian craton: evidence from strontium and oxygen isotopic compositions. Petrologiia, 6 (3), 237-251. (In Russian)

37. Pokrovsky, B. G. (2000). Crustal contamination of mantle magmas according to isotope geochemistry. Moscow: Nauka Publ. Available at: https://www.rfbr.ru/rffi/ru/books/o_259 [Accessed Nov. 16, 2020]. (In Russian)

38. Report on the search for naturally rich and easily ore-rich nepheline ores within the Universitetskie 1 and 2, Voskresenka and Bezymianka sites conducted by the Martaigin expedition in 1983-1987. (1987). S. A. Korchagin, I. F. Gertner, Russia, Novokuznetsk. (In Russian)

39. Зengфr, A. M. C., Natal'in, B. A. and Burtman, V S. (1993). Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia. Nature, 364, 299-306. Available at: https://www.researchgate.net/publication/31960368_Evolution_of_the_Altaid_Tectonic_collage_and_Palaeozoic_Crustal_Growth_in_ Eurasia [Accessed Nov. 16, 2020].

40. Serov, P. A., Ekimova, N. A., Bayanova, T. B. and Mitrofanov, F. P. (2014). Sulfide minerals -- new geochronometers during Sm-Nd dating of ore genesis of stratified mafic-ultramafic intrusions of the Baltic Shield. Lithosphere, 4, 11-21. Available at: https://www.lithosphere.ru/jour/article/view/418/417 [Accessed Nov. 16, 2020]. (In Russian)

41. State geological map of the Russian Federation. (2007). Scale 1:1 000 000 (third generation). Sheet N-45 (Novokuznetsk). G. A. Babin, A. A. Yuriev, A. I. Bychkov et. al. St. Petersburg. VSEGEI. Available at: http:// www.vsegei.com/en/info/pub_ggk1000-3/Altae-Sayanskaya/n-45.php [Accessed Nov. 16, 2020]. (In Russian)

42. Steiger, R. H. and Jager, E. (1977). Subcommission on geochronology: Convention on the use of decay constants in geoand cosmochronology. Earth Planet. Sci. Lett., 36 (3), 359-362. https://doi. org/10.1016/0012-821X(77)90060-7

43. Sun, S. and McDonough, W F. (1989). Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Magmatism in the ocean basins, 42, 313-345. https://doi. org/10.1144/GSL.SP. 1989.042.01.19

44. Tanaka, T., Togashi, S., Kamioka, H. et al. (2000). JNdi-1: a neodymium isotopic reference in consistency with LaJolla neodymium. Chemical Geology, 168, 279-281. https://doi.org/10.1016/s0009-2541(00)00198-4 Tomlinson, K. Y. and Condie, K. C. (2001). Archean mantle plumes: evidence from greenstone belt geochemistry. Spec. Pap. Geol. Soc. Am., 352, 341-358. https://doi.org/10.1130/0-8137-2352-3.341 Vrublevskii, V. V, Gertner, I. F., Gutiйrrez-Alonso, G., Hofmann, M., Grinev, O. M. and Tishin, P. A. (2014). Isotope (U-Pb, Sm-Nd, Rb-Sr) geochronology of alkaline basic plutons of the Kuznetsk Alatau. Russian Geology and Geophysics, 55 (11), 1598-1614. http://doi.org/10.1016/j.rgg.2014.10.002 Vrublevskii, V. V. (2015). Sources and geodynamic setting of petrogenesis of the Middle Cambrian Upper Petropavlovka alkaline basic pluton (Kuznetsk Alatau, Siberia). Russian Geology and Geophysics, 56 (3), 379-401. https://doi.org/10.15372/GiG20150302 (In Russian)

45. Vrublevskii, V V, Grinev, O. M., Izokh, A. E. and Travin, A. V (2016). Geochemistry, isotopic (Nd-Sr-O) triad and 40Ar-39Ar age of the Paleozoic alkaline-mafic intrusions of the Kuznetsk Alatau (on the example of the Belogorsky pluton). Russian Geology and Geophysics, 57 (3), 592-602. https://doi. org/10.15372/GiG20160308 (In Russian)

46. Vrublevskii, V V, Kotelnikov, D. A., Izokh, A. E. (2018). Age, petrological and geochemical conditions of the formation of the Kogtakh gabbro-monzonite complex of the Kuznetsk Alatau. Geology and Geophysics, 59 (7), 900-930. https://doi.org/10.15372/GiG20180702 (In Russian)

47. Vrublevskii, V V, Gertner, I. F., Ernst, R. E., Izokh, A. E. and Vishnevskii, A. V (2019). The Overmaraat-Gol Alkaline Pluton in Northern Mongolia: U-Pb Age and Preliminary Implications for Magma Sources and Tectonic Setting. Minerals, 9 (3), 170. https://doi.org/10.3390/min9030170 Vrublevskii, V. V., Nikiforov, A. V., Sugorakova, A. M. and Kozulina, T. V. (2020). Petrogenesis and tectonic setting of the Cambrian Kharly alkaline-carbonatite complex (Sangilen Plateau, Southern Siberia): Implications for the Early Paleozoic evolution of magmatism in the western Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 188, 104163. https://doi.org/10.1016/j.jseaes.2019.104163

48. Xiao, W and Santosh, M. (2014). The western Central Asian Orogenic Belt: A window to accretionary orogenesis and continental growth. Gondwana Research, 25, 1429-1444. http://doi.org/10.1016Aj. gr.2014.01.008

49. Yarmolyuk, V. V. and Kovalenko, V. I. (2003). Deep geodynamics and mantle plumes: their role in the formation of the Central Asian orogenic belt. Petrology, 11 (6), 504-531. (In Russian)

50. Yarmolyuk, V. V., Kuzmin, M. I. and Vorontsov, A. A. (2013). West Pacific-type convergent boundaries and their role in the formation of the Central Asian Fold Belt. Russian Geology and Geophysics, 54, 14271441. https://doi.org/10.1016Aj.rgg.2013.10.012

51. Yarmolyuk, V V, Kuzmin, M. I. and Ernst, R. E. (2014). Intraplate Geodynamics and Magmatismin the Evolution of the Central Asian Orogenic Belt. J. Asian Earth Sci., 93, 158-179. https://doi.org/10.1016/j. jseaes.2014.07.004

52. York, D. (1966). Least squares fitting of straight line. Canad. J. Phys., 44 (5), 1079-1086. https://doi. org/10.1139/p66-090

53. Yashina, R. M. (1982). Alkaline magmatism of folded-block areas (on the example of the southern framing of the Siberian platform). O. A. Bogatikov, ed., Moscow: Nauka Publ. (In Russian)

54. Zindler, A. and Hart, S. R. (1986). Chemical geodynamics. Annual Review of Earth and Planetary Sciences, 14, 493-571. http://doi.org/10.1146/annurev.ea.14.050186.002425

Размещено на Allbest.ru

...

Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.