Computational aspects of North-East Volatility Wind Effect
Investigation of the computational aspects of stock index analysis using wavelet filtration. Study of the "effect of wind mobility in the North-East". Identify the signal component for each scaling parameter. Characteristic of the volatility indicator.
Рубрика | Иностранные языки и языкознание |
Вид | статья |
Язык | английский |
Дата добавления | 23.03.2018 |
Размер файла | 135,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Рижской технический университет
Вычислительные аспекты «Северо-Восточного ветра волатильности»
Пучков А.А.
Computational aspects of 'North-East Volatility Wind Effect'
Andrejs Puchkovs,
Economist, Mg. oec., PhD student of Riga Technical University.
This article describes computational aspects of stock index analysis by using wavelet filtering. Such computations are costly from chip-cutting time perspective. Algorithms used for analysis are very important part of research, that's why computational part is described in current paper. Current paper contains also a representation of 'North-East Volatility Wind Effect' in a complex plain, which has not been done before. [6, 7] For exploration of 'North-East Volatility Wind Effect' let's consider basic assumptions.
Analysis of 'North-East Volatility Wind Effect' is based on signal decomposition by using the wavelet filtering. Wavelet filtering is applied by using Direct and Inverse CWT for each scaling parameter. Thus for each scaling parameter the signal component (which is part of the original signal) is obtained. For subsequent research volatility indicator is analyzed by using 20-days time window, which is shifted on the time axis. Volatility analysis is done for each signal component. As a result volatility evolution in time is obtained for each signal component. According to research, a slight increase in volatility in the low-frequency components of the signal leads to significant disturbances in high-frequency components destine entire signal volatility growth.
1. Basic algorithm
Basic algorithm of 'North-East Volatility Wind Effect' analysis is proposed in previous works. [6, 7] Algorithm is shown in the next figure.
Research includes three main blocks - Data mining and preprocessing block, Signal decomposition block and Signal analysis block. All blocks are considered in subsequent sections in detail. Research algorithm explanation is made by blocks. All operations and operands in each block are scripted by using Matlab code, which generates figures and/or movies in the output.
Fig. 1. Algorithm of research.
The main Matlab code, which runs user functions is shown next:
clear all; clc; close all
%Predefine input and output directories
Stock.Tickets ={'^DJI', '^AEX','^GDAXI','^OMX','^IBEX','^HSI', '^BSESN','^FTSE', '^N225', '^FCHI'};
Stock.Names = {'The Dow Jones Industrial Average',...
'Amsterdam Stock Exchange',...
'DAX30','OMX30','IBEX 35',...
'Hang-Seng Index',...
'S&P BSE SENSEX',...
'FTSE 100',...
'Nikkei 225',...
'CAC 40'};
Stock.N = length(Stock.Tickets);
%Predefine input and output directories
global output plotedir
output = '/Code/';
plotedir = '/Plots/';
savecode = strcat(output,'metadata.mat'); save (savecode);
for yy = 1:Stock.N
output = '/Code/';
plotedir = '/Plots/';
savecode = strcat(output,'metadata.mat');
load (savecode)
%Recalculate
recalc = [0 0 0 0 0]; %<- recalculate selected functions
%Data mining and preprocessing
[ind,tickname, tick,stdate,endate] = deal(yy,Stock.Names{yy}, Stock.Tickets{yy},datenum(2004,1,1),datenum(2014,1,1));
[Signal.X, Signal.dX, Signal.t, Signal.T] = lo_pro(recalc(1),ind, tickname, tick, stdate, endate, true);
clear stdate endate
%Signal decomposition
[Wavelet.W, Decomp.X_ab, Decomp.X_cap] = wave_an(recalc(2), ind, tickname, tick, Signal.X, true);
% Volatility analysis
[Volatility.Vol, Volatility.a, Volatility.da, Volatility.db] = var_an(recalc(3), ind, tickname, tick, Decomp.X_ab, Signal.X, true);
% Volatility evolution
[Volevol] = var_ev_nomovie(recalc(4), ind,tick,tickname, Volatility.Vol, Volatility.a, true);
clear all; close all;
end
This code is used to download historical price data for specified stock indexes, preprocessed the data, decomposed signal in parts and make volatility analysis of specified parts (or components). Further this code runs volatility evolution analysis to describe interdependences between volatility layers. At the end code makes volatility evolution representation in complex plain. All this parts of algorithm are executed, by running Matlab user-defined functions, which are saved in the same directory. computational wavelet filtration volatility
2. Data Mining and Preprocessing Block
This block intend for financial data mining and preprocessing. The block is placed before Signal decomposition and analysis blocks. Data mining and preprocessing block has three main elements: Data loading operation, Taking logarithm operand and Normalization operand. 'Loading data' operation is completed in early beginning by using automatic financial time series data download from 'finance.yahoo.com' source.
Those parts of algorithm are realized by using lo_pro.m function:
function [X, dX,t,T] = lo_pro(recalc,ind,tickname, tick,stdate,endate,showplot)
%Input:
% recalc - do calculations if true;
% ind - [tickets{ind} = ticket];
% tick - stock index ticket;
% sdate, endate - startdate nd enddate;
% showplot - if true, plotting is provided;
%Output:
% X - the signal;
% dX - growth of the signal;
% t - time space
% T - length of signal
_____________%
global output plotedir
lofname = strcat(output,'lprocess',num2str(ind),'.mat');
if(exist(lofname,'file') == 2)
load (lofname)
if ((exist('X','var') == 1) &&...
(exist('dX','var') == 1) &&...
(exist('t','var') == 1) &&...
(exist('T','var') == 1))
varex = true; % - variables already exist (and file too)
else
varex = false;
end
else
varex = false;
end
if ((recalc == true) || (varex == false))
% Loading data
Data = get_yahoo_stockdata2(tick,stdate,endate,'d',true);
XD = Data.Close;
XD = log(XD);
% Signal preprocessing
wn = diff(XD);
% Normalization
dX = (wn - mean(wn))./std(wn);
%Time
T = length(dX); t = 1:T;
%Create signal
X = cumsum(dX); %Correction needed: XD(1) + X;
save(lofname, 'X', 'dX', 't', 'T','-append')
disp(strcat('load_process variables for ...', tick,'... are REcalculated!'))
%Plotting
draw_plot(showplot,recalc,plotedir,ind, tickname, tick, t, X, dX);
else
disp(strcat('load_process variables for ...', tick,'... are already calculated'))
%Plotting
draw_plot(showplot,recalc,plotedir,ind, tickname, tick, t, X, dX); %#ok
return
end
end
%Plotting function
function draw_plot(showplot,recalc,plotedir,ind, tickname, tick, t, X, dX)
if(showplot)
subdir = 'Signal/';
drawjpg = strcat(plotedir,subdir,num2str(ind),'_','Signal',num2str(tick),'.jpg');
if (recalc) || ~(exist(drawjpg,'file') == 2)
figure(1)
subplot(2,1,1), plot(t,X)
title(strcat('Analysed Signal - ', num2str(tickname)),'Interpreter','none','FontSize',15);
xlabel('Time, t','Interpreter','none','FontSize',12);
ylabel('INDEX, X','Interpreter','none','FontSize',12);
axis( [0 t(end) min(X) max(X)] )
subplot(2,1,2), plot(t,dX)
title(strcat('Signal Additions - ', num2str(tickname)),'Interpreter','none','FontSize',15);
xlabel('Time, t','Interpreter','none','FontSize',12);
ylabel('INDEX ADDITIONS, dX','Interpreter','none','FontSize',12);
axis( [0 t(end) min(dX) max(dX)] )
saveas(gcf,drawjpg)
disp(strcat('File...',drawjpg,'... is provided'))
close all;
else
disp(strcat('File...',drawjpg,'... already exist'));
end
end
end
This function imports and process financial data (in case it was not done before and user have not defined option to recalculate). By analogy code provides pictures of processed signal and signal signal additions to specified directory, if user have defined such option by using argument showplot.
3. Signal decomposition block
Signal decomposition block is placed between Data mining and preprocessing block and Signal analysis block. The block consist of two parts: Direct Continuous Wavelet Transform (Direct CWT) and Inverse Continuous Wavelet Transform (Inverse CWT) operands. [2, 3] Since analyzed signal is decomposed in parts, Direct CWT and Inverse CWT operands are working in loop, providing decomposed parts of analyzed signal for each scaling parameter. [9] In the output Signal decomposition block provides decomposed parts of the signal for each scaling parameter, in fact, these are components of(original) analyzed signal, which are analyzed separately in the Signal analysis block.
This algorithm are realized by using wave_an.m function:
function [W, X_ab, Xcap] = wave_an(recalc, ind, tickname, tick, X, showplot)
%Input:
% recalc - do calculations if true;
% X - the signal;
% ind - [tickets{ind} = ticket];
% tick - stock index ticket;
%Output:
% W - Wavelet image
% X_ab - decomposed signal;
% Xcap - reconstructed signal;
% log_Xab - logged decomposed signal;
%____________________________________%
global output plotedir
lofname = strcat(output,'lprocess',num2str(ind),'.mat');
if (exist(lofname,'file') == 2)
load (lofname)
if ((exist('W','var') == 1) &&...
(exist('X_ab','var') == 1) &&...
(exist('Xcap','var') == 1) &&...
(exist('log_Xab','var') == 1))
varex = true; % - variables already exist (and file too)
else
varex = false;
end
else
varex = false;
end
if ((recalc == true) || (varex == false))
% Wavelet analysis
% Define parameters before analysis
dt = 1;
maxsca = floor(T); s0 = 2*dt; ds = 2*dt;
wname = 'morl';
scales = s0:ds:maxsca; A = length(scales);
SIG = {X,dt};
WAV = {wname,[]};
% Compute the CWT using cwtft with linear scales
W = cwtft(SIG,'scales',scales,'wavelet',WAV);
Wx = W; Wx.cfs = zeros(2,T);
X_ab = zeros(length(scales),T);
for a = 1: A
if (a < A)
Wx.scales = scales(a:a+1);
else
Wx.scales = [A A+ds];
end
Wx.cfs(1,:) = W.cfs(a,:);
%Inverse CWT:
X_ab(a,:) = icwtlin(Wx);
mu = mean(X_ab(a,:));
X_ab(a,:) = (X_ab(a,:) - mu);
end
% Adding constant for perfect reconstruction
Xcap = sum(X_ab)';
C = mean(X-Xcap);
C = C/A;
X_ab = X_ab + C;
Xcap = sum(X_ab)';
x_pl = (X_ab>0); x_mi = (X_ab<=0);
X_abs = abs(log(X_ab));
log_Xab = X_abs.*x_pl - X_abs.*x_mi;
%Saving output
save(lofname, 'W', 'X_ab', 'Xcap', 'log_Xab','-append')
draw_plot(showplot,recalc,plotedir,ind, tickname, tick, log_Xab);
disp(strcat('Signal decomposition for ...', tick,'... ISprovided!'))
else
draw_plot(showplot,recalc,plotedir,ind, tickname, tick, log_Xab); %#ok
disp(strcat('Signal decomposition for ...', tick,'... is already provided'))
return
end
end
function draw_plot(showplot,recalc,plotedir,ind, tickname, tick, log_Xab)
if(showplot)
subdir2 = 'Decomp/'; %subdir1 = 'Wavelet/';
drawjpg = strcat(plotedir,subdir2,num2str(ind),'_','Decomp',num2str(tick),'.jpg');
if (recalc) || ~(exist(drawjpg,'file') == 2)
[A,B] = size(log_Xab);
figure(1);
subplot(2,2,1),mesh(log_Xab)
axis ([0 B 0 A]);
view(-45, 60);
title(strcat('Decomposed Signal Parts - ', num2str(tickname), ' view1'),'Interpreter','none','FontSize',15);
xlabel('Shift parameter, b','Interpreter','none','FontSize',12);
ylabel('Scaling parameter, a','Interpreter','none','FontSize',12);
subplot(2,2,2),mesh(log_Xab)
axis ([0 B 0 A]);
view(0, 90);
title(strcat('Decomposed Signal Parts - ', num2str(tickname), ' view2'),'Interpreter','none','FontSize',15);
xlabel('Shift parameter, b','Interpreter','none','FontSize',12);
ylabel('Scaling parameter, a','Interpreter','none','FontSize',12);
subplot(2,2,4),mesh(log_Xab)
axis ([0 B 0 A]);
view(45, -60);
title(strcat('Decomposed Signal Parts - ', num2str(tickname), ' view3'),'Interpreter','none','FontSize',15);
xlabel('Shift parameter, b','Interpreter','none','FontSize',12);
ylabel('Scaling parameter, a','Interpreter','none','FontSize',12);
subplot(2,2,3),mesh(log_Xab)
axis ([0 B 0 A]);
view(180, -90);
title(strcat('Decomposed Signal Parts - ', num2str(tickname), ' view4'),'Interpreter','none','FontSize',15);
xlabel('Shift parameter, b','Interpreter','none','FontSize',12);
ylabel('Scaling parameter, a','Interpreter','none','FontSize',12);
saveas(gcf,drawjpg)
disp(strcat('File...',drawjpg,'... is provided'));
close all;
else
disp(strcat('File...',drawjpg,'... already exist'));
end
end
end
This function decompose financial data in parts by using Direct an Inverse Continuous Wavelet Transform. Since this operations are very costly from chip-cutting time perspective, in case there is no option for recalculation, code tries to find saved or already calculated data. The code also provides pictures of decomposed signal parts to specified directory, if user have defined such option by using argument showplot.
4. Signal analysis block (volatility analysis)
This block brings light on volatility evolution research. The block is placed after Signal decomposition block and it works with decomposed parts of analyzed signal. Signal decomposition, made in previous step, has divided original signal in components by using wavelet filtration. The purpose ofcurrent research is volatility analysis and volatility evolution analysis.
Volatility research is realized by using var_an.m function:
function [Vol, Vol_a, Vol_da, Vol_db] = var_an(recalc, ind, tickname, tick,X_ab,X,showplot)
%Input:
% recalc - do calculations if true;
% ind - [tickets{ind} = ticket];
% tick - stock index ticket;
% X_ab - decomposed signal;
% X - the signal;
%Output:
% Vol - Overall signal Volatility
% Vol_a - Volatility of decomposed parts of the signal
% Vol_da - Volatility indicator (of decomposed parts)
% Vol_db - Volatility indicator (of decomposed parts)
%_______________%
global output plotedir
lofname = strcat(output,'lprocess',num2str(ind),'.mat');
if (exist(lofname,'file') == 2)
load (lofname)
if ((exist('Vol_a','var') == 1)&&...
(exist('Vol_da','var') == 1)&&...
(exist('Vol_db','var') == 1)&&...
(exist('Vol','var') == 1))
varex = true; % - variables already exist (and file too)
else
varex = false;
end
else
varex = false;
end
if ((recalc == true) || (varex == false))
%Predefine papameters
daX_ab = log(diff(X_ab));
dbX_ab = log(diff(X_ab'))';
[A, B] = size(daX_ab);
win = 20; del = 5;
%Volatility analysis
for a = 0:A
st = 1;
en = st + win;
bmod = 1;
if (a == 0)
while (en < B)
st = st + del;
en = st + win;
bmod = bmod +1;
end
Vol_a = zeros(A,bmod-1); %define margins
Vol_da = Vol_a; Vol_db = Vol_a;
Vol = zeros(bmod-1,1);
else
while (en < B)
if(a ==1),
Vol(bmod) = var(X(st:en));
end
Win1= X_ab(a,st:en); %define window
Vol_a(a,bmod) = log(var(Win1)); %variance
Win2 = daX_ab(a,st:en); %define window
Vol_da(a,bmod) = log(var(Win2)); %variance indicator
Win3 = dbX_ab(a,st:en); %define window
Vol_db(a,bmod) = log(var(Win3)); %variance indicator
st = st + del;
en = st + win;
bmod = bmod +1;
end
end
end
save(lofname, 'Vol_a', 'Vol_da', 'Vol_db','Vol','-append')
draw_plot(showplot,recalc,plotedir,ind, tickname, tick, Vol_a, Vol_da, Vol_db)
disp(strcat('Volatility analysis for ...', tick,'... ISprovided!'))
else
draw_plot(showplot,recalc,plotedir,ind, tickname, tick, Vol_a, Vol_da, Vol_db) %#ok
disp(strcat('Volatility analysis for ...', tick,'... is already provided'))
return
end
end
function draw_plot(showplot,recalc,plotedir,ind, tickname, tick, Vol_a, Vol_da, Vol_db)
if(showplot)
subdir = 'Volatility/';
drawjpg = strcat(plotedir,subdir,num2str(ind),'_','Volatility',num2str(tick),'.jpg');
if (recalc) || ~(exist(drawjpg,'file') == 2)
[A,B] = size(Vol_a);
figure(1);
subplot(2,2,1),mesh(Vol_a)
axis ([0 B 0 A]);
view(0, 90);
title(strcat('Volatility layers - ', num2str(tickname), ' view1'),'Interpreter','none','FontSize',15);
xlabel('Shift parameter, b','Interpreter','none','FontSize',12);
ylabel('Scaling parameter, a','Interpreter','none','FontSize',12);
subplot(2,2,2),mesh(Vol_a)
axis ([0 B 0 A]);
view(-45, 60);
title(strcat('Volatility layers - ', num2str(tickname), ' view2'),'Interpreter','none','FontSize',15);
xlabel('Shift parameter, b','Interpreter','none','FontSize',12);
ylabel('Scaling parameter, a','Interpreter','none','FontSize',12);
subplot(2,2,4),mesh(Vol_da)
axis ([0 B 0 A]);
view(0, 90);
title(strcat('Volatility differential (by scaling a) - ', num2str(tickname)),'Interpreter','none','FontSize',15);
xlabel('Shift parameter, b','Interpreter','none','FontSize',12);
ylabel('Scaling parameter, a','Interpreter','none','FontSize',12);
subplot(2,2,3),mesh(Vol_db)
axis ([0 B 0 A]);
view(0, 90);
title(strcat('Volatility differential (by shift b) - ', num2str(tickname)),'Interpreter','none','FontSize',15);
xlabel('Shift parameter, b','Interpreter','none','FontSize',12);
ylabel('Scaling parameter, a','Interpreter','none','FontSize',12);
saveas(gcf,drawjpg)
disp(strcat('File...',drawjpg,'... is provided'));
close all;
else
disp(strcat('File...',drawjpg,'... already exist'));
end
end
end
This function provides 20-days volatility indicator of financial data for each part of the signal. The code provides pictures of volatility research and derivatives. With them it is possible to trace volatility evolution in time for each volatility layer.
Volatility evolution and complicated interdependencies between volatility layers can be discovered by using user defined Matlab function var_ev_nomovie.m.
function [Volevol] = var_ev_nomovie(recalc, ind,tick,tickname, Vol, Vol_a, movie)
%Input:
% recalc - do calculations if true;
% ind - [tickets{ind} = ticket];
% tick - stock index ticket;
% Vol_a - Volatility of decomposed parts of the signal;
%Output:
% Volevol - object, containing:
% Volevol.volfile - paths and filenames of .mat files containing: % variables;
% Volevol.FileN - number of .mat files containing variables
% Volevol.Vars - variables (to be read);
% Evol - volatility changes;
% Bind - indexed B values (shift or time values);
% matrix
% Volevol.VarN - number of variables;
%________________________________%
global output plotedir
lofname = strcat(output,'lprocess',num2str(ind),'.mat');
if (exist(lofname,'file') == 2)
load (lofname)
if ((exist('Volevol','var') == 1))
varex = true; % - variables already exist (and file too)
else
varex = false;
end
else
varex = false;
end
if ((recalc == true) || (varex == false))
% Volatility evolution analysis
[A, B] = size(Vol_a);
Packsize = 50;
Evol = zeros(A, A, Packsize);
Bind = zeros(Packsize,1);
Volevol.Vars{1} = 'Evol';
Volevol.Vars{2} = 'Bind';
Volevol.VarN = 2;
ii = 0; j = 0; blast = B-1;
for b = 1:blast
ii = ii+1;
Lay1 = Vol_a(:, b);
Lay2 = Vol_a(:, b+1);
Laydim1 = repmat(Lay1, 1, A);
Laydim2 = repmat(Lay2', A, 1);
Evol(:,:,ii) = Laydim2-Laydim1;
Bind(ii) = b;
if (ii >= Packsize) || (b == B-1)
j = j +1;
Volevol.volfile{j} = strcat(output,'Volatility/','Volwind',num2str(ind),'-',num2str(j), '.mat');
save (Volevol.volfile{j}, Volevol.Vars{1},Volevol.Vars{2});
Evol = zeros(A, A, Packsize);
Bind = zeros(Packsize,1);
ii = 0;
disp(strcat('j = ',num2str(j),'; Time = ', num2str(CT)));
end
end
Volevol.FileN = j;
save(lofname, 'Volevol','-append')
Volevol.R = extract_vol(movie,recalc, plotedir,ind,tick,tickname,Volevol,Vol,Vol_a);
disp(strcat('Volatility evolution analysis for ...', tick,'... ISprovided!'))
else
Volevol.R = extract_vol(movie,recalc, plotedir,ind,tick,tickname,Volevol,Vol,Vol_a); %#ok
disp(strcat('Volatility evolution analysis for ...', tick,'... is already provided'))
return
end
end
function [R] = extract_vol(movie,recalc, ~,~,~,~,Volevol,~,Vol_a)
if(movie)
if (recalc)
[~, B] = size(Vol_a); B = B-1;
bind = 0;
for j = 1:Volevol.FileN
f_n = Volevol.volfile{j};
load(f_n,'Evol')
[~, ~, zn] = size(Evol); %#ok
z = 1;
while (z <= zn) && (bind<B)
Del_Vol = Evol(:,:,z);
[~,~,~,Hr,rv] = sc2_rad(Del_Vol,'','calcradar');
bind = bind+1;
R.Hr(:,z) = Hr;
R.rv(:,z) = rv;
disp(num2str(z))
z = z+1;
end
clear Evol
end
else
end
end
close all;
end
This code is very expensive from chip-cutting time perspective, on the other hand it brings a very detailed picture of volatility evolution and interdependencies between volatility layers. Actually this code provides only object, which contains information of stored data, the data is very big ~ 110 GB of data for each stock index.
This function is running sc2_rad.m function, which is user defined function, which is providing volatility evolution picture in complex plain, which has not been discovered yet.
5. Volatility analysis in a complex plain
Transmission of volatility between layers which is calculated in previous function by using argument Del_Vol can be represented in a complex plain, for such transformation coordinates x,y of Del_Vol matrix are rewritten in following form. [11].
This transformation and fuhrer research is realized in following Matlab code:
function [Xr,Yr,Zr,Hr,rv] = sc2_rad(Matrx,addplot,radarvalue)
[x,y,z] = find(Matrx);
Z_Num = x + y*1i;
appi = (pi);
Z_exp = exp(Z_Num/(2*appi));
x = real(Z_exp);
y = imag(Z_exp);
rxy = log(sqrt(x.^2 + y.^2))./(sqrt(x.^2 + y.^2));
x = x.*rxy;
y = y.*rxy;
F = scatteredInterpolant(x,y,z,'natural');
%disp('calculated 001');
N = 1000;
xmin = min(x); xmax = max(x); xvec = linspace(xmin,xmax,N);
ymin = min(y); ymax = max(y); yvec = linspace(ymin,ymax,N);
[X,Y] = meshgrid(xvec,yvec);
%disp('calculated 0015')
qz = F(X, Y);
%disp('calculated 002');
[xc,yc] = meshgrid(linspace(-1,1,N));
cir = (xc.^2 + yc.^2 <=1);
qz = cir.*qz;
qz = abs(qz);
%disp('calculated 003');
Hr = zeros(N,1);
switch radarvalue
case 'calcradar'
dr = 0.01;
r0 = 0;
i = 1;
rv(i) = r0+dr;
while r0+dr <1
boolcir = (sqrt(xc.^2 + yc.^2) >r0) & (sqrt(xc.^2 + yc.^2) <= r0+dr);
Obj = qz.*boolcir;
Hr(i) = mean(mean(Obj > 0));
rv(i) = r0+dr;
r0 = r0 + dr;
i = i + 1;
end
otherwise
end
Xr = X;
Yr = Y;
Zr = qz;
switch addplot
case 'radarplot'
figure;
mesh(X, Y, qz);
axis tight
figure
plot(Hr)
otherwise
end
end
This code provides a radar picture of volatility evolution and a much clearer picture of transmition of volatility between volatility layers. In the output code provides volatility indicator which is normalized to radius. Representation of volatility transmission in radial form brings out better understanding of volatility nature nad brings light on 'North-Ease Volatility Wind Effect'.
Bibliography
1. Кроновер. Фракталы и хаос в динамических системах. Основы. теории. М: Постмаркет, 2000. -- 352 с. - 293. стр.
2. Смоленцев. Основы теории вейвлетов в MATLAB. М: ДМК Пресс, 2003. - 304. стр.
3. Яковлев. Введение в вейвлет преобразования. Новосибирск, 2003. - 104 стр.
4. PUCKOVS, A., MATVEJEVS, A.: Equity Indexes Analysis and Synthesis by using Wavelet Transforms. CFE 2013 7-th International Conference on Computational and Financial Econometrics, London: Birkbeck University of London, 2013, ISBN 978-84-937822-3-8, p. 98.
5. PUCKOVS, A., MATVEJEVS, A.:'North-East Volatility Wind' Effect. No: 13th Conference on Applied Mathematics (APLIMAT 2014): Book of Abstracts: 13th Conference on Applied Mathematics (APLIMAT 2014), Slovakia, Bratislava, 4.-6. Feb., 2014. Bratislava: 2014, 67.-67.pp. ISBN 9788022741392.
6. TREFETHEN, L. N. Spectral Methods in MATLAB. Comlab, 2007, 160 s.
Размещено на Allbest.ru
...Подобные документы
South West England. South-East Midlands. North-East England. Leinster and Greater Dublin. Dialects and accents amongst the four countries of the United Kingdom. The traditional dialects of Bedfordshire, Huntingdonshire and south Northamptonshire.
курсовая работа [45,1 K], добавлен 19.02.2012North Carolina: map, state flag, seal. The Dogwood as state flower. Humid, subtropical climate of the state. Top industries in North Carolina in 2000 year. Famouthe North Carolinians: Dolley Payne Madison, Thomas Clayton Wolfe. Cherokee Beer Zoo.
презентация [3,6 M], добавлен 02.12.2011Theoretical Aspects of Conversational Principles: рhilosophical background, сooperative principle by H.P. Grice, сonversation implicatures. Applied Aspects of Conversational Analysis. Following, fаlouting the cooperative principle. Maxims of conversation.
курсовая работа [28,1 K], добавлен 08.06.2010Theoretical aspects of gratitude act and dialogic discourse. Modern English speech features. Practical aspects of gratitude expressions use. Analysis of thank you expression and responses to it in the sentences, selected from the fiction literature.
дипломная работа [59,7 K], добавлен 06.12.2015The process of scientific investigation. Contrastive Analysis. Statistical Methods of Analysis. Immediate Constituents Analysis. Distributional Analysis and Co-occurrence. Transformational Analysis. Method of Semantic Differential. Contextual Analysis.
реферат [26,5 K], добавлен 31.07.2008Features of the study and classification of phenomena idiom as a linguistic element. Shape analysis of the value of idioms for both conversational and commercial use. Basic principles of pragmatic aspects of idioms in the field of commercial advertising.
курсовая работа [39,3 K], добавлен 17.04.2011What is Climate. Science is the search for knowledge. Records changes of Climate for period million years. The activity Modern Climate Systems. What is the Greenhouse Effect. The past and current trends in climate change. The way to solve the problem.
презентация [8,3 M], добавлен 21.02.2011English traditions, known for the whole world. Main traditions of the United Kingdom of Great Britain. Traditional dividing of London by three parts: the West End, the East end, and the City. Politeness is a characteristic feature of Englishmen.
реферат [22,0 K], добавлен 23.04.2011Several examples of diplomatic vocabulary stock. Diplomatic documents: characteristic features and their types. Stylistic analysis of the memorandum and the treaty. Participles and gerunds are widely used in the document. "NATO Treaty", short analysis.
курсовая работа [29,6 K], добавлен 06.03.2015The results of theoretical analysis and computer simulation of the amplitude and phase errors of the narrowband signal. Vector representation of input and output signals. Standard deviation of the phase. Probability distribution laws of the phase error.
реферат [469,7 K], добавлен 06.04.2011The pillars of any degree of comparison. Morphological composition of the adjectives. An introduction on degrees of comparison. Development and stylistic potential of degrees of comparison. General notes on comparative analysis. Contrastive linguistics.
курсовая работа [182,5 K], добавлен 23.12.2014As is generally known, science and education are one of resources of the state, one of fundamental forms of culture of civilization, as well as competitive advantage of every individual. Basics of general theory of systems (GTS) and systemic analysis.
аттестационная работа [197,5 K], добавлен 13.10.2008The study of political discourse. Political discourse: representation and transformation. Syntax, translation, and truth. Modern rhetorical studies. Aspects of a communication science, historical building, the social theory and political science.
лекция [35,9 K], добавлен 18.05.2011The concept and form preliminary investigation. Inquest: general provisions, the order of proceedings, dates. Preliminary and police investigation. Criminal procedural activities of the inquiry. Pre-trial investigation: investigative jurisdiction, terms.
реферат [20,0 K], добавлен 14.05.2011Theoretical aspects of relationship between technology and language. Research-based principles of vocabulary instruction and multimedia learning. Analysis of examples of vocabulary learning strategies available on the Internet during the lesson.
контрольная работа [1,6 M], добавлен 11.03.2015Studying the appearance of neologisms during the Renaissance, semantic features of neologisms in modern English, the types of neologisms, their division by their structure. Analysis sociolinguistic aspects of mathematical education based on neologisms.
дипломная работа [60,2 K], добавлен 18.03.2012Ukraine is an energy-rich republic. Renewable energy installed capacities. Geothermal energy refers to the heat within the earth’s surface that can be recovered and used for practical purposes. Potential for wind power and Solar energy, their use.
эссе [146,3 K], добавлен 20.03.2011Canada as the largest country of the North America. Geographical position of Canada, its climate, relief and environment. The population, religion and moving types. History of development of territory. A state system, the basic provinces of Canada.
реферат [20,6 K], добавлен 17.02.2010Law of nature: "the fittest survive". Price war - one of strategies of companies to become a leader. Determination of a price war, positive and negative effects on firms, customers and the public. Possible tactics. Price war in hotel industry.
реферат [24,9 K], добавлен 27.12.2011London is the British capital and one of the biggest cities in the world. He is situated upon both banks of the River Thames. Its population is about 7 million people. It consists of three parts: the City of London, the West End and the East End.
презентация [2,4 M], добавлен 06.12.2012