Радиационная гигиена
Уровни земной радиации. Образование радиоактивных отходов, проблема с их обращением и утилизацией. Обеспечения безопасности хранилищ. Единицы измерения радиоактивности и доз облучений. Биологическое действие ионизирующих излучений и способы защиты от них.
Рубрика | Безопасность жизнедеятельности и охрана труда |
Вид | реферат |
Язык | русский |
Дата добавления | 11.04.2013 |
Размер файла | 34,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Содержание
Введение
1. Радиоактивное загрязнение
2. Образование радиоактивных отходов, и проблема с их обращением и утилизацией
3. Обеспечения безопасности хранилищ РАО
4. Единицы измерения радиоактивности и доз облучений
5. Биологическое действие ионизирующих излучений и способы защиты от них
Заключение
Библиография
Введение
Радиационная гигиена это отрасль гигиены, изучающая влияние, ионизирующей радиации на здоровье человека и разрабатывающая меры радиационной защиты.
Как научная дисциплина возникла в СССР и США примерно в одно и то же время, после массовых испытаний (США) ядерного оружия в районе атолла Бикини на Тихом океане (1946). В СССР в 1946 в институте гигиены труда и профессиональных заболеваний под руководством А.А. Летавета было создано биофизическое отделение, занимавшееся вопросами радиационной гигиены, а в 1951 в этом отделении -- первая лаборатория радиационной гигиены, в 1957-первая кафедра при Центральном институте усовершенствования врачей под руководством Ф. Г. Кроткова. Радиационная гигиена разрабатывает вопросы дозиметрии помещений, оборудования и территории предприятий или учреждений, располагающих источниками ионизирующей радиации; индивидуального дозиметрического контроля работающих на предприятиях и в учреждениях, использующих радиоизотопы, рентгеновские аппараты и гамма установки промышленного и медицинского назначения: проблемы гигиены труда и радиационной безопасности на предприятиях атомной промышленности и на атомных электростанциях, в горнорудной промышленности, при добыче урана и тория, обработке руд и перевозке рудных концентратов, на предприятиях чёрной и цветной металлургии, машиностроительной и химической промышленности -- во всех случаях применения источников ионизирующих излучений, разрабатывает методы радиационной защиты персонала и больных при использовании всех видов ионизирующей радиации с диагностическими и лечебными целями и противорадиационные мероприятия при радиационных авариях.
Радиационная гигиена изучает процессы радиоактивного загрязнения внешней среды (воздуха, почвы, воды, растительного покрова) за счёт глобальных осадков и локальных выбросов, влияние повышенного радиоактивного фона на здоровье населения и наследственные изменения: накапливает и систематизирует данные для научного обоснования гигиенических нормативов (предельно допустимого содержания радиоактивных веществ в воздухе, воде и пищевых продуктах); разрабатывает методы санитарной экспертизы пищевых продуктов в случае их загрязнения радиоактивными веществами и осуществляет санитарный надзор за удалением радиоактивных отходов. Функции гигиенического контроля за использованием источников ионизирующей радиации и радиоактивных изотопов в народном хозяйстве выполняют радиологические группы санитарно-эпидемиологических станций. Они же осуществляют систематическое наблюдение за всеми изменениями радиационной обстановки на территории России.
В России подготовку специалистов по радиационной гигиене проводят на гигиенических кафедрах медицинских институтов и на кафедрах радиационной гигиены Центрального института усовершенствования врачей (Москва). Научно-исследовательскую разработку вопросов радиационной гигиены осуществляют в институтах биофизики (Москва), медицинской радиологии (Обнинск), в ряде институтов гигиены труда и профессиональных заболеваний, питания, общей гигиены.
За рубежом наиболее известен официальный орган Международной ассоциации биофизиков "Health Physics и др.
1. Радиоактивное загрязнение
Радиоактивное загрязнение представляет особую опасность для человека и среды его обитания. Это связано с тем, что ионизирующая радиация оказывает интенсивное и пагубное постоянное воздействие на живые организмы, а источники этой радиации широко распространены в окружающей среде. Радиоактивность - самопроизвольный распад атомных ядер, приводящий к изменению их атомного номера или массового числа и сопровождающийся альфа-, бета- и гамма-излучениями. Альфа-излучение - поток тяжелых частиц, состоящий из протонов и нейтронов. Он задерживается листом бумаги и не способен проникнуть сквозь кожу человека. Однако он становится чрезвычайно опасным, если попадает внутрь организма. Бета-излучение обладает более высокой проникающей способностью и проходит в ткани человека на 1 - 2 см. Гамма-излучение может задерживаться лишь толстой свинцовой или бетонной плитой.
Уровни земной радиации неодинаковы в разных районах и зависят от концентрации радионуклидов вблизи поверхности. Аномальные радиационные поля природного происхождения образуются при обогащении ураном, торием некоторых типов гранитов, других магматических образований с повышенным коэффициентом эманирования, на месторождениях радиоактивных элементов в различных породах, при современном привносе урана, радия, радона в подземные и поверхностные воды, геологическую среду. Высокой радиоактивностью часто характеризуются угли, фосфориты, горючие сланцы, некоторые глины и пески, в том числе пляжные. Зоны повышенной радиоактивности распределены на территории России неравномерно. Они известны как в европейской части, так и в Зауралье, на Полярном Урале, в Западной Сибири, Прибайкалье, на Дальнем Востоке, Камчатке, Северо-востоке. В большинстве геохимически специализированных на радиоактивные элементы комплексах пород значительная часть урана находится в подвижном состоянии, легко извлекается и попадает в поверхностные, подземные воды, затем в пищевую цепь. Именно природные источники ионизирующего излучения в зонах аномальной радиоактивности вносят основной вклад (до 70 %) в суммарную дозу облучения населения, равную 420 мбэр/год. При этом эти источники могут создавать высокие уровни радиации, влияющие в течение длительного времени на жизнедеятельность человека и вызывающие различные заболевания вплоть до генетических изменений в организме. Если на урановых рудниках ведется санитарно-гигиеническое обследование и принимаются соответствующие меры по охране здоровья сотрудников, то воздействие естественной радиации за счет радионуклидов в горных породах и природных водах изучено крайне слабо.
Среди естественных радионуклидов наибольшее радиационно-генетическое значение имеют радон и его дочерние продукты распада (радий и др.). Их вклад в суммарную дозу облучения на душу населения составляет более 50 %. Радоновая проблема в настоящее время считается приоритетной в развитых странах и ей уделяется повышенное внимание со стороны МКРЗ и МКДАР при ООН. Опасность радона (период полураспада 3,823 суток) заключается в его широком распространении, высокой проникающей способности и миграционной подвижности, распаде с образованием радия и других высокорадиоактивных продуктов. Радон не имеет цвета, запаха и считается "невидимым врагом", угрозой для миллионов жителей Западной Европы, Северной Америки.
В России радоновой проблеме начали уделять внимание лишь в последние годы. Территория нашей страны в отношении радона слабо изучена. Полученная в предыдущие десятилетия информация позволяет утверждать, что и в Российской Федерации радон широко распространен как в приземном слое атмосферы, подпочвенном воздухе, так и в подземных водах, включая источники питьевого водоснабжения.
По данным Санкт-Петербургского научно-исследовательского института радиационной гигиены, наибольшая концентрация радона и его дочерних продуктов распада в воздухе жилых помещений, зафиксированная в нашей стране, соответствует дозе воздействия на легкие человека 3-4 тысячи бэр в год, что превышает ПДК на 2 - 3 порядка. Предполагается, что вследствие слабой изученности радоновой проблемы в России возможно выявление высоких концентраций радона в жилых и производственных помещениях целого ряда регионов.
К ним прежде всего относятся радоновое "пятно", захватывающее Онежское озеро, Ладожское и Финский залив, широкая зона, прослеживающаяся от Среднего Урала в западном направлении, южная часть Западного Приуралья, Полярный Урал, Енисейский кряж, Западное Прибайкалье, Амурская область, северная часть Хабаровского края, Чукотский полуостров.
Особенно актуальна радоновая проблема для мегаполисов и крупных городов, в которых имеются данные о поступлении радона в подземные воды и геологическую среду по активным глубинным разломам (Санкт-Петербург, Москва).
Каждый житель Земли в последние 50 лет подвергся облучению от радиоактивных осадков, вызванных ядерными взрывами в атмосфере в связи с испытаниями ядерного оружия. Максимальное количество этих испытаний имело место в 1954 - 1958 г.г. и в 1961 - 1962 гг.
Существенная часть радионуклидов при этом выбрасывалась в атмосферу, быстро разносилась в ней на большие расстояния и в течение многих месяцев медленно опускалась на поверхность Земли.
При процессах деления атомных ядер образуется более 20 радионуклидов с периодами полураспада от долей секунды до нескольких миллиардов лет.
Второй антропогенный источник ионизирующего облучения населения продукты функционирования объектов атомной энергетики.
Хотя при нормальной работе АЭС выбросы радионуклидов в окружающую среду незначительны, Чернобыльская авария 1986 года показала чрезвычайно высокую потенциальную опасность атомной энергетики.
Глобальный эффект радиоактивного загрязнения Чернобыля обусловлен тем, что при аварии радионуклиды были выброшены в стратосферу и уже в течение нескольких суток были зафиксированы в Западной Европе, затем в Японии, США и других странах.
При первом неконтролируемом взрыве на Чернобыльской АЭС в окружающую среду поступали очень опасные при попадании в организм человека сильно радиоактивные "горячие частицы", представляющие собой тонкодисперсные фрагменты графитовых стержней и других конструкций атомного реактора.
Образовавшееся радиоактивное облако накрыло огромную территорию. Общая площадь загрязнения в результате Чернобыльской аварии цезием-137 плотностью 1 -5Ки/км2 только на территории России в 1995 году составила около 50 000 км2.
Из продуктов деятельности АЭС особую опасность представляет тритий, накапливающийся в оборотной воде станции и поступающий затем в водоем-охладитель и гидрографическую сеть, бессточные водоемы, подземные воды, приземную атмосферу.
В настоящее время радиационная обстановка в России определяется глобальным радиоактивным фоном, наличием загрязненных территорий вследствие Чернобыльской (1986 г.) и Кыштымской (1957 г.) аварий, эксплуатацией урановых месторождений, ядерного топливного цикла, судовых ядерно-энергетических установок, региональных хранилищ радиоактивных отходов, а также аномальными зонами ионизирующих излучений, связанных с земными (природными) источниками радионуклидов.
радиация доза облучение утилизация
2. Образование радиоактивных отходов и проблема с их обращением и утилизацией
Радиоактивные отходы (РАО) образуются при эксплуатации объектов ядерного топливного цикла, атомных электростанций, исследовательских реакторов, критических стендов и сборок, мощных источников ионизирующего излучения, судов гражданского и кораблей военно-морского флотов с ядерными энергетическими установками и иными радиационными источниками, а также при использовании изотопной продукции в научных организациях, народном хозяйстве и медицине.
Основное количество (РАО) накоплено в процессе создания ядерного оружия. На базе оборонных объектов был создан ядерный топливный цикл, и в результате Российская Федерация является одной из немногих стран в мире, обладающих всеми элементами ядерного топливного цикла, включающего добычу и обогащение урановых руд, изготовление ядерного топлива, изготовление изотопной продукции, переработку отработавшего ядерного топлива и обращение с РАО. Значительная часть от общего количества накопленных в России РАО образовалось при становлении атомной промышленности, причем основное количество РАО (97% от общего по ядерному топливному циклу) накоплено на ПО "Маяк", Горно-химическом комбинате и Сибирском химическом комбинате. Общий объем накопленных в России РАО составляет ~ 6,5?106 м3 с суммарной активностью ~ 1,5?109 Ки. В настоящее время основное количество РАО образуется в результате переработки отработавшего ядерного топлива.
Таким образом, в Российской Федерации действует комплекс объектов использования атомной энергии, на которых к настоящему времени накоплены и продолжают накапливаться РАО различного вида. Одним из важнейших условий развития атомной промышленности является решение проблем безопасного обращения с РАО.
За последнее десятилетие в Российской Федерации приняты законодательные акты общего характера, направленные на обеспечение ядерной и радиационной безопасности. Они содержат не только общие положения правовой системы по предотвращению вредного воздействия хозяйственной и иной деятельности, но и отдельные положения, относящиеся к обеспечению безопасности при обращении с ядерными материалами, радиоактивными веществами и, в частности, с РАО.
Ряд положений Федерального закона "Об использовании атомной энергии" отражает существующие в Российской Федерации тенденции к гармонизации подходов к обеспечению безопасности при обращении с РАО с принятыми международным сообществом принципами и критериями безопасности. Так, статья 47 устанавливает, что при хранении и переработке РАО должна обеспечиваться надежная защита работников объектов использования атомной энергии, населения и окружающей среды от недопустимого радиационного воздействия и радиоактивного загрязнения. В статье 48 установлено, что при хранении или захоронении РАО должны быть обеспечены их надежная изоляция от окружающей среды, защита настоящего и будущих поколений, биологических ресурсов от радиационного воздействия сверх установленных пределов. Таким образом, принятые международным сообществом принципы "защита будущих поколений и "бремя для будущих поколений" Российская Федерация установила законодательно. Существующая тенденция к гармонизации подходов к обеспечению безопасности при обращении с РАО подтверждается также фактами присоединения нашей страны к целому ряду международных конвенций, особенно присоединением Российской Федерации в январе 1999 г. к Объединенной конвенции о безопасности обращения с отработавшим топливом и о безопасности обращения с радиоактивными отходами.
Вместе с тем действовавшая в Российской Федерации до недавнего времени нормативная база в области обращения с РАО создавалась на основе законодательства бывшего СССР в соответствии с имевшимися в 50-60-е гг. подходами к обеспечению безопасности. Сложность использования этих нормативных документов (НД) обусловлена следующим рядом взаимосвязанных причин:
документы разрабатывались различными ведомствами и организациями, независимо друг от друга и часто представляют собой ведомственные инструкции;
документы зачастую дублируют либо противоречат друг другу;
неоправданно большое количество НД затрудняет их применение пользователями.
Большинство из них к настоящему времени устарели и требуют переработки, поскольку они не в полной мере соответствуют не только современному законодательству Российской Федерации, но и ряду важных принципов обеспечения безопасности, принятых в последние годы международным сообществом, в частности: защита будущих поколений; обращение с РАО осуществляется таким образом, чтобы предсказуемые последствия для здоровья будущих поколений не превышали соответствующие уровни последствий, которые приемлемы в наши дни; бремя для будущих поколений: обращение с РАО осуществляется таким образом, чтобы не налагать чрезмерного бремени на будущие поколения; национальная правовая структура: обращение с РАО осуществляется в рамках соответствующей национальной правовой структуры, предусматривающей четкое распределение обязанностей и обеспечение независимых регулирующих функций; контроль за образованием РАО: образование РАО удерживается на минимальном практически осуществимом уровне; взаимозависимость образования РАО и обращения с ними: надлежащим образом учитываются взаимозависимости между всеми стадиями образования РАО и обращения с ними и др.
Таким образом, изменения правовой основы потребовали создание современной системы нормативного регулирования безопасности при обращении с РАО, т.е. создание совокупности научных, технических и организационных принципов, критериев и требований обеспечения безопасности при обращении с РАО, отвечающих действующему законодательству Российской Федерации, современному состоянию науки и техники, современному мировоззрению на безопасность. Проведенный анализ рекомендаций международных организаций и нормативных документов зарубежных стран показал, что они могут быть использованы в Российской Федерации только после их существенной модификации в соответствии с законодательством Российской Федерации и накопленным практическим опытом обращения с РАО.
В 1996 г. Госатомнадзор России совместно с другими ведомствами и организациями приступил к выполнению работ по созданию современной системы нормативного регулирования безопасности в рамках Федеральной целевой программы "Обращение с радиоактивными отходами и отработавшими ядерными материалами, их утилизация и захоронение на 1996-2005 годы" (далее - ФЦП РАО).
3. Обеспечения безопасности хранилищ РАО
1. Обосновать текущий уровень безопасности хранилища РАО (в период до его консервации и закрытия) и определить необходимость вмешательства для обеспечения радиационной безопасности работников (персонала) и населения.
2. Провести при необходимости все практически осуществимые мероприятия в целях повышения безопасности, направленные на реализацию следующих принципов:
непревышение допустимых пределов индивидуальных доз облучения работников (персонала) и населения (принцип нормирования);
поддержание на возможно низком уровне с учетом экономических и социальных факторов индивидуальных доз облучения и числа облучаемых лиц из населения (принцип оптимизации);
уменьшение вредного воздействия в результате снижения доз должно быть достаточным для обоснования ущерба и издержек, в том числе социальных издержек, связанных с таким вмешательством.
3. Обосновать долговременную безопасность хранилища РАО (в период после его консервации и закрытия) и определить необходимость вмешательства для обеспечения радиационной защиты населения.
4. Принять при необходимости все практически осуществимые меры по обеспечению долговременной безопасности хранилища РАО, при этом необходимо стремиться:
избегать действий, имеющих обоснованно предсказуемые последствия для будущих поколений, более серьезные, чем те, которые допускаются в отношении нынешнего поколения;
не возлагать чрезмерного бремени для будущих поколений.
Регулирование безопасности хранилищ РАО
1. Регулирование текущего уровня безопасности хранилища РАО (период до его консервации и закрытия):
нормативное регулирование безопасности и лицензирование видов деятельности с РАО, включая регламентацию технических мер по обеспечению ядерной и радиационной безопасности хранилищ РАО, критериев приемлемости РАО, направленных на хранение (захоронение) в хранилищах РАО, количества РАО, поступаемого в хранилища РАО;
надзор за состоянием барьеров на пути распространения радиоактивных веществ из хранилищ РАО в окружающую среду;
надзор за соблюдение норм и правил, регламентирующих безопасность персонала и населения;
надзор за выполнением инструкций по эксплуатации хранилища РАО.
2. Регулирование долговременной безопасности хранилища РАО (период после его консервации и закрытия) - оценки долговременной безопасности, включающие прогноз долговременного поведения искусственных и естественных природных барьеров на пути возможного распространения радиоактивных веществ в окружающую среду.
Для регулирования безопасности при обращении с РАО установлен эффективный механизм, реализуемый посредством специальных требований в условиях действия лицензии на соответствующий вид деятельности. Для оценки состояния текущего уровня безопасности хранилищ РАО, накопленных в результате предыдущей деятельности, и введения специальных требований в условия действия лицензий на соответствующий вид деятельности достаточно провести анализ на соответствие требованиям норм и правил. Для оценки долговременной безопасности указанных хранилищ РАО подобный подход практически трудно осуществим, поскольку необходимы прогнозные оценки. Таким образом, развитие в России работ по расчетным методам оценки долговременной безопасности хранилищ РАО имеет исключительно важное прикладное значение для целей регулирования безопасности. В настоящее время за рубежом существуют методы оценки безопасности, позволяющие адекватно оценивать потенциальные длительные радиологические воздействия на людей и окружающую среду систем захоронения.
4. Единицы измерения радиоактивности и доз облучений
Вещества, способные создавать ионизирующие излучения, различаются активностью (А), т.е. числом радиоактивных превращений в единицу времени. В системе СИ за единицу активности принято одно ядерное превращение в секунду (распад/с). Эта единица получила название беккерель (Бк). Внесистемной единицей измерения активности является кюри (Ки), равная активности нуклида, в котором происходит 3,7 · 1010 актов распада в одну секунду, т.е. 1 Ки = 3,7·1010Бк.
Единице активности кюри соответствует активность 1 г радия (Rа).
Для характеристики ионизирующих излучений введено понятие дозы облучения. Различают три дозы облучения: поглощённая, эквивалентная и экспозиционная.
Степень, глубина и форма лучевых поражений, развивающихся среди биологических объектов при воздействии на них ионизирующего излучения, в первую очередь зависят от величины поглощённой энергии излучения или поглощённой дозы (Дпогл).
Поглощённая доза - энергия, поглощённая единицей массы облучаемого вещества.
За единицу поглощённой дозы облучения принимается грей (Гр), определяемый как джоуль на килограмм (Дж/кг). Соответственно 1 Гр = 1 Дж/кг.
В радиобиологии и радиационной гигиене широкое применение получила внесистемная единица поглощённой дозы - рад. Рад - это такая поглощённая доза, при которой количество поглощённой энергии в 1г любого вещества составляет 100 эрг независимо от вида и энергии излучения. Соразмерность грея и рада следующая: 1 Гр= 100 рад.
В связи с тем, что одинаковая поглощённая доза различных видов ионизирующего излучения вызывает в единице массы биологической ткани различное биологическое действие, введено понятие эквивалентной дозы (Дэкв), которая определяется как произведение поглощённой дозы на средний коэффициент качества действующих видов ионизирующих излучений.
Коэффициент качества (Ккач) характеризует зависимость неблагоприятных биологических последствий облучения человека от способности ионизирующего излучения различного вида передавать энергию облучаемой среде.
По существу, биологические эффекты, вызываемые любыми ионизирующими излучениями, сравниваются с эффектом от рентгеновского и гамма-излучения.
В качестве единицы измерения эквивалентной дозы в системе СИ принят зиверт (Зв). Зиверт - эквивалентная доза любого вида ионизирующего излучения, поглощённая 1 кг биологической ткани и приносящая такой же биологический эффект (вред), как и поглощённая доза фотонного излучения в 1 Гр. Существует также внесистемная единица эквивалентной дозы ионизирующего излучения - бэр (биологический эквивалент рентгена). При этом соразмерность следующая
Дэкв = Дпогл ·Ккач или 1 Зв = 1 Гр · Ккач; 1 Зв = 100 рад · Ккач = 100 бэр.
Таблица 1. Значения Ккач для разных видов ионизирующего излучения
Вид излучения |
Коэффициент качества (Ккач) |
|
Рентгеновское и гамма-излучения |
1 |
|
Электроны и позитроны, бета-излучение |
1 |
|
Протоны |
10 |
|
Нейтроны тепловые |
3 |
|
Нейтроны быстрые |
10 |
|
Альфа-частицы и тяжёлые ядра отдачи |
20 |
Для оценки эквивалентной дозы, полученной группой людей (персонал объекта народного хозяйства, жители населённого пункта и т.п.), используется понятие коллективная эквивалентная доза (Дэкв.к.) - это средняя для населения доза, умноженная на численность населения (в человеко-зивертах).
Понятие экспозиционная доза (Дэксп) служит для характеристики рентгеновского и гамма-излучения и определяет меру ионизации воздуха под действием этих лучей. Она равна дозе фотонного излучения, при котором в 1 кг атмосферною воздуха возникают ионы, несущие заряд электричества в 1 кулон (Кл).
Соответственно
Дэксп = КЛ/КГ
Внесистемной единицей экспозиционной дозы рентгеновского и гамма-излучения является рентген (Р).
При этом соразмерность следующая:
1 Р = 2,58 · 10-4 Кл/кг или 1 Кл/кг =3,88 · 103 Р
Поглощённая, эквивалентная и экспозиционная дозы, отнесённые к единице времени, носят название мощности соответствующих доз.
Например
Мощность поглощённой дозы (Рпогл) - Гр/с или рад/с.
Мощность эквивалентной дозы (Рэкв) - Зв/с или бэр/с.
Мощность экспозиционной дозы (Рэксп) - Кл/(кг · с) или Р/с.
Для упрощенной оценки информации по однотипному ионизирующему излучению можно использовать следующие соотношения.
1 Гр = 100 бэр = 100 Р = 100 рад = 1 Зв (с точностью до 10-15%);
радиоактивное загрязнение плотностью 1 Ки/м2 эквивалентно мощности экспозиционной дозы 10 Р/ч, или мощность экспозиционной дозы ионизирующего излучения 1 Р/ч соответствует загрязнению в 10 мкКи/см2.
5. Биологическое действие ионизирующих излучений и способы защиты от них
Различают два вида эффекта воздействия на организм ионизирующих излучений: соматический и генетический. При соматическом эффекте, негативные последствия проявляются непосредственно у облучаемого, при генетическом - у его потомства.
Соматические эффекты могут быть ранними или отдалёнными. Ранние возникают в период от нескольких минут до 60 суток после облучения. К ним относят покраснение и шелушение кожи, помутнение хрусталика глаза, поражение кроветворной системы, лучевая болезнь, летальный исход. Отдалённые соматические эффекты проявляются через несколько месяцев или лет после облучения в виде стойких изменений кожи, злокачественных новообразований, снижения иммунитета, сокращения продолжительности жизни.
При изучении действия излучения на организм были выявлены следующие особенности:
1. Высокая эффективность поглощённой энергии, даже малые её количества могут вызвать глубокие биологические изменения в организме.
2. Наличие скрытого (инкубационного) периода проявления действия ионизирующих излучений.
3. Действие от малых доз может суммироваться или накапливаться.
4. Генетический эффект - воздействие на потомство.
5. Различные органы живого организма имеют свою чувствительность к облучению.
6. Не каждый организм (человек) в целом одинаково реагирует на облучение.
7. Облучение зависит от частоты воздействия. При одной и той же дозе облучения вредные последствия будут тем меньше, чем более дробно оно получено во времени.
Ионизирующее излучение может оказывать влияние на организм как при внешнем (особенно рентгеновское и гамма-излучение), так и при внутреннем (особенно альфа-частицы) облучении. Внутреннее облучение происходит при попадании внутрь организма через лёгкие, кожу и органы пищеварения источников ионизирующего излучения. Внутреннее облучение более опасно, чем внешнее, так как попавшие внутрь источники ИИ подвергают непрерывному облучению ничем не защищённые внутренние органы.
Под действием ионизирующего излучения вода, являющаяся составной частью организма человека, расщепляется, и образуются ионы с разными зарядами. Полученные свободные радикалы и окислители взаимодействуют с молекулами органического вещества ткани, окисляя и разрушая её. Нарушается обмен веществ. Происходят изменения в составе крови - снижается уровень эритроцитов, лейкоцитов, тромбоцитов и нейтрофилов. Поражение органов кроветворения разрушает иммунную систему человека и приводит к инфекционным осложнениям.
Местные поражения характеризуются лучевыми ожогами кожи и слизистых оболочек. При сильных ожогах образуются отёки, пузыри, возможно, отмирание тканей (некрозы).
Смертельные поглощённые дозы для отдельных частей тела следующие:
· голова - 20 Гр;
· нижняя часть живота - 50 Гр;
· грудная клетка - 100 Гр;
· конечности - 200 Гр.
При облучении дозами, в 100-1000 раз превышающую смертельную дозу, человек может погибнуть во время однократного облучения (“смерть под лучом”).
Биологические нарушения в зависимости от суммарной поглощённой дозы облучения представлены в таблице 2.
Таблица 2. Биологические нарушения при однократном (до 4-х суток) облучении всего тела человека
Доза облучения, (Гр) |
Характер биологических последствий облучения |
|
До 0,25 |
Видимых нарушений нет |
|
0,25-0,50 |
Возможны изменения в крови |
|
0,50-1,00 |
Изменения в крови, трудоспособность нарушена |
|
1 - 2 |
Лёгкая степень лучевой болезни (выздоровление у 100% пострадавших) |
|
2 - 4 |
Средняя степень лучевой болезни (выздоровление у 100% пострадавших при условии лечения) |
|
4 - 6 |
Тяжёлая степень лучевой болезни (выздоровление у 50-80% пострадавших при условии специального лечения) |
|
более 6 |
Крайне тяжёлая лучевая болезнь (выздоровление у 30-50% пострадавших при условии специального лечения) |
|
6 -10 |
Переходная форма (исход непредсказуем) |
|
более 10 |
100%-ный смертельный исход через несколько суток |
|
100 |
Смертельный исход через несколько часов |
|
1000 |
Смертельный исход через несколько минут |
В зависимости от типа ионизирующего излучения могут быть разные меры защиты:
· уменьшение времени облучения;
· увеличение расстояния до источников ионизирующего излучения;
· ограждение или герметизация источников ионизирующего излучения
· оборудование и устройство защитных средств;
· организация дозиметрического контроля;
· применение мер гигиены и санитарии.
В России на основе рекомендаций Международной комиссии по радиационной защите применяется метод защиты населения нормированием. Разработанные нормы радиационной безопасности учитывают три категории облучаемых лиц:
А - персонал, т.е. лица, постоянно или временно работающие с источниками ионизирующего излучения;
Б - ограниченная часть населения, т.е. лица, непосредственно не занятые на работе с источниками ионизирующих излучений, но по условиям проживания или размещения рабочих мест могущие подвергаться воздействию ионизирующих излучений;
В - всё население.
Предельно допустимая доза - это наибольшее значение индивидуальной эквивалентной дозы за год, которая при равномерном воздействии в течение 50 лет не вызовет в состоянии здоровья персонала неблагоприятных изменений, обнаруживаемых современными методами.
Каждый житель Земли (категория В) на протяжении всей своей жизни ежегодно облучается дозой в среднем 250-400 мбэр. Полученная доза складывается из природных и искусственных источников ионизирующего излучения.
Природные источники дают суммарную годовую дозу примерно 200 мбэр (космос до 30 мбэр, почва до 38 мбэр, радиоактивные элементы в тканях человека до 37 мбэр, газ радон до 80 мбэр и другие источники).
Искусственные источники добавляют ежегодную эквивалентную дозу облучения примерно в 150-200 мбэр (медицинские приборы и исследования порядка 100-150 мбэр, просмотр телевизора около 1-3 мбэр, ТЭЦ на угле до 6 мбэр, последствия испытаний ядерного оружия до 3 мбэр и другие источники).
Всемирной организацией здравоохранения предельно допустимая (безопасная) эквивалентная доза облучения для жителя планеты определена в 35 бэр, при условии её равномерного накопления в течение 70 лет жизни.
Ниже предлагаются рекомендации общего характера по защите от ионизирующего излучения разного типа.
От альфа-частиц можно защититься путём:
1) увеличения расстояния до источников ионизирующих излучений, т.к. альфа-частицы имеют небольшой пробег;
2) использования спецодежды и спецобуви, т.к. проникающая способность альфа-частиц невысока;
3) исключения попадания источников альфа-частиц с пищей, водой, воздухом и через слизистые оболочки, т.е. применение противогазов, масок, очков и т.п.
В качестве защиты от бета-частиц используют:
1) ограждения (экраны), с учётом того, что лист алюминия толщиной несколько миллиметров полностью поглощает поток бета-частиц;
2) методы и способы, исключающие попадание источников бета-частиц внутрь организма.
Защиту от рентгеновского и гамма-излучения необходимо организовывать с учётом того, что эти виды излучения отличаются большой проникающей способностью. Наиболее эффективны следующие мероприятия (как правило, используемые в комплексе):
1) увеличение расстояния до источника излучения;
2) сокращение времени пребывания в опасной зоне;
3) экранирование источника излучения материалами с большой плотностью (свинец, бетон и др.);
4) использование защитных сооружений (противорадиационных укрытий, подвалов и т.п.) для населения;
5) использование индивидуальных средств защиты органов дыхания, кожных покровов и слизистых оболочек;
6) дозиметрический контроль внешней среды и продуктов питания.
При использовании различного рода защитных сооружений следует учитывать, что мощность экспозиционной дозы ионизирующего излучения снижается в соответствии с величиной коэффициента ослабления (Косл).
Некоторые величины Косл приведены в таблице 3.
Таблица 3. Средние значения коэффициента ослабления дозы радиации
Наименование укрытий и транспортных средств или условия расположения населения (войск) |
Косл |
|
Открытое расположение на местности Заражённые траншеи, канавы, окопы, щели Вновь отрытые траншеи, канавы, окопы, щели Перекрытые траншеи, канавы, окопы и т.п. ТРАНСПОРТНЫЕ СРЕДСТВА Железнодорожные платформы Автомобили, автобусы и крытые вагоны Пассажирские вагоны Бронетранспортёры Танки ПРОМЫШЛЕННЫЕ И АДМИНИСТРАТИВНЫЕ ЗДАНИЯ Производственные одноэтажные здания (цехи) Производственные и административные трёхэтажные здания ЖИЛЫЕ КАМЕННЫЕ ДОМА Одноэтажные (подвал) Двухэтажные (подвал) Трёхэтажные (подвал) Пятиэтажные (подвал) ЖИЛЫЕ ДЕРЕВЯННЫЕ ДОМА Одноэтажные (подвал) |
1 3 20 50 1,5 2 3 4 10 7 6 10 40 15 100 20 400 27 400 2 7 8 12 8 4 |
Заключение
В настоящее время в России действует много различных санитарных правил обеспечения радиационной безопасности, разработанных Госатомнадзором России, которые между собой не стыкуются, иногда противоречат одни другим, даже если они утверждены одним и тем же ведомством. Временные правила и нормы действуют десятилетиями. На мой взгляд, по вопросам обеспечения радиационной безопасности при обращении с радиоактивными веществами, независимо от отрасли народного хозяйства, должны быть разработаны единые нормы и правила, как это сделано, например, в Великобритании.
На базе системного похода межведомственным коллективом под руководством Госатомнадзора России создана концептуальная модель системы безопасного обращения с РАО, сформулирована концепция и установлена структура системы по регулированию безопасности при обращении с РАО в Российской Федерации. Применение методов системного анализа позволило оптимизировать систему нормативного регулирования безопасности при обращении с РАО.
Разработанные и введенные в действие федеральные нормы и правила и руководства по безопасности позволяют осуществлять нормативное регулирование безопасности большинства видов деятельности со всеми видами и категориями РАО (за исключением их захоронения) на объектах использования атомной энергии.
Для целей регулирования безопасности при обращении с РАО, накопленными в результате предыдущей деятельности, и захоронения РАО необходимо развитие работ по расчетным методам оценки долговременной безопасности хранилищ РАО.
Библиография
1. Радиационная гигиена, М., 1962;
2. Проблемы радиационной гигиены. , М., 1963;
3. Брэстрап К. и Уикофф Г., Руководство по радиационной защите, пер. с англ., М., 1962.
Размещено на Allbest.ru
...Подобные документы
Прямое и косвенное действие ионизирующего излучения. Действие больших доз ионизирующих излучений на биологические объекты. Генетические последствия радиации. Внутреннее облучение населения. Основные методы и средства защиты от ионизирующих излучений.
презентация [1,1 M], добавлен 25.12.2014Радиация: дозы, единицы измерения. Ряд особенностей, характерных для биологического действия радиоактивных излучений. Виды эффектов радиации, большие и малые дозы. Мероприятия по защита от воздействия ионизирующих излучений и внешнего облучения.
реферат [34,3 K], добавлен 23.05.2013Основные характеристики ионизирующих излучений. Принципы и нормы радиационной безопасности. Защита от действия ионизирующих излучений. Основные значения дозовых пределов внешнего и внутреннего облучений. Отечественные приборы дозиметрического контроля.
реферат [24,6 K], добавлен 13.09.2009Что такое биологическое действие ионизирующих излучений. Воздействие радионуклидов на живые ткани. Оценка вторичных повреждений тканей при воздействии радиации. Пути поступления радиоактивных веществ в организм. Уровни накопления радионуклидов в органах.
доклад [17,2 K], добавлен 25.11.2009Определение понятий: радиационная безопасность; радионуклиды, ионизирующие излучения. Естественные и искусственные источники излучений. Доза облучение и единицы ее измерения. Способы защиты человека от радиации. Авария на ЧАЭС: причины и последствия.
шпаргалка [41,4 K], добавлен 22.09.2010Воздействие ионизирующих излучений на неживое и живое вещество, необходимость метрологического контроля радиации. Экспозиционная и поглощенная дозы, единицы размерности дозиметрических величин. Физико-технические основы контроля ионизирующих излучений.
контрольная работа [54,3 K], добавлен 14.12.2012Зоны радиоактивного загрязнения местности. Источники ионизирующих излучений. Дозиметрические величины и единицы их измерения. Закон спада уровня радиации. Поражающее воздействие радиоактивных веществ на людей, растения, технику, постройки и животных.
курсовая работа [39,8 K], добавлен 12.01.2014Основные типы радиоактивных излучений, их негативное воздействие на человека. Радионуклиды как потенциальные источники внутреннего облучения. Способы защиты от источников ионизирующих излучений. Пути поступления радитоксичных веществ в организм.
реферат [516,1 K], добавлен 24.09.2013Источники внешнего облучения. Воздействие ионизирующих излучений. Генетические последствия радиации. Методы и средства защиты от ионизирующих излучений. Особенности внутреннего облучения населения. Формулы эквивалентной и поглощенной доз излучения.
презентация [981,6 K], добавлен 18.02.2015Природа ионизирующего излучения. Генерация ионизирующего излучения в природе обычно происходит в результате спонтанного радиоактивного распада радионуклидов. Биологическое действие ионизирующих излучений. Гигиеническое нормирование ионизирующих излучений.
реферат [4,6 M], добавлен 19.11.2010История исследования биологического действия радиоактивных излучений. Лучевое повреждение организма. Влияние радиоактивного излучения на живые организмы, индивидуальная чувствительность людей. Роль человека в создании источников радиоактивного излучения.
реферат [16,9 K], добавлен 26.03.2010Явление радиоактивности в физике. Приборы, применяемые для регистрации ядерных излучений, сущность их источников, их свойства и характеристики. Описание естественных и искусственных источников радиации. Природа радиоактивных излучений, пути их изучения.
реферат [81,8 K], добавлен 27.01.2012Радиоактивность и ионизирующие излучения. Источники и пути поступления радионуклидов в организм человека. Действие ионизирующих излучений на человека. Дозы радиационного облучения. Средства защиты от радиоактивных излучений, профилактические мероприятия.
курсовая работа [40,8 K], добавлен 14.05.2012Экологическая экспертиза техники и технологий. Опасность включения человека в электрические сети. Виды ионизирующих излучений. Действие ионизирующих излучений на людей. Пожарная опасности. Обучение охране труда. Лица, подлежащих обязательному обучению.
контрольная работа [601,0 K], добавлен 27.05.2008Сущность естественного фона ионизирующих излучений. Характеристика космической и земной радиации, особенности их воздействия на организм человека. Признаки, этапы и формы лучевой болезни. Основы охраны здоровья от вредного действия ионизирующей радиации.
курсовая работа [58,1 K], добавлен 11.09.2010Особенности аварий на радиационно-опасный объектах, приводящих к выходу или выбросу радиоактивных веществ или ионизирующих излучений в количествах, превышающих установленные пределы безопасности его эксплуатации. Виды радиационного воздействия на людей.
презентация [738,4 K], добавлен 19.06.2019Основные виды ионизирующих излучений. Основные правовые нормативы в области радиационной безопасности. Обеспечение радиационной безопасности. Радиационное воздействие и биологические эффекты. Последствия облучения людей ионизирующим излучением.
реферат [28,0 K], добавлен 10.04.2016Альтернативные способы хранения и удаления отходов. Технология обращения с радиоактивными отходами на разных этапах становления атомной промышленности, ее особенности. Классификация жидких и твердых отходов. Проблема хранения и утилизации плутония.
презентация [464,7 K], добавлен 10.02.2014Особенности радиоактивности и ионизирующих излучений. Характеристика источников и путей поступления радионуклидов в организм человека: естественная, искусственная радиация. Реакция организма на различные дозы радиационного облучения и средства защиты.
реферат [42,6 K], добавлен 25.02.2010Виды ионизирующих излучений. Механизм их действия на живую клетку. Характеристика повреждения человеческого организма в зависимости от дозы. Использование индивидуальных средств защиты. Дозиметрический контроль внешней среды и продуктов питания.
презентация [1,0 M], добавлен 17.12.2016