Биография Альберта Эйнштейна

История происхождения известного ученого Альберта Эйнштейна, его научная деятельность. Разрешение проблемы, вошедшей в историю под названием "Ультрафиолетовой катастрофы". Создание квантовой теории. Общая теория относительности. Единая теория поля.

Рубрика История и исторические личности
Вид реферат
Язык русский
Дата добавления 29.08.2014
Размер файла 46,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Биография Альберта Эйнштейна

Ранние годы

Альберт Эйнштейн родился 14 марта 1879 года в южно-германском городе Ульме, в небогатой еврейской семье. Отец, Герман Эйнштейн (1847-1902), был в это время совладельцем небольшого предприятия по производству перьевой набивки для матрацев и перин. Мать, Паулина Эйнштейн (урождённая Кох, 1858-1920), происходила из семьи состоятельного торговца кукурузой Юлиуса Дерцбахера (в 1842 году он сменил фамилию на Кох) и Йетты Бернхаймер. Летом 1880 года семья переселилась в Мюнхен, где Герман Эйнштейн вместе с братом Якобом основал небольшую фирму по торговле электрическим оборудованием. В Мюнхене родилась младшая сестра Альберта Мария (Майя, 1881-1951). Начальное образование Альберт Эйнштейн получил в местной католической школе. По его собственным воспоминаниям, он в детстве пережил состояние глубокой религиозности, которое оборвалось в 12 лет. Через чтение научно-популярных книг он пришёл к убеждению, что многое из того, что изложено в Библии, не может быть правдой, а государство намеренно занимается обманом молодого поколения. Всё это сделало его вольнодумцем и навсегда породило скептическое отношение к авторитетам. Из детских впечатлений Эйнштейн позже вспоминал как наиболее сильные: компас, "Начала" Евклида и (около 1889 года) "Критику чистого разума" Иммануила Канта. Кроме того, по инициативе матери он с шести лет начал заниматься игрой на скрипке. Увлечение музыкой сохранялось у Эйнштейна на протяжении всей жизни. Уже находясь в США в Принстоне, в 1934 году Альберт Эйнштейн дал благотворительный концерт, где исполнял на скрипке произведения Моцарта в пользу эмигрировавших из нацистской Германии учёных и деятелей культуры. В гимназии он не был в числе первых учеников (исключение составляли математика и латынь). Укоренившаяся система механического заучивания материала учащимися (которая, как он позже говорил, наносит вред самому духу учёбы и творческому мышлению), а также авторитарное отношение учителей к ученикам вызывало у Альберта Эйнштейна неприятие, поэтому он часто вступал в споры со своими преподавателями. В 1894 году Эйнштейны переехали из Мюнхена в итальянский город Павию, близ Милана, куда братья Герман и Якоб перевели свою фирму. Сам Альберт оставался с родственниками в Мюнхене ещё некоторое время, чтобы окончить все шесть классов гимназии. Так и не получив аттестата зрелости, в 1895 году он присоединился к своей семье в Павии. Аттестат Эйнштейна в Арау (оценки по шестибалльной шкале). Осенью 1895 года Альберт Эйнштейн прибыл в Швейцарию, чтобы сдать вступительные экзамены в Высшее техническое училище (Политехникум) в Цюрихе и стать преподавателем физики. Блестяще проявив себя на экзамене по математике, он в то же время провалил экзамены по ботанике и французскому языку, что не позволило ему поступить в Цюрихский Политехникум. Однако директор училища посоветовал молодому человеку поступить в выпускной класс школы в Арау (Швейцария), чтобы получить аттестат и повторить поступление. В кантональной школе Арау Альберт Эйнштейн посвящал своё свободное время изучению электромагнитной теории Максвелла. В сентябре 1896 года он успешно сдал все выпускные экзамены в школе, за исключением экзамена по французскому языку, и получил аттестат, а в октябре 1896 года был принят в Политехникум на педагогический факультет. Здесь он подружился с однокурсником, математиком Марселем Гроссманом (1878-1936), а также познакомился с сербской студенткой факультета медицины Милевой Марич (на 4 года старше его), впоследствии ставшей его женой. В этом же году Эйнштейн отказался от германского гражданства. Чтобы получить швейцарское гражданство, требовалось уплатить 1000 швейцарских франков, однако бедственное материальное положение семьи позволило ему сделать это только спустя 5 лет. Предприятие отца в этом году окончательно разорилось, родители Эйнштейна переехали в Милан, где Герман Эйнштейн, уже без брата, открыл фирму по торговле электрооборудованием. Стиль и методика преподавания в Политехникуме существенно отличались от закостеневшей и авторитарной прусской школы, поэтому дальнейшее обучение давалось юноше легче. У него были первоклассные преподаватели, в том числе замечательный геометр Герман Минковский (его лекции Эйнштейн часто пропускал, о чём потом искренне сожалел) и аналитик Адольф Гурвиц.

Начало научной деятельности

В 1900 году Эйнштейн закончил Политехникум, получив диплом преподавателя математики и физики. Экзамены он сдал успешно, но не блестяще. Многие профессора высоко оценивали способности студента Эйнштейна, но никто не захотел помочь ему продолжить научную карьеру. Сам Эйнштейн позже вспоминал:

Я был третируем моими профессорами, которые не любили меня из-за моей независимости и закрыли мне путь в науку.

Хотя в следующем, 1901 году, Эйнштейн получил гражданство Швейцарии, но вплоть до весны 1902 года не мог найти постоянное место работы - даже школьным учителем. Вследствие отсутствия заработка он буквально голодал, не принимая пищу несколько дней подряд. Это стало причиной болезни печени, от которой учёный страдал до конца жизни.

Несмотря на лишения, преследовавшие его в 1900-1902 гг., Эйнштейн находил время для дальнейшего изучения физики. В 1901 г. берлинские "Анналы физики" опубликовали его первую статью "Следствия теории капиллярности" (Folgerungen aus den Capillaritдtserscheinungen), посвящённую анализу сил притяжения между атомами жидкостей на основании теории капиллярности.

Преодолеть трудности помог бывший однокурсник Марсель Гроссман, рекомендовавший Эйнштейна на должность эксперта III класса в Федеральное Бюро патентования изобретений (Берн) с окладом 3 500 франков в год (в годы студенчества он жил на 100 франков в месяц).

Эйнштейн работал в Бюро патентов с июля 1902 по октябрь 1909, занимаясь преимущественно экспертной оценкой заявок на изобретения. В 1903 году он стал постоянным работником Бюро. Характер работы позволял Эйнштейну посвящать свободное время исследованиям в области теоретической физики. Эйнштейн со своей первой женой Милевой Марич.

В октябре 1902 года Эйнштейн получил известие из Италии о болезни отца; Герман Эйнштейн умер спустя несколько дней после приезда сына.

6 января 1903 года Эйнштейн женился на двадцатисемилетней Милеве Марич. У них родились трое детей.

1905 - "Год чудес"

1905 год вошёл в историю физики как "Год чудес" (лат. Annus Mirabilis). В этом году "Анналы физики" - ведущий физический журнал Германии - опубликовал три выдающиеся статьи Эйнштейна, положившие начало новой научной революции: "К электродинамике движущихся тел" (нем. Zur Elektrodynamik bewegter Kцrper). С этой статьи начинается теория относительности. "Об одной эвристической точке зрения, касающейся возникновения и превращения света" (нем. Ьber einen die Erzeugung und Verwandlung des Lichts betreffenden heuristischen Gesichtspunkt). Одна из работ, заложивших фундамент квантовой теории. "О движении взвешенных в покоящейся жидкости частиц, требуемом молекулярно-кинетической теорией теплоты" (нем. Ьber die von der molekularkinetischen Theorie der Wдrme geforderte Bewegung von in ruhenden Flьssigkeiten suspendierten Teilchen) - работа, посвящённая броуновскому движению и существенно продвинувшая статистическую физику.

Эйнштейну часто задавали вопрос: как ему удалось создать теорию относительности? Полушутя, полувсерьёз он отвечал:

Почему именно я создал теорию относительности? Когда я задаю себе такой вопрос, мне кажется, что причина в следующем. Нормальный взрослый человек вообще не задумывается над проблемой пространства и времени. По его мнению, он уже думал об этой проблеме в детстве. Я же развивался интеллектуально так медленно, что пространство и время занимали мои мысли, когда я стал уже взрослым. Естественно, я мог глубже проникать в проблему, чем ребёнок с нормальными наклонностями.

Квантовая теория

Для разрешения проблемы, вошедшей в историю под названием "Ультрафиолетовой катастрофы", и соответствующего согласования теории с экспериментом Макс Планк предположил (1900), что излучение и поглощение света веществом происходит дискретно (неделимыми порциями), и энергия излучаемой порции зависит от частоты света. Некоторое время эту гипотезу даже сам её автор рассматривал как условный математический приём, однако Эйнштейн во второй из вышеупомянутых статей предложил далеко идущее её обобщение и с успехом применил для объяснения свойств фотоэффекта. Эйнштейн выдвинул тезис, что не только излучение, но и распространение и поглощение света дискретны; позднее эти порции (кванты) получили название фотонов. Этот тезис позволил ему объяснить две загадки фотоэффекта: почему фототок возникал не при всякой частоте света, а только начиная с определённого порога, зависящего только от вида металла, а энергия и скорость вылетающих электронов зависели не от интенсивности света, а только от его частоты. Теория фотоэффекта Эйнштейна с высокой точностью соответствовала опытным данным, что позднее подтвердили эксперименты Милликена (1916).

Первоначально эти взгляды встретили непонимание большинства физиков, даже Планка Эйнштейну пришлось убеждать в реальности квантов. Постепенно, однако, накопились опытные данные, убедившие скептиков в дискретности электромагнитной энергии. Последнюю точку в споре поставил эффект Комптона (1923).

В 1907 году Эйнштейн опубликовал квантовую теорию теплоёмкости (старая теория при низких температурах сильно расходилась с экспериментом). Позже (1912) Дебай, Борн и Карман уточнили теорию теплоёмкости Эйнштейна, и было достигнуто отличное согласие с опытом.

Броуновское движение

В 1827 году Роберт Броун наблюдал под микроскопом и впоследствии описал хаотическое движение цветочной пыльцы, плававшей в воде. Эйнштейн, на основе молекулярной теории, разработал статистико-математическую модель подобного движения. На основании его модели диффузии можно было, помимо прочего, с хорошей точностью оценить размер молекул и их количество в единице объёма. Одновременно к аналогичным выводам пришёл Смолуховский, чья статья была опубликована на несколько месяцев позже, чем Эйнштейна. Свои работы по статистической механике, под названием "Новое определение размеров молекул", Эйнштейн представил в Политехникум в качестве диссертации и в том же 1905 году получил звание доктора философии (эквивалент кандидата естественных наук) по физике.

В следующем году Эйнштейн развил свою теорию в новой статье "К теории броуновского движения", и в дальнейшем неоднократно возвращался к этой теме. Вскоре (1908) измерения Перрена полностью подтвердили адекватность модели Эйнштейна, что стало первым экспериментальным доказательством молекулярно-кинетической теории, подвергавшейся в те годы активным атакам со стороны позитивистов. Макс Борн писал (1949): "Я думаю, что эти исследования Эйнштейна больше, чем все другие работы, убеждают физиков в реальности атомов и молекул, в справедливости теории теплоты и фундаментальной роли вероятности в законах природы". Работы Эйнштейна по статистической физике цитируются даже чаще, чем его работы по теории относительности. Выведенная им формула для коэффициента диффузии и его связи с дисперсией координат оказалась применимой в самом общем классе задач: марковские процессы диффузии, электродинамика и т.п. Позднее, в статье "К квантовой теории излучения" (1917) Эйнштейн, исходя из статистических соображений, впервые предположил существование нового вида излучения, происходящего под воздействием внешнего электромагнитного поля ("индуцированное излучение"). В начале 1950-х годов был предложен способ усиления света и радиоволн, основанный на использовании индуцированного излучения, а в последующие годы оно легло в основу теории лазеров.

Общая теория относительности (1915)

Ещё Декарт объявил, что все процессы во Вселенной объясняются локальным взаимодействием одного вида материи с другим, и с точки зрения науки этот тезис близкодействия был естественным. Однако ньютоновская теория всемирного тяготения резко противоречила тезису близкодействия - в ней сила притяжения передавалась непонятно как через совершенно пустое пространство, причём бесконечно быстро. По существу ньютоновская модель была чисто математической, без какого-либо физического содержания. На протяжении двух веков делались попытки исправить положение и избавиться от мистического дальнодействия, наполнить теорию тяготения реальным физическим содержанием - тем более что после Максвелла гравитация осталась единственным в физике пристанищем дальнодействия. Особенно неудовлетворительной стала ситуация после утверждения специальной теории относительности, так как теория Ньютона не была лоренц-ковариантной. Однако до Эйнштейна исправить положение никому не удалось. Основная идея Эйнштейна была проста: материальным носителем тяготения является само пространство (точнее, пространство-время). Тот факт, что гравитацию можно рассматривать как проявление свойств геометрии четырёхмерного неевклидова пространства, без привлечения дополнительных понятий, есть следствие того, что все тела в поле тяготения получают одинаковое ускорение ("принцип эквивалентности" Эйнштейна). Четырёхмерное пространство-время при таком подходе оказывается не "плоской и безразличной сценой" для материальных процессов, у него имеются физические атрибуты, и в первую очередь - метрика и кривизна, которые влияют на эти процессы и сами зависят от них. Если специальная теория относительности - это теория неискривлённого пространства, то общая теория относительности, по замыслу Эйнштейна, должна была рассмотреть более общий случай, пространство-время с переменной метрикой (псевдориманово многообразие). Причиной искривления пространства-времени является присутствие материи, и чем больше её энергия, тем искривление сильнее. Ньютоновская же теория тяготения представляет собой приближение новой теории, которое получается, если учитывать только "искривление времени", то есть изменение временной компоненты метрики, g_{00} (пространство в этом приближении евклидово). Распространение возмущений гравитации, то есть изменений метрики при движении тяготеющих масс, происходит с конечной скоростью. Дальнодействие с этого момента исчезает из физики. Математическое оформление этих идей было достаточно трудоёмким и заняло несколько лет (1907-1915). Эйнштейну пришлось овладеть тензорным анализом и создать его четырёхмерное псевдориманово обобщение; в этом ему помогли консультации и совместная работа сначала с Марселем Гроссманом, ставшим соавтором первых статей Эйнштейна по тензорной теории гравитации, а затем и с "королём математиков" тех лет, Давидом Гильбертом. В 1915 г. главные уравнения общей теории относительности Эйнштейна (ОТО), обобщающие ньютоновские, были опубликованы почти одновременно в статьях Эйнштейна и Гильберта. Новая теория тяготения предсказала два ранее неизвестных физических эффекта, вполне подтверждённые наблюдениями, а также точно и полностью объяснила вековое смещение перигелия Меркурия, долгое время приводившее в недоумение астрономов. После этого теория относительности стала практически общепризнанным фундаментом современной физики. Кроме астрофизики, ОТО нашла практическое применение, как уже упоминалось выше, в системах глобального позиционирования (Global Positioning Systems, GPS), где расчёты координат производятся с очень существенными релятивистскими поправками.

Берлин (1915-1933)

В 1915 году в разговоре с нидерландским физиком Вандером де Хаазом Эйнштейн предложил схему и расчёт опыта, который после успешной реализации получил название "эффект Эйнштейна - де Хааза". Результат опыта воодушевил Нильса Бора, двумя годами ранее создавшего планетарную модель атома, поскольку подтвердил, что внутри атомов существуют круговые электронные токи, причём электроны на своих орбитах не излучают. Именно эти положения Бор и положил в основу своей модели. Кроме того, обнаружилось, что суммарный магнитный момент получается вдвое больше ожидаемого; причина этого разъяснилась, когда был открыт спин - собственный момент импульса электрона. По окончании войны Эйнштейн продолжал работу в прежних областях физики, а также занимался новыми областями - релятивистской космологией и "Единой теорией поля", которая, по его замыслу, должна была объединить гравитацию, электромагнетизм и (желательно) теорию микромира. Первая статья по космологии, "Космологические соображения к общей теории относительности", появилась в 1917 году. После этого Эйнштейн пережил загадочное "нашествие болезней" - кроме серьёзных проблем с печенью, обнаружилась язва желудка, затем желтуха и общая слабость. Несколько месяцев он не вставал с постели, но продолжал активно работать. Только в 1920 году болезни отступили. В июне 1919 года Эйнштейн женился на своей двоюродной сестре со стороны матери Эльзе Лёвенталь (урождённой Эйнштейн) и удочерил двух её детей. В конце года к ним переехала его тяжелобольная мать Паулина; она скончалась в феврале 1920 года. Судя по письмам, Эйнштейн тяжело переживал её смерть. Осенью 1919 года английская экспедиция Артура Эддингтона в момент затмения зафиксировала предсказанное Эйнштейном отклонение света в поле тяготения Солнца. При этом измеренное значение соответствовало не ньютоновскому, а эйнштейновскому закону тяготения. Сенсационную новость перепечатали газеты всей Европы, хотя суть новой теории чаще всего излагалась в беззастенчиво искажённом виде. Слава Эйнштейна достигла небывалых высот. Эйнштейн с женой в Японии, ноябрь-декабрь 1922 года. В мае 1920 года Эйнштейн, вместе с другими членами Берлинской академии наук, был приведён к присяге как государственный служащий и по закону стал считаться гражданином Германии. Однако швейцарское гражданство он сохранил до конца жизни. В 1920-е годы, получая отовсюду приглашения, он много путешествовал по Европе (по швейцарскому паспорту), читал лекции для учёных, студентов и для любознательной публики. Посетил и США, где в честь именитого гостя была принята специальная приветственная резолюция Конгресса (1921). В конце 1922 года посетил Индию, где имел продолжительное общение с Тагором, и Китай. Зиму Эйнштейн встретил в Японии. В 1923 году выступил в Иерусалиме, где намечалось вскоре (1925) открыть Еврейский университет. Эйнштейна неоднократно номинировали на Нобелевскую премию по физике, однако члены Нобелевского комитета долгое время не решались присудить премию автору столь революционных теорий. В конце концов был найден дипломатичный выход: премия за 1921 год была присуждена Эйнштейну (в самом конце 1922 года) за теорию фотоэффекта, то есть за наиболее бесспорную и хорошо проверенную в эксперименте работу; впрочем, текст решения содержал нейтральное добавление: "… и за другие работы в области теоретической физики". 10 ноября 1922 года секретарь Шведской Академии наук Кристофер Аурвиллиус писал Эйнштейну:

Как я уже сообщил Вам телеграммой, Королевская академия наук на своём вчерашнем заседании приняла решение присудить Вам премию по физике за прошедший (1921) год, отмечая тем самым Ваши работы по теоретической физике, в частности открытие закона фотоэлектрического эффекта, не учитывая при этом Ваши работы по теории относительности и теории гравитации, которые будут оценены после их подтверждения в будущем.

Естественно, традиционную Нобелевскую речь (1923) Эйнштейн посвятил теории относительности. В 1924 году молодой индийский физик Шатьендранат Бозе в кратком письме обратился к Эйнштейну с просьбой помочь в публикации статьи, в которой выдвигал предположение, положенное в основу современной квантовой статистики. Бозе предложил рассматривать свет в качестве газа из фотонов.

Эйнштейн пришёл к выводу, что эту же статистику можно использовать для атомов и молекул в целом. В 1925 году Эйнштейн опубликовал статью Бозе в немецком переводе, а затем собственную статью, в которой излагал обобщённую модель Бозе, применимую к системам тождественных частиц с целым спином, называемых бозонами. На основании данной квантовой статистики, известной ныне как статистика Бозе - Эйнштейна, оба физика ещё в середине 1920-х годов теоретически обосновали существование пятого агрегатного состояния вещества - конденсата Бозе - Эйнштейна.

Суть "конденсата" Бозе - Эйнштейна состоит в переходе большого числа частиц идеального бозе-газа в состояние с нулевым импульсом при температурах, приближающихся к абсолютному нулю, когда длина волны де Бройля теплового движения частиц и среднее расстояние между этими частицами сводятся к одному порядку.

эйнштейн теория относительность квантовая

Начиная с 1995 года, когда первый подобный конденсат был получен в университете Колорадо, учёные практически доказали возможность существования конденсатов Бозе - Эйнштейна из водорода, лития, натрия, рубидия и гелия.

Как личность огромного и всеобщего авторитета, Эйнштейна постоянно привлекали в эти годы к разного рода политическим акциям, где он выступал за социальную справедливость, за интернационализм и сотрудничество между странами. В 1923 году Эйнштейн участвовал в организации общества культурных связей "Друзья новой России". Неоднократно призывал к разоружению и объединению Европы, к отмене обязательной воинской службы.

В 1928 году Эйнштейн проводил в последний путь Лоренца, с которым очень подружился в его последние годы. Именно Лоренц выдвинул кандидатуру Эйнштейна на Нобелевскую премию в 1920 году и поддержал её в следующем году.

В 1929 году мир шумно отметил 50-летие Эйнштейна. Юбиляр не принял участия в торжествах и скрылся на своей вилле близ Потсдама, где с увлечением выращивал розы. Здесь он принимал друзей - деятелей науки, Тагора, Эммануила Ласкера, Чарли Чаплина и других.

В 1931 году Эйнштейн снова побывал в США. В Пасадене его очень тепло встретил Майкельсон, которому оставалось жить четыре месяца. Вернувшись летом в Берлин, Эйнштейн в выступлении перед Физическим обществом почтил память замечательного экспериментатора, заложившего первый камень фундамента теории относительности.

Помимо теоретических исследований, Эйнштейну принадлежат и несколько изобретений, в том числе:

измеритель очень малых напряжений (совместно с Конрадом Габихтом);

устройство, автоматически определяющее время экспозиции при фотосъёмке;

оригинальный слуховой аппарат;

бесшумный холодильник (совместно с Силардом); %

гирокомпас.

Примерно до 1926 года Эйнштейн работал в очень многих областях физики, от космологических моделей до исследования причин речных извилин. Далее он, за редким исключением, сосредотачивает усилия на квантовых проблемах и Единой теории поля.

Принстон (1945-1955). Борьба за мир. Единая теория поля

В послевоенные годы Эйнштейн стал одним из основателей Пагуошского движения учёных за мир.

Хотя его первая конференция проводилась уже после смерти Эйнштейна (1957), но инициатива создания такого движения была выражена в получившем широкую известность Манифесте Рассела - Эйнштейна (написанном совместно с Бертраном Расселом), предупреждавшем также об опасности создания и применения водородной бомбы.

В рамках этого движения Эйнштейн, бывший его председателем, совместно с Альбертом Швейцером, Бертраном Расселом, Фредериком Жолио-Кюри и другими всемирно известными деятелями науки вёл борьбу против гонки вооружений, создания ядерного и термоядерного оружия. Эйнштейн призывал также, во имя предотвращения новой войны, к созданию всемирного правительства, за что удостоился резкой критики в советской печати (1947).

До конца жизни Эйнштейн продолжал работу над исследованием проблем космологии, но главные усилия он направил на создание единой теории поля. Ему помогали в этом профессиональные математики, в том числе (в Принстоне) Джон Кемени.

Формально некоторые успехи в этом направлении были - он разработал даже две версии единой теории поля.

Обе модели были математически изящны, из них вытекала не только общая теория относительности, но и вся электродинамика Максвелла - однако они не давали никаких новых физических следствий. А чистая математика, в отрыве от физики, Эйнштейна никогда не интересовала, и он забраковал обе модели. Сначала (1929) Эйнштейн пытался развить идеи Калуцы и Клейна - мир имеет пять измерений, причём пятое имеет микроразмеры и поэтому невидимо.

Получить с её помощью новые физически интересные результаты не удалось, и многомерная теория была вскоре оставлена (чтобы позже возродиться в теории суперструн).

Вторая версия Единой теории (1950) основывалась на предположении, что пространство-время имеет не только кривизну, но и кручение; она тоже органично включала ОТО и теорию Максвелла, однако найти окончательную редакцию уравнений, которая описывала бы не только макромир, но и микромир, так и не удалось.

А без этого теория оставалась не более чем математической надстройкой над зданием, которое в этой надстройке совершенно не нуждалось.

Вейль вспоминал, что Эйнштейн как-то сказал ему: "Умозрительно, без руководящего наглядного физического принципа, физику нельзя конструировать". В 1955 году здоровье Эйнштейна резко ухудшилось. Он написал завещание и сказал друзьям: "Свою задачу на земле я выполнил".

Последним его трудом стало незаконченное воззвание с призывом предотвратить ядерную войну.

Его падчерица Марго вспоминала о последней встрече с Эйнштейном в больнице: он говорил с глубоким спокойствием, о врачах даже с лёгким юмором, и ждал своей кончины, как предстоящего "явления природы". Насколько бесстрашным он был при жизни, настолько тихим и умиротворённым он встретил смерть. Без всякой сентиментальности и без сожалений он покинул этот мир.

Альберт Эйнштейн умер 18 апреля 1955 года в 1 час 25 минут, на 77-м году жизни в Принстоне от аневризмы аорты.

Перед смертью он произнёс несколько слов по-немецки, но американская медсестра не смогла их потом воспроизвести. Не воспринимая никаких форм культа личности, он запретил пышное погребение с громкими церемониями, для чего пожелал, чтобы место и время захоронения не разглашались. 19 апреля 1955 года без широкой огласки состоялись похороны великого учёного, на которых присутствовало всего 12 самых близких друзей. Его тело было сожжено в крематории Юинг-Семетери (Ewing Cemetery), а пепел развеян по ветру.

Признание

В архивах Нобелевского комитета сохранилось около 60 номинаций Эйнштейна в связи с формулировкой теории относительности; его кандидатура неизменно выдвигалась ежегодно с 1910 по 1922 годы (кроме 1911-го и 1915-го). Однако премия была присуждена только в 1922 году - за теорию фотоэлектрического эффекта, которая представлялась членам Нобелевского комитета более бесспорным вкладом в науку. В результате этой номинации Эйнштейн получил (ранее отложенную) премию за 1921 год одновременно с Нильсом Бором, который был удостоен премии 1922 года. Эйнштейну были присвоены почётные докторские степени от многочисленных университетов, в том числе: Женевы, Цюриха, Ростока, Мадрида, Брюсселя, Буэнос-Айреса, Лондона, Оксфорда, Кембриджа, Глазго, Лидса, Манчестера, Гарварда, Принстона, Нью-Йорка (Олбени), Сорбонны.

Некоторые другие награды:

звание почётного гражданина Нью-Йорка (1921) и Тель-Авива (1923);

медаль Маттеуччи (1921);

немецкий орден "За заслуги" (1923, в 1933 году Эйнштейн отказался от этого ордена);

медаль Копли (1925), "за теорию относительности и вклад в квантовую теорию";

золотая медаль Королевского астрономического общества Великобритании (1926);

медаль имени Макса Планка (1929), Германское физическое общество (Deutsche Physikalische Gesellschaft);

приз Жюля Жансана (1931), Французское астрономическое общество (Sociйtй astronomique de France);

медаль Франклина (Benjamin Franklin Medal, 1935), Franklin Institute, Philadelphia.

Посмертно Альберт Эйнштейн тоже был отмечен рядом отличий:

1992: он был назван номером 10 в подготовленном Майклом Хартом списке самых влиятельных личностей в истории.

1999: журнал "Тайм" назвал Эйнштейна "Личностью века".

1999: опрос Гэллапа дал Эйнштейну номер 4 в списке самых почитаемых в XX веке людей.

В столице США установлен памятник Эйнштейну работы Роберта Беркса (1979).

Некоторые памятные места, связанные с Эйнштейном:

Ульм, Банхофштрассе, дом 135, здесь Эйнштейн родился и жил до переезда семьи в Мюнхен (1880). Дом разрушен при бомбардировке авиацией союзников весной 1945 года.

Берн, улица Крамгассе (Kramgasse), дом 49, проживал с 1903 по 1905 годы. Сейчас в нём располагается "Дом-музей Альберта Эйнштейна".

Цюрих, Муссонштрассе, дом 12, проживал с 1909 по 1911 годы.

Цюрих, Гофштрассе, дом 116, проживал с 1912 по 1914 годы.

Берлин, Виттельсбахерштрассе, дом 13, проживал с 1914 по 1918 годы. Этот берлинский дом, как и следующий, был разрушен в ходе военных действий 1945 года.

Берлин, Габерландштрассе, дом 5, проживал с 1918 по 1933 годы.

Принстон, Мерсер-стрит, дом 112, проживал с 1933 по 1955 годы.

В честь Эйнштейна названы

Эйнштейн - единица количества фотонов, применяемая в фотохимии

Химический элемент эйнштейний (№ 99 в Периодической системе элементов Д.И. Менделеева)

Астероид 2001 Эйнштейн

Кратер на Луне

Спутник-обсерватория НАСА "Эйнштейн" (HEAO2) с рентгеновским телескопом (1978-1982)

"Кольца Эйнштейна" - эффект, создаваемый "гравитационными линзами"

Астрофизическая обсерватория в Потсдаме

Институт гравитационной физики общества Макса Планка, Гольм, Германия

Несколько престижных наград за научные достижения:

Международная Золотая медаль ЮНЕСКО имени Альберта Эйнштейна [96]

Albert Einstein Award (фонд Льюиса и Розы Страусс, США)

Медаль Альберта Эйнштейна (швейцарское "Общество Альберта Эйнштейна", Берн)

Albert Einstein World Award of Science (Всемирный Культурный Совет, World Cultural Council)

Einstein Prize (Американское физическое общество, APS)

Гимназии в Мюнхене, в городе Санкт-Августин и в Ангермюнде

Несколько медицинских учреждений, в том числе:

Центр медицины в Филадельфии, Пенсильвания (Albert Einstein Medical Center) Химический элемент эйнштейний (№ 99 в Периодической системе элементов Д.И. Менделеева)

Астероид 2001 Эйнштейн

Кратер на Луне

Медицинский колледж при университете Йешива

Улица, прилегающая к Тель-Авивскому Университету в Израиле.

Почему Эйнштейн показал язык?

Подавляющее большинство жителей планеты воспринимают Альберта Эйнштейна как "безумного ученого". Такой образ сложился в головах миллионов людей исключительно благодаря неординарной внешности великого ученого, а не его умственному состоянию. Выдающийся физик, всего себя отдавший науке, зачастую появлялся перед публикой в обыкновенном растянутом свитере, с растрепанными волосами, и взглядом, обращенным внутрь себя - ум ученого постоянно был занят решением сложных задач. Также широко известны были забывчивость и непрактичность этого милого умного человека, делающего открытия не ради личной выгоды, а ради всего человечества.

Лишь однажды за всю его продолжительную жизнь Альберт Эйнштейн приподнял завесу тайны над своей личностью, вызвав еще больший интерес к своей персоне. Это произошло в день празднования его семьдесят второй годовщины, 14 марта 1952 года. Фотограф Сейсс попросил сделать Эйнштейна задумчивое лицо, соответствующее имиджу исследователя, на что ученый высунул язык, показав себя не только серьезным изобретателем, но и обычным жизнерадостным человеком. Так и вышла эта фотография, снимок, развеявший образ седого, немного растрепанного гениального ученого.

Сам же гениальный физик признал эту фотографию небывало удачной - к тому времени ему порядком надоел незаслуженный стереотипный образ "злого гения". Фотография, которая за короткое время обошла весь мир, была обрезана - там еще присутствовала семейная чета Эйделот.

Впоследствии Альберт Эйнштейн рассылал её друзьям в качестве новогодней поздравительной открытки.

Другу Альберта, журналисту Х. Смиту, досталась уникальная фотография - на ней была подпись, сделанная рукой гения физики, "шутливая гримаса всему человечеству". Всего было напечатано девять оригинальных снимков, и один из них в 2009 году был продан 74 000 долларов.

Размещено на Allbest.ru

...

Подобные документы

  • Жизнь и деятельность великого ученого Альберта Эйнштейна. Первые исследования ученого по молекулярной физике. Основные постулаты общей теории относительности. Распространение идей квантовой теории на физические процессы, не связанные с излучением.

    реферат [26,8 K], добавлен 03.12.2010

  • Краткая биография и первые шаги к признанию Альберта Эйнштейна. Годы работы великого ученого в Патентном бюро. Знаменитые теории Эйнштейна: броуновское движение, кванты и фотоэффект, теория относительности. Калейдоскоп его изобретений и экспериментов.

    реферат [42,4 K], добавлен 25.07.2010

  • Альберт Эйнштейн, талантливый ученый и физик, создатель теории относительности и один из создателей квантовой теории и статистической физики, его биография. Работы Эйнштейна, получение Нобелевской премии. Теория относительности, ее "знаменитые" парадоксы.

    реферат [27,1 K], добавлен 27.05.2009

  • Рождение Альберта Эйнштейна в баварском городе Ульме. Первое знакомство с микроскопом, компасом и телескопом. Учёба в мюнхенской гимназии. Переезд в Швейцарию, первый брак. Год чудес 1905. Всемирное признание, Нобелевская премия, бегство в Америку.

    презентация [298,9 K], добавлен 20.05.2011

  • Анализ проблемы происхождения Киевской Руси, обращение к ней легендарного летописца Нестора в "Повести временных лет". Предпосылки образования Киевской Руси, основные теории ее происхождения. Критика норманнской теории происхождения Киевской Руси.

    реферат [52,7 K], добавлен 15.02.2014

  • Первые сведения о славянах. Свидетельства летописца Нестора о территории славян, миграционная теория их происхождения. История скифо-сарматской, автохтонной теории образования славян. Теории происхождения государства Русь, противоречия норманнской теории.

    реферат [17,4 K], добавлен 23.11.2009

  • История жизни американского физика и математика Яноша фон Неймана. Труды ученого по функциональному анализу, квантовой механике, логике, метеорологии. Вклад в создание первых ЭВМ и разработку методов их применения. Роль теории игр Неймана в экономике.

    реферат [25,5 K], добавлен 29.04.2010

  • Изучение истории открытия атомной энергии и развития атомной энергетики. Первые исследования атома, работы А. Эйнштейна. Исторический период военного атома в Германии, США и СССР. Создание атомного оружия, атомная гонка и её влияние на мировую историю.

    реферат [37,6 K], добавлен 11.02.2014

  • Формирование и эволюция взглядов Марата в предреволюционный период. Основные истоки политических идей, "Цепи рабства", теория революции, "Дар отечеству". План уголовного законодательства. Деятельность Марата в 1789-1793 годах и его революционная теория.

    дипломная работа [340,0 K], добавлен 07.06.2017

  • Жизнь и научная деятельность русского филолога В.В. Виноградова. Детство и юношеские годы ученого. "Академическая грамматика" русского языка, созданная в советский период под редакцией Виноградова. Арест по "делу славистов", ссылка и освобождение.

    презентация [463,2 K], добавлен 14.06.2011

  • Жизнь и научная деятельность ученого-историка Владимира Ивановича Пичеты. Основные вехи биографии. Обвинение в великодержавном шовинизме, белорусском буржуазном национализме и прозападной ориентации, арест и ссылка Пичеты. Вклад ученого в историографию.

    презентация [388,3 K], добавлен 24.03.2011

  • Происхождение и значение онима "Русь", этническая принадлежность первых русских. Русская историография и критика "норманнской теории", роль "варяжского элемента" в ранних государственных структурах, теории происхождения государства у восточных славян.

    реферат [42,5 K], добавлен 27.05.2010

  • Биография и научно-организационная деятельность Леонида Романовича Кызласова - советского и российского археолога-востоковеда, специалиста по истории и этнографии Сибири, Средней и Центральной Азии. Научные работы и вклад в историю Сибири и Хакасии.

    контрольная работа [31,9 K], добавлен 13.10.2015

  • Биография, научная и общественная деятельность выдающегося сына казахского народа Чокана (Шокана) Валиханова и его вклад в мировую культуру и историю. Знаменитое путешествие в Кашгарию. Психологические аспекты жизни и деятельности Чокана Валиханова.

    реферат [87,1 K], добавлен 15.02.2011

  • Жизнь и научная деятельность Огюстена Луи Коши - французского математика XIX в., вошедшего в историю благодаря открытиям в области дифференциальных уравнений, алгебры, геометрии и математического анализа. Характеристика достижений и открытий ученого.

    презентация [320,4 K], добавлен 23.05.2015

  • Образование Древнерусского государства и вопрос о происхождении государства в историографии. Теории родового, общинного и задружного быта русских племен в середине IX века. Норманская и антинорманская теории происхождения Киевского государства.

    контрольная работа [363,9 K], добавлен 01.09.2011

  • Биография, научная деятельность и общественно-политическая жизнь В.И. Вернадского. Его участие в земском движении, в работе "Союза Освобождения". Борьба за университетскую автономию, деятельность в партии кадетов. Отношение ученого к Советской власти.

    курсовая работа [43,9 K], добавлен 25.12.2013

  • Экономическая теория Давида Рикардо – это первая научная система политической экономии периода промышленного капитализма. Товары черпают свою меновую стоимость из двух источников: своей редкости и количества труда, требующегося для их производства.

    контрольная работа [16,1 K], добавлен 11.12.2008

  • Биография Ростоу, его научная, общественная и политическая деятельность. Изучение законов формирования индустриального общества, теория стадий развития экономики. Характеристика современного постиндустриального общества, стадии его развития по Ростоу.

    презентация [568,3 K], добавлен 16.09.2013

  • Новый подход к явлениям природы: идея всеобщей связи явлений материального мира. История жизни известного ученого Майкла Фарадея. Исследования в области электромагнетизма, открытие принципа работы электродвигателя. Явление электромагнитной индукции.

    реферат [17,5 K], добавлен 19.03.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.