The Legal Framework for Space Debris Remediation as a Tool for Sustainability in Outer Space

Growth of quantity of space debris on Earth orbits. Description of application of general-logical methods of scientific research. Development of the voluntary, not binding documents included in the legislation of member countries of space activity.

Рубрика Государство и право
Вид статья
Язык английский
Дата добавления 07.04.2019
Размер файла 41,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Legal Avenues to Facilitate SDR

One legal avenue to incorporate SDR mechanisms in the existing legal framework could be through national legislation. The example of space debris mitigation instruments being included in the national authorization requirements for space operators could serve as a model also for SDR. Some states, such as Argentina, Chile, the Netherlands, Poland, Spain and Switzerland have confirmed their adherence to the UNCOPUOS Guidelines. There are also states, such as Australia, Germany and Japan which have not enacted national legislation, but have elaborated state policies or standards for space debris mitigation for their national space agencies [25].

Furthermore, SDR and OOS measures could be implemented nationally as part of authorization or licensing requirements. This has already been the case with the national adherence to space debris mitigation guidelines. Thus, certain conditions can be prescribed to operators in space legislation: the legal basis for prescribing such conditions is Art VI of the OST which gives a “mandate” to states to authorize activities while, according to Art. IX of the OST, taking into account the activities of other states in outer space as per Art. IX.

Furthermore, the internal regulations of space agencies and intergovernmental organizations (IGOs) such as ESA can contribute to the development and implementation of SDR. Similarly, the 2014 ESA Space Debris Mitigation Policy for Agency Projects [67] is applicable to the procurement of all ESA space systems and all operations under the responsibility of ESA. The 2004 European Code of Conduct for Space Activities [20] is applicable to projects of European space agencies, projects conducted in Europe as well as by European entities outside Europe, and to all space systems and launch vehicles orbiting or intended for orbiting the Earth.

Thus, this practice of applying mitigation guidelines for ESA projects can serve as an example of how to ensure accordance also to SDR and OOS mechanisms for European projects, even if they have not acquired a binding character.

Further Issues to Be Addressed by the Law

Apart from the challenges in the legal dimension of SDR, other aspects will also be defining the practicability of remediation. They include a solution to overcome the financial hurdle for SDR as well as finding an effective approach to consider the strategic, security and military aspects of on-orbit servicing and active debris removal. Thus, a suitable form of international cooperation and organizational framework will be required.

The findings of the International Congress on Space Debris Remediation included following practical conditions as necessary [44]:

· a “cost effective” technique;

· a proper legal and policy framework to protect the parties involved and to deal with “alternative use” concerns;

· available and willing targets for removal or customer for servicing;

· funding: for the time being, for establishing, testing and developing technologies and SDR techniques; in the future--for carrying out such operations;

· accurate tracking and necessary assistance during operations;

· capability to locate, approach, connect deorbit/servicing device, control orientation and to move the target object to desired destination;

· safety of the public on the ground, at sea, travelling by air and in space.

As far as the prospects for developing economic incentives for debris removal are concerned, a solution of creating a global fund in which all operators should contribute on an equitable basis has been proposed. This approach has become a standard in other activities taking place in global commons--e.g., in the telecommunications sector using fibre optics in the high seas. The main benefit of such an approach is the distribution of financial load between multiple entities. The justification for such an approach is that outer space activities are, ex definitone, ultra-hazardous, and very costly so that a distribution of risk is more practicable and effective than imposing costs only on single entities.

Also, these challenges, although they might not be directly originating from the law, could be facilitated through adequate regulation.

Conclusions

Space debris is an urgent matter and an issue of global importance for space activities. While the conflict between the use and the protection of outer space which results in the current trends of exponential and non-reversible growth of space debris is a pressing problem, the legal response hitherto has not been not effective so as to offer binding rules for space debris mitigation and remediation. It is true that a solution to such a complex problem cannot evolve only on a regulatory basis and requires technical, financial and political approaches, which, if implemented together with an adequate legal framework, can resonate the dimensions of orbital space debris pollution. The urgency of the problem cannot be overestimated and the need for action is vital for the use of near-Earth space.

Experience with space debris mitigation shows that even though the law is often far behind technological development, non-binding policies and efforts can play a substantial role and, furthermore, serve as a basis for the creation of binding rules. This pattern is valid also for space debris remediation which has to be included in the legal framework for outer space activities. The challenges for remediation seem to be at least as numerous as for mitigation, but as time is pressing for ensuring that the sustainable use of outer space will not be irreversibly impeded, the development of adequate SDR mechanisms at an international and national level should not be postponed as they will be defining the future of the outer space environment and the viability of space activities.

List of references

1.IADC. Stability of the Future LEO Environment, IADC-12-08, Rev. 1. Available online: https://www.iadc-online.org/Documents/IADC-2012-08,%20Rev%201,%20Stability%20of%20Future%20LEO%20Environment.pdf (accessed on 28 March 2018).

2.Space Launch Report: Orbital Launch Summary by Year. Available online: http://www.spacelaunchreport.com/logyear.html (accessed on 27 February 2018).

3.Union of Concerned Scientists Satellite Database. Available online: http://www.ucsusa.org/nuclear-weapons/space-weapons/satellite-database#.WhyVnVNrw2x(accessed on 23 February 2018).

4.Johnson, N.L.; Krisko, P.H.; Lion, J.-C.; Anz-Meador, P.D. NASA's New Breakup Model of EVOLVE 4.0. Adv. Space Res. 2001, 28, 1377-1384.

5.European Space Agency. Space Situational Awareness. Available online: http://www.esa.int/Our_Activities/Operations/Space_Situational_Awareness/Space_Surveillance_and_Tracking_-_SST_Segment (accessed on 23 February 2018).

6.Kessler, D.J.; Cour-Palais, B.G. Collision Frequency of Artificial Satellites: The Creation of a Debris Belt. JGR 1978, 83, 2645.

7.Eichler, P.; Rex, D. Chain Reaction of Debris Generation by Collision in Space--A Final Threat to Spaceflight? In Proceedings of the 40th Congress of the IAF, Malaga, Spain, 7-13 October 1989; Paper IAA-80-628. p. 3.

8.OneWeb. Available online: http://www.oneweb.world/ (accessed on 23 February 2018).

9.Small Satellites and Large Satellite Constellations. In Global Space Governance: An International Study; Jakhu, R.; Pelton, J. (Eds.) Springer: Cham, Switzerland, 2017; pp. 369-373. ISBN 978-3-319-54364-2.

10.IADC. Statement on Large Constellations of Satellites in Low Earth Orbit, (February 2016). Available online: http://www.iadc-online.org/Documents/IADC-15-03%20Megaconstellation%20Statement.pdf (accessed on 23 February 2018).

11.FCC Grants Oneweb Access to U.S. Market for Broadband Satellite Constellation. 22 June 2017. Available online: https://www.fcc.gov/document/fcc-grants-oneweb-us-access-broadband-satellite-constellation (accessed on 28 March 2018).

12.Ben Larbi, M.; Grzesik, B.; Radtke, J.; Trentlage, C.; Stoll, E. Active Debris Removal for Mega Constellations: CubeSat Possible? In Proceedings of the 9th International Workshop on Satellite Constellations and Formation Flying, Boulder, CO, USA, 19-21 June 2017.

13.USSTRATCOM Space Control and Space Surveillance. 17 October 2016. Available online: http://www.stratcom.mil/Media/Factsheets/Factsheet-View/Article/976414/usstratcom-space-control-and-space-surveillance/ (accessed on 23 February 2018).

14.Scanning and Observing. Available online: http://www.esa.int/Our_Activities/Operations/Space_Debris/Scanning_and_observing (accessed on 23 February 2018).

15.Wiedemann, C.; Braun, V. The Necessity of Removing a Sun-synchronous Satellite. Paper DLRK 2014-340017. In Proceedings of the Deutscher Luft-und Raumfahrtkongress, Augsburg, Germany, 16-18 September 2014.

16.Leonov, V.A.; Bargov, A.V. Study of Space Debris Burning in Earth's Atmosphere via Television Meteor Monitoring. Astrophys. Bull. 2011, 66, 87-89.

17.Horstmann, A. Technical note--MASTER-8: Enhancement of S/C fragmentation and environment, to be published.

18.Wiedemann, C.; Flegel, S.; Mцckel, M.; Braun, V.; Krag, H.; Klinkrad, H.; Vцrsmann, P. Flux Calculation Using Population Event Clouds. Paper IAC 11.A6.2.16. In Proceedings of the 62nd International Astronautical Congress, Cape Town, South Africa, 3-7 October 2011.

19.Krisko, P.H.; Flegel, S.; Matney, M.; Jarkey, D.; Braun, V. ORDEM 3.0 and MASTER-2009 modeled debris comparison. Acta Astronaut. 2015, 113, 204-211.

20.European Code of Conduct for Space Activities, Issue 1.0. 31 June 2014. Available online: http://www.unoosa.org/documents/pdf/spacelaw/sd/2004-B5-10.pdf (accessed on 23 February 2018).

21.European Space Agency. Annual Space Environment Report. Available online: https://www.sdo.esoc.esa.int/environment_report/Environment_Report_I1R2_20170427.pdf (accessed on 23 February 2018).

22.IADC. Space Debris Mitigation Guidelines, Rev. 1; IADC: Houston, TX, USA, 2007.]

23.Schaus, V.; Radtke, J.; Stoll, E.; Rossi, A.; Colombo, C.; Tonetti, S.; Holbrough, I. Results of reference long-term simulations focussing on passive means to reduce the impact of space debris. In Proceedings of the 7th European Conference on Space Debris, Darmstadt, Germany, 18-21 April 2017.

24.Findings as per the Report on Review of the State-of-the-Art and Reference Simulations Results in the ReDSHIFT Project. 12 April 2017; p. 82.

25.UNCOPUOS. Compendium on Space Debris Mitigation Standards Adopted by States and International Organizations; UN Doc. A/AC.105/C.2/2016/CRP.16; UNCOPUOS: Vienna, Austria, 2016.

26.Treaty on Principles Governing the Activities of States in the Exploration and Use of Outer Space, Including the Moon and Other Celestial Bodies; 610 UNTS 205; entered into force on 10 October 1967.

27.Agreement on the Rescue of Astronauts, the Return of Astronauts and the Return of Objects Launched into Outer Space; 672 UNTS 119; entered into force 3 December 1968.

28.Convention on International Liability for Damage Caused by Space Objects; 961 UNTS 187; entered into force 1 September 1972.

29.Convention on Registration of Objects Launched into Outer Space; 1023 UNTS 15; entered into force 15 September 1976.

30.Agreement Governing the Activities of States on the Moon and Other Celestial Bodies; 1363 UNTS 13; entered into force 11 July 1984.

31.Hobe, S. Outer Space as the Province of All Mankind--An Assessment of 40 years of Development. In Proceedings of the 50th Colloquium on the Law of Outer Space, Hyderabad, India, 24-29 September 2007; p. 442.

32.Status of International Agreements Relating to Activities in Outer Space. Available online: http://www.unoosa.org/oosa/en/ourwork/spacelaw/treaties/status/index.html (accessed on 23 February 2018).

33.Brownlie, I. Principles of Public International Law, 6th ed.; Diakonia: Bromma, Sweden, 2003; pp. 6-12. ISBN 978-0199260713.

34.Jakhu, R. Legal issues relating to the global public interest in outer space. J. Space Law 2006, 32, 31-110.

35.Hobe, S. Outer Space Treaty. In Commentary on Space Law; Schmidt-Tedd, H., Schrogl, K.-U., Eds.; Heymanns Verlag: Cologne, Germany, 2009; Volume 1, p. 35. ISBN 978-3-452-27185-3.

36.Hobe, S.; Tronchetti, F. Article 4 (Province of All Mankind). In Commentary on Space Law; Schmidt-Tedd, H., Schrogl, K.-U., Eds.; Heymanns Verlag: Cologne, Germany, 2013; Volume 2, pp. 364-366. ISBN 978-3-452-27523-3.

37.United Nations Convention on the Law of the Sea; 1833 UNTS 3; entered into force on 10 December 1982.

38.Antarctic Treaty; 402 UNTS 71; entered into force on 23 June 1961.

39.Schrogl, K.-U.; Neumann, J. Article IV OST. In Cologne Commentary on Space Law; Schmidt-Tedd, H., Schrogl, K.-U., Eds.; Heymanns Verlag: Cologne, Germany, 2009; Volume 1, p. 90. ISBN 978-3-452-27185-3.

40.Marchisio, S. Article IX. In Cologne Commentary on Space Law; Schmidt-Tedd, H., Schrogl, K.-U., Eds.; Heymanns Verlag: Cologne, Germany, 2009; Volume 1, pp. 175-177. ISBN 978-3-452-27185-3.

41.Wolfrum, R. Die Internationalisierung Staatsfreier Rдume; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1983; p. 262. ISBN 978-3-642-69481-3. [Google Scholar]

42.UNCOPUOS. Guidelines for the Long-Term Sustainability of Outer Space Activities, Working Paper by the Chair of the Working Group on the Long-Term Sustainability of Outer Space Activities; U.N. Doc. A/AC.105/2017/CRP.26; 14 June 2017. Available online: http://www.unoosa.org/res/oosadoc/data/documents/2017/aac_1052017crp/aac_1052017crp_26_0_html/AC105_2017CRP26E.pdf (accessed on 23 February 2018).

43.UNCOPUOS. Working Group on the Long-Term Sustainability of Outer Space Activities: Preambular Text and Nine Guidelines, Conference Room Paper by the Chair of the Working Group on the Long-Term Sustainability of Outer Space Activities; U.N. Doc. A/AC.105/C.1/2018/CRP.18; 7 February 2018. Available online: http://www.unoosa.org/res/oosadoc/data/documents/2018/aac_105c_12018crp/aac_105c_12018crp_18_0_html/AC105_C1_2018_CRP18E.pdf (accessed on 23 February 2018).

44.UNCOPUOS. Active Debris Removal--An Essential Mechanism for Ensuring the Safety and Sustainability of Outer Space A Report of the International Interdisciplinary Congress on Space Debris Remediation and On-Orbit Satellite Servicing; UN Doc. A/AC.105/C.1/2012/CRP.16; 27 January 2012. Available online: http://www.unoosa.org/pdf/limited/c1/AC105_C1_2012_CRP16E.pdf (accessed on 23 February 2018).

45.NASA. On-Orbit Satellite Servicing Study Project Report; NASA: Washington, DC, USA, 2010; p. 35. Available online: https://sspd.gsfc.nasa.gov/images/nasa_satellite%20servicing_project_report_0511.pdf (accessed on 23 February 2018).

46.Space Safety Magazine. DARPA's PHOENIX: Scavenging Defunct GEO Satellites. Available online: http://www.spacesafetymagazine.com/press-release/darpas-phoenix-scavenging-defunct-geo-satellites/ (accessed on 28 March 2018).

47.DARPA. Robotic Servicing of Geosynchronous Satellites (RSGS). Available online: https://www.darpa.mil/program/robotic-servicing-of-geosynchronous-satellites (accessed on 27 March 2018).

48.Melroy, P.; Hill, L.; Fowler, E.E.; Hunter, R.; Eagen, J.; Sullivan, B.R.; Will, P.; Palmer, J. DARPA Phoenix Satlets: Progress towards Satellite Cellularization. In Proceedings of the AIAA SPACE 2015 Conference and Exposition, Pasadena, CA, USA, 31 August-2 September 2015.

49.Hogan, E.A. Electrostatic Tractor Analysis for GEO Debris Remediation, Aerospace Engineering Sciences Graduate Theses and Dissertations; Paper 4; University of Colorado Boulder: Boulder, CO, USA, 2014; p. 4.

50.Biesbroek, R. ESA's e.deorbit mission and its roadmap to Active Debris Removal. In Proceedings of the 5th CEAS Air & Space Conference, Delft, The Netherlands, 7-11 September 2015.

51.Macdonald, M.; McInnes, C.; Bewick, C.; Visagie, L.; Lappas, V.; Erb, S. Concept-of-operations disposal analysis of spacecraft by gossamer structure.J. Spacecr. Rockets 2015, 52, 517-525.

52.Lappas, V.; Adeli, N.; Visagie, L.; Fernandez, J.; Theodorou, T.; Steyn, W.; Perren, M. CubeSail: A low cost CubeSat based solar sail demonstration mission. Adv. Space Res. 2011, 48, 1890-1901.

53.Tethers Unlimited Website. Available online: https://www.tethers.com (accessed on 28 March 2018).

54.Ohkawa, Y.; Kawamoto, S.; Okumura, T.; Iki, K.; Horikawa, Y.; Kawashima, K.; Miura, Y.; Takai, M.; Washiya, M.; Kawasaki, O.; et al. Preparation for on-orbit demonstration of electrodynamic tether on htv. In Proceedings of the Joint Conference of 30th International Symposium on Space Technology and Science, 34th International Electric Propulsion Conference and 6th Nano-Satellite Symposium, Hyogo-Kobe, Japan, 4-10 July 2015.

55.NASA. Project ORION: Orbital Debris Removal Using Ground/Based Sensors and Lasers; NASA Technical Memorandum 108522; NASA: Washington, DC, USA, 1996.

56.Phipps, C.R. L'ADROIT--A Spaceborne Ultraviolet Laser System for Space Debris Cleaning. Acta Astronaut. 2014, 104, 243-255.

57.Scharring, S.; Wilken, J.; Eckel, H.-A. Laser-based removal or irregularly shaped space debris. Opt. Eng. 2016, 56, 011007.

58.ESA. Frequently Asked Questions. Available online: http://www.esa.int/Our_Activities/Operations/Space_Debris/FAQ_Frequently_asked_questions (accessed on 28 February 2018).

59.Dolado-Perez, J.; Pardini, C.; Anselmo, L. Review of Uncertainty Sources Affecting the Long-term Predictions of Space Debris Evolutionary Models. Acta Astronaut. 2015, 113, 51-65.

60.ILC. Articles on State Responsibility for Internationally Wrongful Acts; Article 25; UNGA Res. 56/83 of 12 December 2001.

61.Fitzmaurice, M. Necessity in International Environmental Law. In Netherlands Yearbook of International Law; Dekker, I.F., Hey, E., Eds.; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2010; Volume 41, ISBN 9789067047364.

62.Legal Issues and Policy Concerns under the Current Framework for On-Orbit Servicing and Active Debris Removal. In Global Space Governance: An International Study; Jakhu, R.; Pelton, J. (Eds.) Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2017; p. 345. ISBN 978-3-319-54363-5. [Google Scholar]

63.Gabинkovo-Nagymaros Project (Hungary v Slovakia), Judgment, I.C.J. Reports 1997, p. 7.

64.Jakhu, R.; Nyampong, Y.; Sgobba, T. Regulatory framework and organization for space debris removal and on orbit servicing of satellites. J. Space Saf. Eng.2017, 4, 131.

65.Space Debris Mitigation Guidelines of the Committee on the Peaceful Uses of Outer Space; UNGA Res. 62/217 of 22 December 2007.

66.IADC. Inter-Agency Space Debris Coordination Committee. Available online: http://www.iadc-online.org/ (accessed on 23 February 2018).

67.Space Debris Mitigation Policy for Agency Projects. ESA/ADMIN/IPOL (2014)2 of 28 March 2014. Available online: http://www.iadc-online.org/References/Docu/admin-ipol-2014-002e.pdf (accessed on 23 February 2018).

68.UNCOPUOS. Report of the Committee on the Peaceful Uses of Outer Space Fifty-Fourth Session, pp. 51-57, Annex II. Terms of Reference and Methods of Work of the Working Group on Long-Term Sustainability of Outer Space Activities of the Scientific and Technical Subcommittee; U.N. Doc. A/66/20 (2011). Available online: http://www.unoosa.org/pdf/gadocs/A_66_20E.pdf(accessed on 23 February 2018).

69.UNCOPUOS. Report of the Committee on the Peaceful Uses of Outer Space Fifty-Seventh Session; U.N. Doc. A/69/20 (2014). Available online: http://www.unoosa.org/pdf/gadocs/A_69_20E.pdf (accessed on 23 February 2018).

70.UNCOPUOS. Proposal by the Chair of the Working Group on the Long-Term Sustainability of Outer Space Activities for the Consolidation of the Set of Draft Guidelines on the Long-Term Sustainability of Outer Space Activities; U.N. Doc. A/AC.105/2014/CRP.5. Available online: http://www.unoosa.org/pdf/limited/l/AC105_2014_CRP05E.pdf (accessed on 23 February 2018).

71.UNCOPUOS. Draft Report of the Committee on the Peaceful Uses of Outer Space Fifty-Ninth Session, Addendum One 118; U.N. Doc. A/AC.105/L.309/Add.1; 2017. Available online: http://www.unoosa.org/res/oosadoc/data/documents/2017/aac_105l/aac_105l_309add_1_0_html/AC105_L309Add01E.pdf (accessed on 23 February 2018).

72.UNCOPUOS. Guidelines for the Long-Term Sustainability of Outer Space Activities, Proposal by the Chair of the Working Group on the Long-Term Sustainability of Outer Space Activities; U.N. Doc. A/AC.105/2017/CRP.23; 2 June 2017. Available online: http://www.unoosa.org/res/oosadoc/data/documents/2017/aac_1052017crp/aac_1052017crp_23_0_html/AC105_2017CRP23E.pdf (accessed on 23 February 2018)

Размещено на Allbest.ru

...

Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.