Применение лицевой биометрии для информационно-аналитической поддержки розыскных мероприятий
Распознавание лиц как компьютерная программа, которая использует лицо человека для автоматической идентификации и проверки личности по цифровому изображению или видеокадру из видеоисточника. Особенности ее использования правоохранительными органами.
Рубрика | Государство и право |
Вид | статья |
Язык | украинский |
Дата добавления | 24.08.2023 |
Размер файла | 31,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Применение лицевой биометрии для информационно-аналитической поддержки розыскных мероприятий
Виктория Николаевна Чаплыгина
Алексей Александрович Москвичев
Аннотация
За прошедшие годы было разработано множество подходов к обеспечению безопасности, которые помогают обеспечить защиту конфиденциальных данных и снизить вероятность нарушения безопасности. Распознавание лиц, которое является одним из немногих биометрических методов, обладающих достоинствами как высокой точности, так и низкой навязчивости, представляет собой компьютерную программу, которая использует лицо человека для автоматической идентификации и проверки личности по цифровому изображению или видеокадру из видеоисточника. Она (программа) сравнивает выбранные черты лица с изображением и базой данных лиц, или это также может быть аппаратное обеспечение, которое используется для аутентификации человека. Эта технология представляет собой широко используемую биометрическую систему для аутентификации, авторизации, верификации и идентификации. В этой связи её использование правоохранительными органами быстро растет. Сегодня сотрудники органов внутренних дел могут использовать стационарные и мобильные передвижные устройства, чтобы делать готовые к распознаванию изображения людей. Камеры видеонаблюдения позволяют полиции мгновенно получать доступ к сотням тысяч изображений лиц граждан. В некоторых странах полиция использует распознавание лиц с помощью нательных камер, чтобы идентифицировать людей в темноте, сопоставлять человека с имеющимся фотороботом или даже создавать изображение лица человека из небольшого образца его лица. Использование органами правопорядка технологии распознавания лиц, хотя и не является новой практикой, но привлекает повышенное внимание со стороны общественности. В частности, сохраняются проблемы: достоверности технологий; гендерных и возрастных погрешностей; процесса сбора, сохранения и защиты изображений, содержащихся в различных «лицевых» базах данных распознавания; публичного уведомления об использовании распознавания лиц и других технологий; правил, стандартов регулирования и использования данных систем правоохранительными органами. Несмотря на это, технология распознавания лиц может быть ценным инструментом расследования для выявления и предотвращения преступной деятельности, уменьшения непосредственной угрозы здоровью или безопасности граждан, помощи в поиске лиц, пропавших без вести или находящихся в розыске. Статья посвящена изучению технологии лицевой биометрии, позволяющей решать важные задачи, стоящие перед правоохранительными органами, в части: мгновенной идентификации правонарушителей; установления местонахождения разыскиваемых лиц; накопления массивов «больших данных», необходимых для планирования и проведения массовых мероприятий.
Ключевые слова: система распознавания лиц, биометрия, нейросети, видеоаналитика
Abstract
The use of facial biometrics for information and analytical support of investigative activities
Victoria N. Chaplygina, Alexey A. Moskvichev
Over the years, many security approaches have been developed to help protect sensitive data and reduce the likelihood of a security breach. Facial recognition, which is one of the few biometric methods that have the advantages of both high accuracy and low intrusiveness, is a computer program that uses a person's face to automatically identify and verify identity from a digital image or a video frame from a video source. It compares the selected facial features with an image and a database of faces, or it can also be hardware that is used to authenticate a person. This technology is a widely used biometric system for authentication, authorization, verification and identification. In this regard, its use by law enforcement agencies is growing rapidly. Today, law enforcement officers can use stationary and mobile devices to make ready-to - recognize images of people. CCTV cameras allow law enforcement agencies to instantly access hundreds of thousands of images of citizens' faces. In some countries, the police use facial recognition using body cameras to identify people in the dark, match a person with an existing sketch, or even create an image of a person's face from a small sample of his face. The use of facial recognition technology by law enforcement agencies, although not a new practice, attracts increased attention from the public. In particular, problems remain: the reliability of technologies; gender and age errors; the process of collecting, preserving and protecting images contained in various facial recognition databases; public notification of the use of facial recognition and other technologies; rules, standards for regulating and using these systems by law enforcement agencies. Despite this, facial recognition technology can be a valuable investigative tool for detecting and preventing criminal activity; reducing the immediate threat to the health or safety of citizens; assistance in finding missing or wanted persons. The article is devoted to the study of facial biometrics technology, which allows solving important tasks facing law enforcement agencies in terms of: instant identification of offenders; locating wanted persons; accumulation of arrays of «big data» necessary for planning and holding mass events.
Keywords: facial recognition system, biometrics, neural networks, video analytics.
Основная часть
История биометрии берет свое начало со времен Л. Даггера и А. Бертильона. Большинство современных специалистов определяют биометрию как «способ измерения характеристик человека для проверки его личности» Биометрия и биометрические данные: что это такое и безопасно ли это? // Bezopasnik.info: информационный пор-тал систем безопасности [Электронный ресурс]. -- URL: https://bezopasnik.info/- биометрия-и-биометрические-данные-чт/ (дата обращения: 11.09.2021).. Такие характеристики можно классифицировать на статические, которые присущи человеку на протяжении всей его жизни (геометрия лица и строение папиллярных линий на руках, радужная оболочка глаз, рисунок вен и др.) и динамические, которые оценивают уникальное поведение и подсознательные движения человека (голос, рукописный почерк, походку др.). Для успешного сравнения и сопоставления с существующими базами биометрические данные должны быть уникальными, постоянными и собираемыми.
Методы распознавания лиц «условно делятся на две группы: использующие локальные и глобальные признаки лица. При использовании локальных - алгоритм выделяет отдельные части (глаза, нос, рот и др.) и уже по ним распознает лицо. При использовании глобальных - оперирует со всем лицом в целом. Количество существующих методов выделения признаков и их классификации велико, но одни и те же методы используются для выделения как локальных, так и глобальных признаков» Кто и как использует технологии распознавания лиц в России // Rusbase: сайт [Электронный ресурс]. -- URL: https://rb.ru/longread/facial-recognition/(дата обращения: 11.09.2021)..
Среди наиболее эффективных методов распознавания лиц можно выделить нейросетевой, который давно перестал быть предметом научной фантастики и благополучно перешел в реальный мир, став при этом одним из самых популярных изобретений в области программного обеспечения для анализа изображений. За счет использования сверхточных нейронных сетей «распознавание становится менее зависимым от поведения людей» [1, с. 433], «снижаются требования к монтажу камер, улучшается качество распознавания в широком диапазоне внешних условий, включая изменяющуюся освещенность» Кто и как использует технологии распознавания лиц в России // Rusbase: сайт [Электронный ресурс].. Система сначала преобразует лицо в массив точек, а затем в числа, обрабатываемые математическими алгоритмами. На выходе получается биометрическая модель - файл с определенной последовательностью чисел.
В настоящее время без современных технологий раскрытие и расследование преступлений крайне затруднительно [2, с. 150]. Так, например, существует система распознавания лиц - программа, созданная для распознавания и идентификации человеческих лиц на изображениях или видео, которая позволяет после формирования отпечатка лица найти правильные совпадения с ним в большом массиве данных.
Идентифицирование биометрических черт происходит в несколько этапов:
1. Обнаружение. Система распознавания лиц, соединенная с камерами в одну инфраструктуру, сканирует поле видеозахвата на предмет, по очертаниям и контуру напоминающий лицо. Данные системы устанавливаются в так называемых чистых зонах - местах, где человек в кадре находится один или в местах большого скопления людей (в условиях толпы). Поскольку человек часто жестикулирует, делает повороты головы, не всегда держит осанку прямо и пр., его лицо не всегда попадет в кадр в правильном ракурсе. В таком случае нейросеть переходит к следующему этапу, на котором оцениваются положение, ориентация и размер головы.
2. Стандартизация. Исходное изображение последовательно масштабируется (получается пирамида, состоящая из пяти изображений, которые сравниваются между собой путем наложения друг на друга для дальнейшей группировки в кластеры) и поворачивается таким образом, чтобы его можно было конвертировать в формат, требуемый для последующей регистрации. Таким образом, нейронная сеть извлекает характеристики изображения, выделяя ключевые факторы, такие как: расстояние между глазами, подбородком и лбом, толщину губ и носа и т.д. Результатом обработки данных характеристик является создание лицевой подписи.
3. Представление. После формирования лицевой подписи система преобразовывает ее в сложный математический код индивидуальной идентичности, который облегчает вычислительное сравнение вновь полученной информации с сохраненными базами ранее записанных данных.
4. Сопоставление. Логическим этапом завершения цепочки алгоритма идентификации личности по видеоизображению является сравнение полученных данных лица с сохраненными ранее. В случае совпадения с одним из изображений программное обеспечение уведомляет об этом конечного пользователя Узнай меня, если сможешь // Окси- джен Софтвер: сайт [Электронный ре-сурс]. -- URL:https://www.oxygensoftware.ru/ru/news/articles/325- facial-recognition(дата обращения: 15.09.2021)..
Существуют две основные задачи, которые призваны решать программные продукты по лицевой биометрии:
— верификация (хорошим примером является разблокировка смартфонов по идентификации лица);
— распознавание (часто используется в системах безопасности и наблюдения, в том числе сотрудниками правоохранительных органов).
Ведущей страной в области биометрических технологий является Китай, где соблюдение законов на всей территории страны почти полностью контролирует искусственный интеллект. В 2015 году министерство общественной безопасности этой страны начало свою работу по созданию самой обширной в мире базы данных распознавания лиц, а уже сегодня частота ошибок нейросетей составляет лишь 0,008%, т.е. только 8 из 100 тыс. сканирований могут быть идентифицированы неверно. Более того, китайские полицейские в своей повседневной служебной деятельности используют «портативные ситуационные видеорегистраторы, которые по размеру чуть меньше рации. Устройство располагается поверх одежды сотрудника и анализирует видеопоток, выделяя из него лица людей, данные о которых через информационно-телекоммуникационную сеть Интернет (в устройство можно вставить сим - карту) отправляются на сервер» [1, с. 435].
В России в рассматриваемой области пока нет столь масштабных экспериментов национального уровня. Вместе с тем с начала 2020 г. в г. Москве развернута сеть мощных серверов, которая анализирует данные более чем 189 тыс. городских видеокамер, установленных в автобусах, метро, на светофорах, во дворах и на подъездах многоквартирных домов. С помощью системы видеофиксации, названной «АПК «Безопасный город», только за 10 дней новогодних праздников удалось задержать в столице 34 злоумышленников, находившихся в федеральном розыске1.
За 6 месяцев 2020 года в г. Москве с помощью данной системы видеонаблюдения раскрыто более 2400 тяжких и особо тяжких преступлений В Москве создаётся крупнейшая в мире система наблюдения и идентифи-кации лиц // Rambler: интернет-ресурс [Электронный ресурс]. -- URL: https://news.rambler.ru/scitech/- 43542054/?utm_content=news_media&utm _medium=read_more&utm_source=copylink(дата обращения: 20.09.2021). В столичной полиции подвели итоги работы в первом полугодии 2020 года // Офиц. сайт ГУ МВД России по г. Москве. [Электронный ресурс]. -- URL: https://77.мвд.рф/news/itєm/ 20635067 (дата обращения: 20.09.2021).. Система показала свою эффективность при контроле за соблюдением карантинного режима. С момента его объявления в г. Москве было выявлено более 200 случаев нарушения режима изоляции (самоизоляции).
Существуют ведомственные (МВД России, ФСБ России) фото- или видеобазы данных субъектов оперативной заинтересованности,
которые направлены: на уста
новление (подтверждение) личности задержанных, доставленных в ДЧ; идентификацию лиц, подозреваемых в причастности к совершению преступлений и правонарушений; идентификацию трупов. В МВД России основной способ использования таких фото- или видеоматериалов - визуальный просмотр, т.е. сотрудники ОВД или эксперты просматривают фотомассив или видеофрагмент, пытаясь получить из него оперативно значимую информацию. Данные вопросы обсуждаются и в литературе [3, 4, 5, 6]
Вместе с тем появилась и активно внедряется так называемая интеллектуальная аналитика на основе распознавания лиц, которая путем обработки оперативных фото- и видеоматериалов, изъятых с мест преступлений (происшествий), дает возможность: а) автоматически распознавать лиц субъектов, подозреваемых в причастности к совершению преступления с сохранением всех данных во временные каталоги («открытые дела»); б) биометрически сопоставлять лиц в расследуемом деле с постоянным фотобанком фигурантов по другим делам, для установления личности, объединять различные эпизоды в общее производство; в) устанавливать причастность задержанных, доставленных в дежурную часть лиц к совершению преступлений по зарегистрированным открытым делам [7, с. 87].
Интеграция ведомственных баз данных в концепцию «умныхгородов», позволяет:
1. Устанавливать местонахождение (постоянное пребывание, привычные маршруты) субъекта оперативной заинтересованности.
2. Проводить биометрический мониторинг - мгновенное реагирование на появление субъекта в поле зрения камер.
3. Накапливать статистику (время и место обнаружения субъекта) без ограничений по глубине хранения данных.
4. Выявлять новые оперативно-значимые сведения, устанавливать социальные связи, контакты ближнего круга, потенциальных сообщников и др.
5. Обеспечивать охрану общественного порядка на культурно-массовых мероприятиях при помощи передвижных биометрических комплексов (ПБК).
6. Проводить биометрическую идентификацию на маршрутах патрулирования при помощи мобильных устройств с приложением интеллектуальной системы аналитики.
7. Выявлять оперативно значимые сведения с использованием OSINT (изображения в открытых источниках).
Примером положительного опыта использования вышеописанного информационно-аналитического симбиоза является прошедший не так давно в нашей стране чемпионат мира по футболу FIFA - 2018. Команда экспертов в области искусственных нейронных сетей и машинного обучения NtechLab, чьи алгоритмы использовались на спортивных объектах (спортивная арена «Лужники» - 224 камеры на входных КПП, фан-зона на Воробьевых горах - 58 камер на входных КПП и 12 камер на выходных КПП, стадион «Открытие Арена» - 74 камеры на входных КПП) совместно с ГУ МВД России по г. Москве, при поддержке департамента информационных технологий столицы, продемонстрировали слаженную работу в части обеспечения общественного порядка и общественной безопасности.
ГУ МВД России по г. Москве предоставила специалистам из NtechLabбазу данных для мониторинга более 50 тыс. лиц по следующим шаблонам: федеральный розыск, поднадзорный, экстремист, карманник, «запрет - чик» и др. Системе интеллектуальной видеоаналитики требовалось менее 2 секунд для идентификации подозрительного лица и уведомления об этом службы безопасности.
По результатам совместной работы за июнь-июль 2018 г. на указанных объектах было задержано более 100 человек, из которых на фестивале болельщиков: 19 находившихся в федеральном розыске; 9 так называемых «запретчи - ков»; 7 поднадзорных лиц; 49 футбольных фанатов в том числе 1 иностранный; 1 экстремист; 8 карманников. На спортивной арене «Лужники» было задержано 11 футбольных фанатов, других категорий не выявлено, поскольку вход осуществлялся по паспорту болельщика (FANID) - персонифицированной карте зрителя, которая являлась частью системы идентификации футбольных болельщиков, в то время как в фан-зоне такого документа не требовалось Дополняя интеллект // NtechLab: офиц. сайт [Электронный ресурс]. -- URL: https://ntechlab.ru/#index(дата обраще-ния: 21.09.2021)..
Помимо стационарной интеллектуальной видеоаналитики, как было сказано выше, существуют передвижные биометрические комплексы (ПБК), позволяющие контролировать проход лиц в зону проведения массового мероприятия на открытых участках местности, которые включают в себя:
1) сервер видеоаналитики - размещается на шасси транспортного средства (микроавтобус, автобус) в изолированном контуре без подключения к публичным сетям передачи данных. В зависимости от конфигурации, к одному серверу может быть подключено от 8 до 24 камер наблюдения;
2) камеры наблюдения - монтируются на рамки-металлодетекторы, чтобы снимать лица граждан, проходящих в зону проведения массового мероприятия. Видеопотоки с камер транслируются на сервер видеоаналитики по закрытой беспроводной сети (если это допустимо режимным мероприятием) или бронированному кабелю.
В дальнейшем лицо каждого проходящего через рамку гражданина распознается в видеопотоке и сопоставляется с загруженной на сервер видеоаналитики базой лиц, т.е. идентифицируется. При обнаружении совпадения дежурному в автобусе выдается уведомление, после чего он принимает оперативные меры. Важность использования таких методов обсуждается и в исследованиях авторов [8, 9, 10].
Передвижной биометрический комплекс, в качестве пилотного проекта, успешно зарекомендовал себя на службе в УМВД по Рязанской области и использовался для идентификации лиц, подозреваемых в нарушении миграционного законодательства и режима пребывания в Российской Федерации. Так, во время празднования Ураза-байрама в июле 2018 г. в регионе выявлено свыше 50 таких нарушителей, 17 из которых подготовлены к принудительной депортации за пределы Российской Федерации Руководство Управления МВД России по Рязанской области представило первый в России мобильный биометриче-ский комплекс. -- Доступ с официального сайта УМВД России по Рязанской области. [Электронный ресурс]. -- URL:
https://62.мвд.рф/news/itєm/12476023/ (дата обращения: 21.09.2021)..
Несмотря на очевидные преимущества лицевой биометрии, во время процесса распознавания на изображениях или видео неизбежно возникают различные проблемы, которые нелегко преодолеть, а именно: а) освещение - в зависимости от освещения, система может не сработать должным образом; б) поза - иногда из-за позы, которую человек принимает во время захвата изображения, лицо не попадает в кадр; в) возраст - некоторые части лица продолжают расти на протяжении всей жизни, поэтому лицо одного и того же человека в разном возрасте, возможно, будет отличаться на фотографиях, имеющихся в базе; г) окклюзия - из-за маски, солнцезащитных очков, прически, бороды, косметики и т.д. могут быть частично скрыты некоторые черты лица; д) качество изображений - если изображения взяты из различных источников и стандартизированы, то, вполне вероятно, придется изменить разрешение для некоторых из них, что негативно скажется на их качестве. Чтобы справиться со всеми этими проблемами, конкретный способ распознавания лиц чаще всего использует несколько алгоритмов и методов для стандартизации данных и улучшения возможностей распознавания [11, с. 132].
Есть основания надеяться на то, что многие вышеописанные проблемы будут преодолены, интеллектуальная видеоаналитика будет и дальше решать важные вопросы биометрической идентификации личности, помогая правоохранительным органам в раскрытии преступлений и правонарушений, а объединение данных о биометрических параметрах в единую систему позволит перейти на качественно новый уровень обеспечения общественной безопасности в России.
Список источников
лицевой биометрия идентификация правоохранительный
1. Носова Ю.С. Общее представление о распознавании лиц: метод глобальных точек, локальных признаков, алгоритмы и проблемы / Ю.С. Носова, Н.Г. Терехов, Ф.В. Сычев // Наука. Техника. Технологии (политехническийвестник): научныймультидисциплинныйжурнал. - 2019. - №4. - С. 431-436.
2. Грибунов О.П. Технико-криминалистическое обеспечение раскрытия и расследования преступлений: отдельные аспекты современного состояния / О.П. Грибунов // Криминалистические чтения на Байкале - 2015: мат-лымеждунар. науч.-практ. конф. ФГБОУВО «Российскийгосударственныйуниверситетправосудия». - 2015. - С. 150-154.
3. Колычева А.Н. Следственные ошибки в стадии предварительного расследования / А.Н. Колычева // Научный вестник Орловского юридического института МВД России имени В.В. Лукьянова. - 2021. - №2 (87). - С. 124-129.
4. Морозова Н.В. Криминалистические методики расследования преступлений. Основания и принципы формирования / Н.В. Морозова // Закон и право. - 2020. - №8. - С. 150-151.
5. Морозова Н.В. Общетеоретические аспекты проведения осмотра места происшествия при расследовании преступлений / Н.В. Морозова // Научный вестник Орловского юридического института МВД России имени В.В. Лукьянова. - 2021. - №4 (89). - С. 48-52.
6. Колычева А.Н. Отдельные аспекты судебной компьютерной экспертизы, назначаемой при расследовании преступлений, совершенных с использованием сети интернет / А.Н. Колычева, В.Ф. Васюков // Расследование преступлений: проблемы и пути их решения. - 2019. - №3 (25). - С. 119-122.
7. Сучков А.И. Актуальность использования специализированного бланка протокола осмотра места дорожно-транспортного происшествия / А.И. Сучков // Научный вестник Орловского юридического института МВД России имени В.В. Лукьянова. - 2021. - №3 (88). - С. 86-96.
8. Сретенцев А.Н. Возможности и перспективы внедрения систем автоматического распознавания лица человека в процесс раскрытия и расследования преступлений / А.Н. Сретенцев // Российский следователь. - 2021. - №1. - С. 17-20.
9. Сретенцев А.Н. Перспективы внедрения передовых приемов и средств фиксации в деятельность по осмотру места происшествия / А.Н. Сретенцев, О.Ю. Машурова // Научный вестник Орловского юридического института МВД России имени В.В. Лукьянова. - 2019. - №3 (80). - С. 107-111.
10. Харламова Н.Д. Тактические аспекты применения приемов психологического воздействия при производстве допроса и очной ставки / Н.Д. Харламова, Д.А. Бадиков // Научный вестник Орловского юридического института МВД России имени В.В. Лукьянова. - 2019. - №2 (79). - С. 92-95.
11. Бадиков Д.А. Некоторые аспекты подготовки иллюстрационной таблицы к протоколу осмотра места происшествия / Д.А. Бадиков // Закон и право. - 2022. - №3. - С. 131-133.
References
1. NosovaYu.S., TerekhovN.G., SychevF.V. Obshheepredstavlenie o raspoznavaniilic: metodglobal'nyhtochek, lokal'nyhpri-znakov, algoritmyiproblemy [A general idea of face recognition: the method of global points, local features, algorithms and problems]. Nauka. Tehnika. Tehnologii (politehnicheskijvestnik): nauchnyjmul'tidisciplin - nyjzhurnal - Scientific multidisciplinary journal «Science. Technic. Technologies (Polytechnic Bulletin)», 2019, no 4, pp. 431-436 (in Russian).
2. Gribunov O.P. Tekhniko-kriminalisticheskoeobespechenieraskrytiyairassle-dovaniyaprestuplenij: otdel'nyeaspektysovremennogosostoyaniya/ O.P. Gribunov // KriminalisticheskiechteniyanaBajkale - 2015: materialyMezhdu-narodnojnauchno - prakticheskojkonferencii. FGBOUVO «Rossijskijgosudar-stvennyj universitet pravosudiya». - 2015. - S. 150-154.
3. Kolycheva A.N. Sledstvennyeoshibki v stadiipredvaritelnogoras-sledovaniya [Investigative errors in the preliminary investigation stage]. Nauchnyjvestnik Or - lovskogoyuridicheskogo in-stituta MVD Rossiiimeni V.V. Lukyanova - Scientific Bulletin of the Orel Law Institute of the Ministry of Internal Affairs of Russia named after V.V. Lukyanov, 2021, no 2 (87), pp.124-129 (in Russian).
4. Morozova N.V. Kriminalisticheskiemetodikirassledovaniyaprestup-lenij. Os - novaniyaiprintsipyformirovaniya [Criminalistic methods of crime investigation. Grounds and principles of formation]. Zakonipravo - Law and law, 2020, no 8, pp.150151 (in Russian).
5. Morozova N.V. Obshheteoreticheskieaspektyprovedeniyaosmotramestaproisshestviyaprirassledovaniiprestuplenij [General theoretical aspects of the inspection of the scene during the investigation of crimes]. NauchnyjvestnikOrlovskogoyuridicheskogoinstituta MVD Rossiiimeni V.V. Lukyanova - Scientific Bulletin of the Orel Law Institute of the Ministry of Internal Affairs of Russia named after V.V. Lukyanov, 2021, no 4 (89), pp. 48-52 (in Russian).
6. Kolycheva A.N. Otdelnyeaspektysudebnojkompyuternojekspertizy, naznachaemojprirassledovaniiprestuplenij, sovershennyh s ispolzovaniemseti internet [Certain aspects of forensic computer expertise assigned in the investigation of crimes committed using the Internet]. Rassledovanieprestuplenij: problemyiputiihresheniya - Crime investigation: problems and solutions, 2019, no 3 (25), pp. 119-122 (in Russian).
7. Suchkov A.I. AktualnostispolzovaniyaspetsializirovannogoBlankaprotokolaosmotramestadorozhno-transportnogoproisshestviya [The relevance of using a specialized form of the protocol of inspection of the place of a traffic accident]. NauchnyjvestnikOrlovskogoyuridicheskogoinstituta MVD Rossiiimeni V.V. Lukyanova - Scientific Bulletin of the Orel Law Institute of the Ministry of Internal Affairs of Russia named after V.V. Lukyanov, 2021, no 3 (88). pp. 86-96 (in Russian).
8. Sretentsev A.N. Vozmozhnostiiperspektivyvnedreniyasistemavtoma - ticheskogoraspoznavaniyalitsacheloveka v protsessraskrytiyairassledovaniyaprestuplenij [Opportunities and prospects for the introduction of automatic facial recognition systems in the process of detection and investigation of crimes]. Rossijskijsledovatel - Russian investigator, 2021, no 1, pp. 17-20 (in Russian).
9. Sretentsev A.N. Perspektivyvnedreniyaperedovyhpriemovisredstvfiksatsii v deyatelnostpoosmotrumestaproisshestviya [Prospects for the introduction of advanced techniques and means of fixation in the activities of the inspection of the scene]. NauchnyjvestnikOrlovskogoyuridicheskogoinstituta MVD Rossiiimeni V.V. Lukyanova - Scientific Bulletin of the Orel Law Institute of the Ministry of Internal Affairs of Russia named after V.V. Lukyanov, 2019, no. 3 (80), pp.107-111 (in Russian).
10. Harlamova N.D. Takticheskieaspektyprimeneniyapriemovpsihologi - cheskogovozdejstviyapriproizvodstvedoprosaiochnojstavki [Tactical aspects of the use of psychological influence techniques during interrogation and confrontation]. NauchnyjvestnikOrlovskogoyuridicheskogoinstituta MVD Ros-siiimeni V.V. Lukyanova - Scientific Bulletin of the Orel Law Institute of the Ministry of Internal Affairs of Russia named after V.V. Lukyanov, 2019, no.2 (79), pp. 92-95 (in Russian).
11. Badikov D.A. Nekotoryeaspektypodgotovkiillyustratsionnoj tab-litsy k protokoluosmotramestaproisshestviya [Some aspects of the preparation of the illustrative table for the protocol of inspection of the scene]. Zakonipravo - Law and law, 2022, no 3, pp. 131-133 in Russian).
Размещено на Allbest.ru
...Подобные документы
Хранение и использование персональных данных правоохранительными органами и органами национальной безопасности. Получение данных с использованием методов скрытого наблюдения. Надзор за законностью проведения негласных оперативно-розыскных мероприятий.
контрольная работа [43,5 K], добавлен 07.10.2016Получение информации о преступлении. Выработанные практикой и широко применяемые правоохранительными органами предварительные расследования. Запросы прокурора, следователя, органа дознания и дознавателя. Результаты оперативно-розыскных мероприятий.
реферат [19,9 K], добавлен 18.08.2011Роль оперативно-розыскных мероприятий в выполнении задач оперативно-розыскной деятельности. Опрос, наведение справок, сбор образцов для сравнительного исследования. Исследование предметов и документов. Отождествление личности, оперативный эксперимент.
контрольная работа [43,9 K], добавлен 30.01.2010Задачи и виды органов предварительного расследования, этапы их развития. Компетенция оперативно-розыскных органов. Задачи, организация, взаимоотношения с правоохранительными органами Национального центральногое бюро Интерпола в Республике Беларусь.
реферат [39,1 K], добавлен 11.03.2011Сущность и назначение биометрических технологий, эволюция их развития за последние десятилетия. Принципы действия биометрических методов распознавания, понятие биометрических характеристик человека. Особенности идентификации человека по отпечатку пальца.
статья [12,6 K], добавлен 13.11.2009Реализация Президентом Российской Федерации конституционных полномочий гаранта прав и свобод человека. Взаимодействие главы государства с Правительством, федеральными судами, прокуратурой, правоохранительными органами, общественными объединениями.
презентация [216,2 K], добавлен 03.04.2014Понятие, основания и условия проведения оперативно-розыскных мероприятий. Цель, принципы, средства и методы получения информации о скрытых преступлениях, розыске лиц. Классификация ОРМ. Правовое регулирование проведения разведывательно-поисковых действий.
реферат [22,4 K], добавлен 25.04.2016Основания проведения оперативно-розыскных мероприятий. Условия, содержащие исключения из правил проведения оперативно-розыскных мероприятий. Прослушивание телефонных переговоров на проводных линиях связи. Пути снятия информации с технических каналов.
дипломная работа [76,2 K], добавлен 10.05.2011Перечень обстоятельств, подлежащих установлению в ходе расследования преступления. Общие и частные версии по делу, их обоснование. План следственных действий и оперативно–розыскных мероприятий. Постановления о назначении необходимых экспертиз по делу.
контрольная работа [42,1 K], добавлен 28.04.2013Основания проведения оперативно-розыскной деятельности. Сбор данных, необходимых для принятия решения. Условия применения оперативно-розыскных мероприятий, ограничивающих конституционные права граждан, санкционирование данных мероприятий органами ОРД.
контрольная работа [19,2 K], добавлен 26.03.2010Понятие и условия проведения оперативно-розыскных мероприятий, сбор образцов для сравнительного анализа, контроль почтовых отправлений, снятие информации с технических каналов связи, юридические основания для проведения оперативно-розыскных мероприятий.
дипломная работа [96,1 K], добавлен 22.08.2012Рассмотрение конституционной основы рекламной деятельности, особенностей ее использования правоохранительными органами (с целью задержания преступников, решения кадровых и финансовых задач) и определение меры наказания за ненадлежащую пропаганду.
курс лекций [887,3 K], добавлен 07.03.2010Применение законодательства субъектами гражданского права и правоохранительными органами. Исследование и установление юридического факта. Оформление и совершение сделок между элементами правоотношений, формирование правильных общественных отношений.
курсовая работа [32,9 K], добавлен 24.06.2014Правовой метод в оперативно-розыскной деятельности по изучению личности преступника. Психологические типы, черты личности преступника. Психологические особенности проведения оперативно-розыскных мероприятий. Приемы воздействия на личность преступника.
дипломная работа [69,3 K], добавлен 21.09.2013Особенности правоприменения аудио- и видеозаписи при проведении оперативно-розыскных мероприятий. Методика их применения при допросе, очной ставке и проверки показаний на месте происшествия. Предмет и система криминалистической (судебной) фотографии.
дипломная работа [130,1 K], добавлен 26.01.2015Уполномоченный Российской Федерации по правам человека (омбудсмен) как самый молодой институт в системе государственных органов современного государства. Оценка взаимодействия омбудсмена с правоохранительными органами и общественными организациями.
курсовая работа [37,6 K], добавлен 20.12.2015Отличие предъявления для опознания от других следственных и розыскных мероприятий. Участники, объекты, тактика проведения и фиксация результатов отдельных видов представления свидетелю, потерпевшему, подозреваемому, обвиняемому предмета для идентификации.
дипломная работа [168,0 K], добавлен 30.04.2011Система разработанных приёмов идентификации личности, разработанная начальником Бюро судебной идентификации Парижской префектуры Альфонсом Бертильоном. Особенности антропометрии, словесного портрета, сигналетической фотографии и описания особых примет.
презентация [1,2 M], добавлен 01.11.2012Понятие информационно-аналитической деятельности. Задачи и функции информационно-аналитической деятельности в системе представительных органов местного самоуправления. Анализ опыта аналитического обеспечения собрания депутатов Озерского городского округа.
дипломная работа [131,5 K], добавлен 11.07.2012Оперативно-розыскная деятельность: сущность, задачи. Розыскная деятельность как вспомогательная по отношению к уголовно-процессуальной. Фактические основания и поводы проведения розыскных мероприятий. Характер взаимодействия следователя с органами.
курсовая работа [25,3 K], добавлен 16.12.2012