Классификация помещений по электроопасности
Электрический ток как негативный фактор, особенности его действия на живую ткань. Классификация помещений с точки зрения опасности поражения электрическим током. Основные пути для нормализации параметров микроклимата в производственных помещениях.
Рубрика | Безопасность жизнедеятельности и охрана труда |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 01.03.2013 |
Размер файла | 23,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Электрический ток как негативный фактор
Действие электрического тока на живую ткань носит разносторонний характер. Проходя через тело человека эл. ток производит термическое, электролитическое, механическое и биологическое действие.Термическое действие проявляется ожогами отдельных участков тела, нагревом до высокой температуры органов, расположенных на пути тока.
Электролитическое действие выражается в нарушении физико-химического состава и свойств различных жидкостей организма (крови, лимфы)
(Электролитическое действие тока выражается в разложении различных жидкостей организма (крови, лимфы) на ионы и нарушение их физико-химического состава и свойств)
Механическое действие тока приводит к разрыву тканей организма в результате электродинамического эффекта. Биологическое действие проявляется судорожным сокращением мышц, а также нарушением внутренних биологических процессов.
От поражения эл. током человек получает электротравмы, которые делятся на местные и общие. Общие нарушения от электрического удара- судороги, остановка дыхания, сердечной деятельности. К местным травмам относят ожоги, металлизация кожи (проникновение в нее различных частиц металла при его расплавлении), механические повреждения, электрические знаки (уплотненные участки серого или бледно-желтого цвета, безболезненны и быстро проходят).
Исход поражения человека электротоком зависит от многих факторов:
Силы тока, времени прохождения его через организм и др.
Ток, проходящий через тело человека зависит от напряжения прикосновения под которым оказался пострадавший и суммарного электрического сопротивления, в которое входит сопротивление тела человека.
(Ток, проходящий через тело человека равен: I = Uпр/Rч , где Uпр - напряжение прикосновения; Rч - сопротивление тела человека. Снизить ток можно либо за счет снижения напряжения прикосновения, либо за счет увеличения сопротивления тела человека, например при применении СИЗ).
На сопротивление организма воздействию электротока оказывает влияние физическое и психическое состояние человека: нездоровье, утомление, голод, опьянение, эмоциональное возбуждение приводит к снижению сопротивления.
Неблагоприятный климат (повышенная температура и влажность) увеличивают опасность поражения током, т.к. влага (пот) понижает сопротивление кожных покровов.
Допустимым считается ток, при котором человек может самостоятельно освободиться от электрической цепи.
Переменный ток более опасен, чем постоянный, но при высоком напряжении (б. 500 Вт) опаснее становится постоянный ток.
Способы и средства защиты от поражения электрическим током
Для защиты от поражения электрическим током применяются следующие технические меры защиты:
- малые напряжения (это напряжения не более 42 В; на производстве применяют напряжения 12 и 36 В; шахтерские лампы - 2,5 В)
- контроль и профилактика повреждения изоляции (при вводе новых и вышедших после ремонта электроустановок -контроль изоляции)
- защита от случайного прикосновения к токоведущим частям.
Надо обеспечить их недоступность -ограждение или расположение на высоте токоведущих частей
- защитное заземление (это преднамеренное электрическое соединение с землей металлических нетоковедущих частей электроустановок, которые могут оказаться под напряжением)
- зануление
- защитное отключение (автоматическое отключение электроустановки при возникновении опасности поражения человека током.При выходе контролируемого параметра за допустимые пределы подается сигнал на защитно-отключающее устройство, которое обесточивает установку или электросеть)
- СИЗ. К ним относятся диэлектрические перчатки, галоши, боты, коврики, изолирующие подставки; изолирующие электроизмерительные клещи, слесарно-монтажный инструмент с изолированными рукоятками; указатели напряжения.
Классификация помещений по электроопасности
Степень безопасности обслуживания электрических установок во многом зависит от условий эксплуатации и характера среды помещений, в которых электрооборудование установлено.
Влага, пыль, едкие пары, газы, высокая температура разрушительно действуют на изоляцию электроустановок, тем самым в значительно)! степени ухудшают условия безопасности.
В соответствии с правилами устройства электротехнических установок, все помещения, содержащие электроустановки, классифицируются с точки зрения опасности поражения электрическим током на следующие три категории.
1. Помещения без повышенной опасности: сухие, не жаркие, с ток непроводящим полом, без токопроводящей пыли, а также помещения с небольшим количеством металлических предметов, конструкций, машин и т. п. или с коэффициентом заполнения площади k <; 0,2 (т. е. отношением площади, занятой металлическими предметами, к площади всего помещения).
2. Помещения с повышенной опасностью: сырые, в которых при нормальных условиях влажность временно может повышаться до насыщения, как, например, при резких изменениях температуры или при выделении большого количества пара; сухие, но неотапливаемые, чердачные помещения, неотапливаемые лестничные клетки и помещения отапливаемые, по с кратковременным присутствием влаги; помещения с токопроводящей пылью (угольные мельницы, волочильные цехи и другие им подобные); жаркие, т. е. помещения с температурой свыше 30° С; помещения с токопроводящими полами (земляные, бетонные, деревянные в сыром состоянии).
3. Помещения особо опасные: особо сырые помещения; помещения с едкими парами, газами и охлаждающими жидкостями, разрушительно действующими на обычно употребляемые в электрических установках материалы и снижающими сопротивление человеческого тела; помещения, в которых имеются два или несколько признаков опасности (например, жаркое помещение и проводящий пол или сырое помещение с коэффициентом заполнения более 0,2 и т. д.).
С целью избежания произвольного толкования определений, вошедших в классификацию помещений, согласно правилам устройства электротехнических установок, сухими считаются помещения с относительной влажностью не выше 75% и температурой не ниже +5° С, т. е. те, в которых пол, стены и все пред меты нормально находятся в сухом состоянии; сырыми считаются помещения с относительной влажностью, которая постоянно превышает 75% или может временно повышаться до 100%, так как в этих помещениях может возникать значительная влажность при резком изменении температуры или при выделении большого количества пара.
Особо сырыми считаются помещения, в которых воздух постоянно насыщен водяными парами, т. е. относительная влажность достигает 100% и в результате пол, потолок и все предметы постоянно покрыты влагой.
Помещениями с едкими парами или газами считаются те, в которых при производственном процессе выделяются пары или газы, разрушительно действующие на изолирующие материалы, обычно применяемые в электроустановках. Вследствие этого необходимо принимать особые меры для защиты изоляции электрооборудования. Кроме разрушительного действия на изоляцию электрооборудования, эти пары и газы могут также значительно снизить сопротивление человеческого тела.
Жаркие помещения характеризуются высокой темпера турой, вызывающей высыхание и разрушение изоляции, а также обильную транспирацию, повышающую опасность поражения током у лиц, находящихся в таких помещениях. Различают помещения жаркие -- с температурой выше 30° С и особо жаркие -- с температурой выше 35° С.
Пожароопасными помещениями считаются те, в которых обрабатываются или хранятся легко воспламеняющиеся предметы или по условиям производства могут образоваться легко воспламеняющиеся газы, пары, пыль и волокна.
Взрывоопасными являются помещения, в которых изготовляют, обрабатывают или хранят взрывчатые вещества или могут образоваться взрывчатые газы, пары, либо взрывчатая смесь их с воздухом.
Применение более совершенной технологии производства, хорошей вентиляции и герметизации дает возможность значительно снизить степень опасности большинства производственных помещений.
Особое значение для электробезопасности имеет токопроводимость пола. Сухие торцовые (без гвоздей) или паркетные полы обладают довольно большим сопротивлением и хорошо изолируют человека от земли. Наоборот, кирпичные, плиточные, бетонные или земляные полы, сопротивление которых резко уменьшается при увлажнении, являются плохой изоляцией.
Полы с высоким сопротивлением могут служить весьма эффективной мерой защиты. В цехах с хорошими торцовыми, паркетными или другими полами, имеющими большое сопротивление, однофазное прикосновение может оказаться менее опасным при поврежденной изоляции.
Как показывает анализ электротравм, на предприятиях с полами, имеющими высокое электрическое сопротивление, возможность электропоражений при эксплуатации электрооборудования значительно уменьшается. Однако, при прикосновении к двум фазам одновременно изолирующие свойства пола не имеют значения и поражение током неизбежно.
Основные пути нормализации параметров микроклимата
Состояние здоровья человека, его работоспособность в значительной степени зависят от микроклимата на рабочем месте. Не имея возможности эффективно влиять на протекающие в атмосфере климатообразующие процессы, люди располагают качественными системами управления факторами воздушной среды внутри производственных помещений. Микроклимат производственных помещений -- это климат внутренней среды данных помещений, который определяется совместно действующими на организм человека температурой, относительной влажностью и скоростью движения воздуха, а также температурой окружающих поверхностей (ГОСТ 12.1.005 "Общие санитарно-гигиенические требования к воздуху рабочей зоны"). Требования этого государственного стандарта установлены для рабочих зон -- пространств высотой до 2 м над уровнем пола или площадки, на которых находятся места постоянного и временного пребывания работающих. Постоянным считают рабочее место, на котором человек находится более 50 % рабочего времени (или более 2 ч непрерывно). Если при этом работа осуществляется в различных пунктах рабочей зоны, постоянным рабочим местом считается вся рабочая зона.
Производственный микроклимат и его влияние на организм человека
Микроклимат - климат внутренней среды помещений, который определяется действующими на организм человека сочетаниями температуры, влажности и скорости движения воздуха, а также температурой окружающих поверхностей.
Оптимальная температура для работы находится в диапазоне 15-25 градусов, оптимальная влажность - в интервале 40-60%. Высокая влажность резко ухудшает устойчивость организма к температуре (даже при самой оптимальной температуре в 21 градус влажность 90% вызывает ощущение сильной усталости). Связано это с тем, что высокая влажность нарушает теплообмен человека: в жаркую пору она не дает испаряться воде через кожу, в холодную - когда вода оседает на коже - способствует оттягиванию тепла.
Движение воздуха чувствуется, начиная со скорости 0.1 м/с. Допустимый диапазон для движения воздуха - 0.1-0.4 м/с.
Конкретные параметры производственного климата устанавливаются с учетом категорий тяжести труда. Условия, в которых трудится человек, влияют на результаты производства - производительность труда, качество и себестоимость выпускаемой продукции. Производительность труда повышается за счет сохранения здоровья человека, повышения уровня использования рабочего времени, продления периода активной трудовой деятельности человека.
Улучшение условий труда и его безопасности приводит к снижению производственного травматизма, профессиональных заболеваний, что сохраняет здоровье трудящихся и одновременно приводит к уменьшению затрат на оплату льгот и компенсаций за работу в неблагоприятных условиях труда, на оплату последствий такой работы (временной и постоянной нетрудоспособности), на лечение, переподготовку работников производства в связи с текучестью кадров по причинам, связанным с условиями труда.
Одним из необходимых условий здорового и высокопроизводительного труда является обеспечение чистоты воздуха и нормальных метеорологических условий в рабочей зоне помещений, т. е. пространстве высотой до 2 метров над уровнем пола или площадки, где находятся рабочие места.
Комфортными условиями считаются:
Температура воздуха на рабочем месте, С:
В помещении в теплый период 18-22
В помещении в холодный период 20-22
На открытом воздухе в теплый период 18-22
На открытом воздухе в холодный период 7-10
Относительная влажность воздуха, % 40-54
Скорость движения воздуха, м/с: менее 0,2
Токсичные вещества (кратность превышения ПДК) менее 0,8
Промышленная пыль (кратность превышения ПКД) менее 0,8
Требуемое состояние воздуха рабочей зоны может быть обеспечено выполнением определенных мероприятий, к основным из которых относятся:
Механизация и автоматизация производственных процессов, дистанционное управление ими.
Применение технологических процессов и оборудования, исключающих образование вредных веществ или попадания их в рабочую зону.
Защита от источников тепловых излучений.
Устройство вентиляции, кондиционирования, отопления.
Основные параметры микроклимата
В процессе труда в производственном помещении человек находится под влиянием определённых условий, или микроклимата ? климата внутренней среды этих помещений. К основным нормируемых показателям микроклимата воздуха рабочей зоны относятся температура, относительная влажность, скорость движения воздуха. Существенное влияние на параметры микроклимата и состояние человеческого организма оказывает также интенсивность теплового излучения различных нагретых поверхностей, температура которых превышает температуру в производственном помещении.
Относительная влажность воздуха представляет собой отношение фактического количества паров воды в воздухе при данной температуре к количеству водяного пара, насыщающего воздух при этой температуре.
Если в производственном помещении находятся различные источники тепла, температура которых превышает температуру человеческого тела, то тепло от них самопроизвольно переходит к менее нагретому телу, т.е. человеку. Различают три способа распространения тепла: теплопроводность, конвекцию и тепловое излучение.
Теплопроводность представляет собой перенос тепла вследствие беспорядочного (теплового) движения микрочастиц (атомов, молекул), непосредственно соприкасающихся друг с другом. Конвекцией называется перенос тепла вследствие движения и перемешивания макроскопических объёмов газа или жидкости. Тепловое излучение ? это процесс распространения электромагнитных колебаний с различной длиной волны, обусловленный тепловым движением атомов или молекул излучающего тела.
В реальных условиях тепло передаётся не каким-либо одним из указанных выше способов выше способов, а комбинированным.
Тепло, поступающее в производственное помещение от различных источников, влияет на температуру воздуха в нём. Количество тепла, переданного окружающему воздуху конвекцией (Qк, Вт), при непрерывном процессе теплоотдачи может быть рассчитано по закону теплоотдачи Ньютона.
Человек в процессе труда постоянно находится в состоянии теплового взаимодействия с окружающей средой. Для нормального протекания физиологических процессов в организме человека требуется поддержание практически постоянной температуры (36,6 оС). Способность человеческого организма к поддержанию постоянной температуры носит название терморегуляции. Терморегуляция достигается отводом выделяемого организмом тепла в процессе жизнедеятельности в окружающее пространство.
Теплоотдача от организма в окружающую среду происходит в результате: теплопроводности через одежду (Qт); конвекции тела (Qк); излучения на окружающие поверхности (Qи), испарения влаги с поверхности кожи (Qисп); нагрева выдыхаемого воздуха (Qв), т.е.:
Qобщ = Qт + Qк + Qи + Qисп + Qв
Это уравнение носит название уравнения теплового баланса. Вклад перечисленных выше путей передачи тепла непостоянен и зависит параметров микроклимата в производственном помещении, а также от температуры окружающих человека поверхностей (стен, потолка, оборудования). Если температура этих поверхностей ниже температуры человеческого тела, то теплообмен излучением идёт от организма человека к холодным поверхностям. В противном случае теплообмен осуществляется в обратном направлении: от нагретых поверхностей к человеку. Теплоотдача конвекцией зависит от температуры воздуха в помещении и скорости его движения испарения от относительной влажности и скорости движения воздуха. Основную долю в процессе отвода тепла от организма человека (порядка 90% общего количества тепла) вносят излучение, конвекция и испарение.
Нормальное тепловое самочувствие человека при выполнении им работы любой категории тяжести достигается при соблюдении теплового баланса. Рассмотрим, как влияют основные параметры микроклимата на теплоотдачу от организма человека в окружающую среду.
Влияние температуры окружающего воздуха на человеческий организм связано в первую очередь с сужением или расширением кровеносных сосудов кожи. Под действием низких температур воздуха кровеносных сосуды кожи сужаются, в результате чего замедляется поток крови к поверхности тела и снижается теплоотдача от поверхности тела за счёт конвекции и излучения. При высоких температурах окружающего воздуха наблюдается обратная картина: за счёт расширения кровеносных сосудов кожи и увеличения притока крови существенно увеличивается теплоотдача.
В нормативных документах введены понятия оптимальных и допустимых параметров микроклимата.
Оптимальными микроклиматическими условиями являются такие сочетания количественных параметров микроклимата, которые при длительном и систематическом воздействии на человека обеспечивают сохранение нормального функционального и теплового состояния организма без напряжения механизмов терморегуляции.
Допустимые условия обеспечивают таким сочетанием количественных параметров микроклимата, которое при длительном и систематическом воздействии на человека может вызвать преходящие и быстро нормализующиеся изменения функционального и теплового состояния организма, сопровождающиеся напряжением механизмов терморегуляции, не выходящим за пределы физиологических приспособленных возможностей.
В ГОСТ 12.1.005-88 “Воздух рабочей зоны. Общие санитарно-гигиенические требования” представлены оптимальные и допустимые параметры микроклимата в производственном помещении в зависимости от тяжести выполняемых работ, количества избыточного тепла в помещении и сезона (времени года).
В соответствии с этим ГОСТом различают холодный и переходный периоды года (со среднесуточной температурой наружного воздуха ниже +10 оС), а также теплый период года (с температурой +10 оС и выше). Все категории выполняемых работ подразделяются на: легкие (энергозатраты до 172 Вт), средней тяжести (энергозатраты до 172-293 Вт) и тяжёлые (энергозатраты более 293 Вт). По количеству избыточного тепла производственные помещения делятся на помещения с незначительными избытками явной теплоты (Qя.т. - 23,2 Дж/м3*с) и помещения со значительным избытками явной теплоты (Qя.т. > 23,2 Дж/м3*с). Производственные помещения с незначительными избытками явной теплоты относятся к “холодным цехам”, а со значительными ? к “горячим”.
Для поддержания нормальных параметров микроклимата в рабочей зоне применяют: механизацию и автоматизацию технологических процессов, защиту от источников теплового излучения, устройство систем вентиляции, кондиционирования воздуха и отопления. Важное место имеет и правильная организация труда и отдыха работников, выполняющих трудоёмкие работы в горячих цехах.
Механизация и автоматизация производственного процесса позволяет резко снизить трудовую нагрузку на работающих (массу поднимаемого и перемещаемого вручную груза, расстояние перемещения груза, уменьшить переходы, обусловленные технологическим процессом), вовсе убрать человека из производственной среды, переложив его трудовые функции на автоматизированные машины и оборудование. Для защиты от теплового излучения используют различные теплоизолирующие материалы, устраивают теплозащитные экраны и специальные системы вентиляции (воздушноедуширование). Теплозащитные средства должны обеспечивать тепловую облучённость на рабочих местах не более 350 Вт/м2 и температуру поверхности оборудования не выше 35 оСпри температуре внутри источника тепла до 100 оС и не выше 45 оС ? при температуре внутри источника тепла выше 100 оС.
Основной показатель, характеризующий эффективность теплоизоляционных материалов, низкий коэффициент теплопроводности, который составляет для большинства из них 0,025-0,2 Вт/м*К.
Для теплоизоляции используют различные материалы, например, асбестовую ткань и картон, специальные бетон и кирпич, минеральную и шлаковую вату, стеклоткань и др. В качестве теплоизоляционных материалов для трубопроводов пара и горячей воды, а также для трубопроводов холодоснабжения, используемых в промышленных холодильниках, могут быть использованы материалы минеральной ваты.
Теплозащитные экраны используют для локализации источников теплового излучения, снижения облученности на рабочих местах, а также для снижения температуры поверхностей.
Для количественной характеристики защитного действия экрана используют следующие показатели: кратность ослабления теплового потока (m); эффективность действия экрана (зэ). Эти характеристики выражаются следующими зависимостями: где Е1 и Е2, интенсивность теплового облучения на рабочем месте соответственно до и после установки экранов, Вт/м2.
Различают теплоотражающие, теплопоглощающие и теплоотводящие экраны. Теплоотражающие экраны изготавливаются из алюминия или стали, а также фольги или сетки на их основе. Теплопоглощающие экраны представляют собой конструкции из огнеупорного кирпича, асбестового картона или стекла. Теплоотводящие экраны ? это полые конструкции, охлаждаемые изнутри водой.
Своеобразным теплоотводящим прозрачным экраном служит так называемая водяная завеса, которую устраивают у технологических отверстий промышленных печей и через которую вводят внутрь печей инструменты, обрабатываемые материалы, заготовки и др.
Средства нормализации параметров микроклимата
Создание оптимальных метеорологических условий в производственных помещениях является сложной задачей, решить которую можно за счет применения следующих мероприятий и средств:
Усовершенствование технологических процессов и оборудования. Внедрение новых технологий и оборудования, не связанных с необходимостью проведения работ в условиях интенсивного нагрева даст возможность уменьшить выделение тепла в производственные помещения.
Рациональное размещение технологического оборудования. Основные источники тепла желательно размещать непосредственно под аэрационным фонарем, около внешних стен здания и в один ряд на таком расстоянии друг от друга, чтобы тепловые потоки от них не перекрещивались на рабочих местах.
Автоматизация и дистанционное управление технологическими процессами позволяют во многих случаях вывести человека из производственных зон, где действуют неблагоприятные факторы.
Рациональная вентиляция, отопление и кондиционирование воздуха. Они являются наиболее распространенными способами нормализации микроклимата в производственных помещениях. Создание воздушных и водовоздушных душей широко используется в борьбе с перегревом рабочих в горячих цехах.
Рационализация режимов труда и отдыха достигается сокращением длительности рабочего времени за счет дополнительных перерывов, созданием условий для эффективного отдыха в помещениях с нормальными метеорологическими условиями.
Применение, теплоизоляции оборудования и защитных экранов. В качестве теплоизоляционных материалов широко используют: асбест, асбоцемент, минеральную вату, стеклоткань, керамзит, пенопласт.
Использование средств индивидуальной защиты. Важное значение для профилактики перегрева организма имеют индивидуальные средства защиты.
электрический ток опасность помещение
Список литературы
1. Безопасность жизнедеятельности / Под ред. Л.А. Муравья. - 2-е изд. перераб. и доп. - М.: ЮНИТИ-ДАНА, 2003. - 431 с.
2. Белов С.В. Безопасность жизнедеятельности: учебник для вузов, С.В. Белов, А.В. Ильницкая, А.Ф. Козьяков. - 4-е изд. испр. и доп. М.: Высшая школа, 2004. - 606 с.
3. Кукин Н.П., Лапин В.Л., Пономарёв Н.Л.. Безопасность жизнедеятельности: учебное пособие для вузов - 2-е изд. испр. и доп. М.: Высшая школа, 2001. - 319 с.
4. Зотов Б. И. Безопасность жизнедеятельности на производстве: учебник для студентов вузов, В.И. Курдюмов. - 2-издание, переработанное и дополненное., 2003. - 197 с.
Размещено на Allbest.ru
...Подобные документы
Виды поражения электрическим током. Основные факторы, влияющие на исход поражения током. Основные меры защиты от поражения. Классификация помещений по опасности поражения током. Защитное заземление. Зануление. Защитные средства. Первая помощь человеку.
доклад [8,7 K], добавлен 09.04.2005Индивидуальные средства защиты органов слуха от вибрации и шума. Классификация помещений по характеру окружающей среды и опасности поражения электрическим током. Правила безопасности обслуживания электрических установок в производственных помещениях.
реферат [380,3 K], добавлен 05.05.2015Виды поражений электрическим током, электрическое сопротивление тела человека, основные факторы, влияющие на исход поражения током. Виды защиты от опасности поражения электрическим током и принцип их действия, мероприятия по электробезопасности.
контрольная работа [37,6 K], добавлен 01.09.2009Виды инструктажа персонала. Тепловые излучения, их воздействие на человека. Меры защиты от тепловых излучений. Классификация шумов. Классификация производственных помещений по опасности поражения электрическим током. Условия возникновения горения.
контрольная работа [28,9 K], добавлен 31.08.2012Понятие микроклимата рабочего места производственных помещений, его влияние на работоспособность и здоровье рабочих. Методика гигиенического нормирования показателей микроклимата рабочих мест производственных помещений по степени опасности и вредности.
лабораторная работа [563,9 K], добавлен 25.05.2009Изучение особенностей и видов поражения электрическим током, действия на человеческий организм. Организационные мероприятия, обеспечивающие безопасность работ в электроустановках. Помещения, разделяющиеся по опасности напряжения электрическим током.
доклад [58,2 K], добавлен 27.12.2010Основные причины электротравм. Факторы, определяющие степень воздействия электрического тока на человека. Условия поражения электрическим током. Опасность при замыкании тоководов на землю. Классификация условий работ по степени электроопасности.
учебное пособие [3,6 M], добавлен 01.05.2010Трёхфазные сети и их основные характеристики. Методика оценки вероятности и особенности поражения током. Экспериментальный анализ опасности поражения человека электрическим током в трехфазных сетях с рабочими напряжениями до 1000 В в различных ситуациях.
реферат [396,1 K], добавлен 31.10.2011Сущность и значение электробезопасности, законодательные требования к ее обеспечению. Особенности действия электрического тока на организм человека. Анализ факторов, влияющих на исход поражения электрическим током. Способы защиты от этого вида поражения.
контрольная работа [34,7 K], добавлен 21.12.2010Понятие микроклимата, нормирование значения его показателей. Определение микроклимата современными приборами, их устройство. Принципы нормирования микроклимата в производственных помещениях, алгоритм определения его параметров на рабочих местах.
лабораторная работа [18,4 K], добавлен 10.03.2012Планировка производственных и вспомогательных помещений с размещением оборудования. Идентификация опасных и вредных производственных факторов. Защита человека от механического травмирования и поражения электрическим током. Расчет защитного заземления.
курсовая работа [73,2 K], добавлен 23.01.2014Нормирование метеорологических условий в производственных помещениях. Контроль микроклимата на рабочих местах. Мероприятия по нормализации состояния воздушной среды и защите организма работающих от действия неблагоприятных факторов производства.
курсовая работа [1,6 M], добавлен 07.01.2011Знакомство с особенностями действия электрического тока на организм человека. Общая характеристика факторов определяющих исход поражения электрическим током: психологическая готовность к удару, продолжительность воздействия тока, сопротивление тела.
реферат [144,0 K], добавлен 26.06.2013Параметры микроклимата и их измерение. Терморегуляция организма человека. Влияние параметров микроклимата на самочувствие человека. Гигиеническое нормирование параметров микроклимата. Обеспечение в помещениях нормальных метеорологических условий.
контрольная работа [24,9 K], добавлен 23.06.2013Характеристика, источники вредных и опасных факторов. Классификация электроустановок и помещений по степени опасности поражения электрическим током. Хранение, применение удобрений и ядохимикатов. Организация контроля за охраной труда на предприятии.
контрольная работа [18,7 K], добавлен 17.04.2009Опасность поражения человека электрическим током. Влияние электрического тока на организм человека, основных параметров электротока на степень поражения человека. Условия поражения электрическим током. Опасность при замыкании тоководов на землю.
реферат [1,0 M], добавлен 24.03.2009Виды поражения электрическим током. Задачи и функции защитного заземления и зануления. Первая помощь человеку, пораженному электрическим током, виды защитных средств. Воздействие на организм человека вредных веществ, содержащихся в воздухе рабочей зоны.
контрольная работа [30,8 K], добавлен 28.02.2011Величина тока и его действие на организм, электрическое сопротивление тела человека. Степени электрических ударов, их характеристика. Причины смерти от электрического тока. Правила электробезопасности и методы защиты от поражения электрическим током.
реферат [19,8 K], добавлен 16.09.2012Вентиляционные системы, используемые в производственных корпусах, вентиляция с помощью дефлекторов. Расчет механической вентиляции. Освещение в производственных зданиях, расчет искусственного освещения. Факторы поражения электрическим током человека.
курс лекций [212,4 K], добавлен 07.08.2009Действие электрического тока на организм человека. Факторы, определяющие исход поражения электрическим током. Влияния частоты на организм человека. Продолжительность действия тока. Схема, принцип действия и область применения защитного зануления.
контрольная работа [463,7 K], добавлен 14.04.2016