Оценка последствий взрыва
Обоснование условий для принятия решений по выработки мер взрывобезопасности. Понятие задач прогнозирования ситуации взрыва и расчет ударной волны при разгерметизации газовоздушных смесей. Оценка степени повреждения при воздействии ударной волны.
Рубрика | Безопасность жизнедеятельности и охрана труда |
Вид | лекция |
Язык | русский |
Дата добавления | 23.10.2013 |
Размер файла | 94,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
1
Кафедра защиты в ЧС и гражданской обороны
«Основы гражданской защиты в чрезвычайных ситуациях»
ТЕМА 1. Основные характеристики и классификация чрезвычайных ситуаций
Лекция
по БЖД
ОЦЕНКА ПОСЛЕДСТВИЙ ВЗРЫВА
Общая характеристика задач оценки.
Для принятия решений по защите от воздействия воздушной ударной волны (ВУВ) взрыва на здания, сооружения, технику или на людей, а также для выработки мер взрывобезопасности необходимы данные, характеризующие взрывы, которые могут происходить во время военных действий, в производственной сфере и в быту. Наиболее достоверные сведения о взрыве можно получить путем проведения эксперимента. Однако, такой подход не всегда применим. Поэтому наиболее распространены расчетные методы, позволяющие определять значения параметров, характеризующих взрывы. В ходе расчетов используются следующие показатели:
- вид и количество взрывчатого вещества (ВВ);
- условия взрыва;
- расстояние от места взрыва до места оценки его последствий;
- параметры ударной волны;
- степень повреждения (разрушения) зданий, сооружений, техники или степень поражения людей.
Для проведения расчетов разработано и представлено в технической литературе значительное количество функциональных зависимостей, которые связывают между собой эти показатели. Конкретный вид расчетных соотношений, выражающих эти функциональные зависимости, определяется условиями взрыва, к которым относятся: тип ВВ (конденсированное ВВ, газовоздушные смеси, пылевоздушные смеси и др.), место взрыва (воздушный, наземный или заглубленный взрыв), наличие преград, отражающих ударную волну и другие условия.
Разные авторы предлагают разные виды функциональных зависимостей для определения одних и тех же показателей, позволяющие получить либо большую точность, либо простоту, либо какие-нибудь другие преимущества при проведении расчетов. Поэтому при выборе того или иного соотношения для проведения расчетов следует особое внимание обращать на систему ограничений, определяющих возможность его использования.
Вся совокупность задач по проведению расчетов может быть разделена на две группы: задачи прогнозирования последствий взрыва по заданному количеству ВВ и задачи определения количества ВВ по заданным последствиям взрыва.
Задачи прогнозирования соответствуют ситуации, когда взрыва еще не было, т. е., требуется рассчитать показатели, характеризующие будущий взрыв. В таких задачах в качестве исходных данных обычно используются сведения о количестве ВВ и об условиях взрыва. При этом в результате расчетов должны быть получены значения параметров ударной волны (или других поражающих факторов) на заданном расстоянии от места взрыва (прямая задача), или определено расстояние от места взрыва, на котором параметры ударной волны будут иметь заданное значение (обратная задача).
Задачи определения исходных характеристик ВВ по результатам взрыва обычно приходится решать при расследовании и анализе причин аварийных взрывов. В этих задачах известны условия взрыва, место взрыва и степень разрушений по мере удаления от его эпицентра. В результате решения должно быть определено количество взорвавшегося вещества. Для расчетов в этих задачах используются те же функциональные зависимости между степенью повреждения, количеством ВВ и расстоянием от места взрыва, что и при решении задач прогнозирования.
Настоящий курс лекций не предусматривает подробного рассмотрения всего многообразия вариантов проведения расчетов для различных условий взрыва и поражающих факторов. Далее будут рассматриваться только приближенные методы проведения расчетов, связанные с наиболее распространенными типами взрывов конденсированных ВВ и ГВС в открытом, не замкнутом пространстве. Из числа поражающих факторов взрыва будет рассматриваться только воздушная ударная волна.
Расчетные соотношения, используемые при решении задач.
Тротиловый эквивалент массы ВВ.
Количество взрывчатого вещества или его массу МВВ при проведении расчетов выражают через тротиловый эквивалент МТ. Тротиловый эквивалент представляет собой массу тротила, при взрыве которой выделяется столько же энергии, сколько выделится при взрыве заданного количества конкретного ВВ. Значение тротилового эквивалента определяется по соотношению:
(1)
Где:
MBB - масса взрывчатого вещества;
k - коэффициент приведения взрывчатого вещества к тротилу (см. Таблицу 1).
Таблица 1. - Значения коэффициента k приведения взрывчатого вещества к тротилу:
ВВ |
Тротил |
Тритонал |
Гексоген |
ТЭН |
Аммонал |
Порох |
ТНРС |
Тетрил |
|
k |
1.0 |
1.53 |
1.30 |
1.39 |
0.99 |
0.66 |
0.39 |
1.15 |
Выражение (1) составлено для взрыва, при котором ударная волна распространяется во все стороны от точки взрыва беспрепятственно, т. е., в виде сферы. Очень часто на практике взрыв происходит на некоторой поверхности, например, на земле. При этом ударная волна распространяется в воздухе в виде полусферы. Для взрывов на абсолютно твердой поверхности вся выделившаяся при взрыве энергия распространяется в пределах полусферы и, следовательно, значение массы взрывающегося вещества как бы удваивается (в определенных случаях можно говорить о сложении прямой и отраженной волны).
Для взрыва на не абсолютно твердой поверхности, например, на грунте, часть энергии расходуется на образование воронки. Учет этого расхода выполняется с помощью коэффициента, значения которого приведены в Таблице 2.
Чем меньше подстилающая поверхность позволяет затрачивать энергию на образование воронки, тем ближе значение коэффициента к 1. Другой предельный случай соответствует ситуации, когда подстилающая поверхность беспрепятственно пропускает энергию взрыва, например, при взрыве в воздухе. В этом случае значение коэффициента равно 0,5.
С учетом изложенного значение MT в общем случае определяется по формуле:
(2)
Выражение (2) для взрыва в воздухе, то есть при 0.5, принимает вид (1).
Таблица 2. - Значения коэффициента, учитывающего характер подстилающей поверхности:
Поверхность |
Металл |
Бетон |
Асфальт |
Дерево |
Грунт |
|
1.0 |
0.95 |
0.9 |
0.8 |
0.6 |
Закон подобия при взрывах. Расчеты параметров ударной волны основываются на использовании соотношения, связывающего параметры взрывов разной мощности.
Таким соотношением является закон подобия кубического корня. Согласно этому закону значения параметров ударной волны для взрыва некоторой мощности можно пересчитать для взрывов других мощностей, пользуясь выражениями закона подобия:
(3)
Где:
R2,R1 - расстояния от центров двух взрывов до некоторых точек 1 и 2, в которых параметры ударной волны этих взрывов равны между собой;
MT2, MT1 - массы зарядов (точнее: эквиваленты масс, приведенные к некоторому эталону, в нашем случае к тротилу);
Выражение (3) можно представить в виде:
(4)
Величина называется приведенным радиусом взрыва и широко используется в различных расчетных соотношениях для определения параметров ударной волны взрыва.
Оценка параметров ударной волны при взрыве конденсированных ВВ.
Избыточное давление P для свободно распространяющейся сферической воздушной ударной волны убывает по мере удаления от места взрыва. Поэтому расчет его значений обычно проводится на основании соотношений, в которых давление является функцией двух аргументов - массы ВВ и расстояния от места взрыва.
Сложность разработки и последующего использования таких аналитических выражений определяется следующим обстоятельством. Скорость спада значения P по мере удаления от места взрыва изменяется за счет влияния на ударную волну среды, в которой она распространяется. Чем больше расстояние от места взрыва, тем сильнее искажается характер изменения давления во фронте ударной волны. Для двух ударных волн, которые при одинаковых условиях распространения в некоторый момент времени имели одно и тоже значение P, в последующие моменты значения P будут отличаться, если предыстория распространения этих волн была разной. Следовательно, расчетные соотношения для определения значений P в эти последующие моменты также должны быть разными.
По изложенным причинам в технической литературе представлен достаточно широкий спектр расчетных соотношений для определения значений P, каждое из которых имеет свою сферу применения и назначение. Например, для воздушного взрыва, для наземного взрыва, для малых расстояний от места взрыва, для значительных расстояний от места взрыва, для относительно небольших зарядов ВВ, для крупных зарядов ВВ и т. д.
При дальнейшем изложении в материалах курса будет использоваться одно базовое соотношение:
(5)
Где: - определяется из (2), (4).
Это соотношение известно в технической литературе под названием “формула М.А. Садовского” и широко используется при проведении практических расчетов как для наземных, так и для воздушных взрывов.
При необходимости решать обратную задачу, т. е., определять расстояние от места взрыва по заданному значению РФ, можно либо решать уравнение третьей степени (5) относительно , либо воспользоваться соотношением:
(6)
Формула (6) дает хорошее совпадение с результатами точного решения уравнения (5). Для значений в интервале от 2 до 12 ошибка не превышает 10%. При этом расхождение тем больше, чем больше PФ.
Удельный импульс I определяется по соотношению:
(7)
Где:
P(t) - функция, характеризующая изменение избыточного давления во фронте ударной волны за период времени от 0 до 0+.
Кроме приведенных соотношений в технической литературе имеются соотношения для расчета значений и других параметров ударной волны: максимального давления разряжения, длительности фазы разряжения, скорости распространения ударной волны, давления скоростного напора, температуры во фронте ударной волны и др., однако в данном курсе эти соотношения не рассматриваются.
Пример 1.
Прямая постановка задачи.
Определить избыточное давление, которое будет испытывать прибор, установленный на расстоянии 10 м., от места взрыва 1 кг гексогена во взрывном устройстве, размещенном на грунте.
1. Определение тротилового эквивалента:
= 2 * 0,6 * 1.3 * 1 = 1,56
2. Определение :
3. Определение PФ:
Обратная постановка задачи.
Определить максимальное расстояние, на котором допускается установить прибор, выдерживающий давление 14.5 кПа, от места взрыва 1 кг гексогена во взрывном устройстве, размещенном на грунте.
1. Определение :
2. Определение тротилового эквивалента:
= 2 * 0,6 * 1,3 * 1 = 1,56
3. Определение R:
Оценка параметров ударной волны при взрыве газовоздушных смесей.
Параметры ударной волны на расстояниях R < ro. При взрывах газовоздушных смесей параметры внутри газового облака могут изменяться в очень широких пределах в зависимости от условий взрыва, концентрации горючей компоненты и характера взрывного горения, которые при прогнозировании взрывов, особенно на открытом воздухе, учесть практически невозможно. Поэтому обычно расчеты проводят для худшего случая, при котором разрушительные последствия взрыва наибольшие.
Таким наихудшим случаем является детонационное горение смеси стехиометрического состава.
Скорость распространения процесса детонационного горения внутри облака очень велика и превышает скорость звука. Давление внутри облака за время взрыва вообще говоря не постоянно. Однако для проведения приближенной оценки параметров взрыва можно условно принять, что облако имеет форму полусферы с центром на поверхности земли, взрыв ГВС происходит мгновенно и давление в процессе взрыва одинаково и постоянно во всех точках, находящихся внутри облака.
Для большинства водородосодержащих газовых смесей стехиометрического состава можно принять, что давление внутри газового облака составляет 1700 кПа.
Для проведения более точных расчетов в технической литературе приводятся расчетные соотношения, позволяющие рассчитать скорость детонационного горения, время полной детонации облака, давление в детонационной волне и др.
Параметры ударной волны на расстояниях R > ro.
Формулы для определения значений параметров ударной волны на расстояниях, превышающих радиус полусферы газового облака в окружающем воздухе, получены путем аппроксимации численного решения задачи о детонации пропан воздушной смеси, выполненной Б.Е. Гельфандом. Решение получено интегрированием системы нестационарных уравнений газовой динамики в сферических координатах в переменных Лагранжа и позволяет получать результаты удовлетворительно согласующиеся с экспериментальными данными для горючих смесей различных углеводородов с воздухом.
Максимальное избыточное давление во фронте ударной волны (кПа):
(8)
(9)
Где:
MТ - тротиловый эквивалент наземного взрыва полусферического облака ГВС (кг);
P0 - атмосферное давление, равное 100 кПа.
Удельный импульс (Па с):
(10)
(11)
Тротиловый эквивалент (кг) определяется из соотношения (2), в котором:
k = Q / QТ
Т.е. в предположении, что энергия взрыва полусферического облака полностью отражена поверхностью, над которой это облако образовалось. С учетом изложенног:
(12)
Где:
MВ - масса вещества, взрывающегося в составе облака ГВС (кг);
Q - теплота, выделяющаяся при сгорании данного вещества (кДж/кг);
QТ - теплота взрыва тротила (4520 кДж/кг).
Q - представляет собой табличную величину (таблица 3), которая показывает количество энергии, выделяющейся при взрыве (сгорании) единицы массы данного вещества.
Значение MВ определяется соотношением:
(13)
Где:
MХР - масса вещества, находившегося в хранилище до аварии (до взрыва).
Объем газового облака V0 и размер полусферы газового облака r0 зависят от количества исходного вещества, находившегося в хранилище до аварии, и способа его хранения. Определение этих параметров может быть выполнено по формулам:
(14)
Где:
Va - объем идеального газа;
cстх - стехиометрическая объемная концентрация (в абсолютных долях).
Приближенно для наиболее часто используемых углеводородов можно пользоваться при расчетах формулой:
Где:
МХР - количество вещества, находившегося в хранилище до аварии (взрыва) в т.;
0,6 - коэффициент, учитывающий способ хранения.
Значения параметров, характеризующих некоторые вещества, приведены в таблице 3.
Таблица 3. - Значения параметров, характеризующих некоторые вещества и их смеси с воздухом:
Вещество |
кг/кмоль |
cстх |
Q кДж/кг |
Вещество |
кг/кмоль |
Cстх |
Q кДж/кг |
|
Аммиак |
17 |
0.1972 |
18650 |
Пропилен |
42 |
0.0446 |
45800 |
|
Ацетилен |
26 |
0.0775 |
48190 |
Этан |
30 |
0.0566 |
47350 |
|
Бутан |
58 |
0.0313 |
45800 |
Этилен |
28 |
0.0654 |
47200 |
|
Метан |
16 |
0.0945 |
50000 |
Ацетон |
42 |
0.0499 |
28500 |
|
Пропан |
44 |
0.0403 |
46400 |
Бензол |
78 |
0.0284 |
38550 |
Пример 2.
Определить с помощью расчета по формулам избыточное давление и удельный импульс во фронте ВУВ на расстоянии 100 м. от емкости, в которой находится 10 т. пропана, хранящегося в жидком виде под давлением, при ее разгерметизации и взрыве образовавшейся ГВС.
1. Определение массы пропана в составе ГВС:
кг
2. Определение тротилового эквивалента:
3. Определение приведенного радиуса взрыва:
4. Определение избыточного давления во фронте ударной волны:
Откуда следовательно:
5. Определение значения удельного импульса ударной волны:
Откуда:
Приближенная оценка параметров взрывной волны за пределами облака может быть проведена по таблице 4, в которой представлены значения избыточного давления Pф и эффективного времени действия фазы сжатия, заранее рассчитанные для различных значений R/ro. Значения параметров, указанных в таблице, получены исходя из давления внутри газового облака 1700 кПа.
Таблица 4. - Значения максимального избыточного давления и эффективного времени действия ударной волны при взрыве ГВС:
R/r0 |
0 - 1 |
1.01 |
1.04 |
1.08 |
1.13 |
1.2 |
1.4 |
1.8 |
|
Pф кПа |
1700 |
1232 |
814 |
568 |
500 |
400 |
300 |
200 |
|
103r0 с/м |
0.37 |
0.53 |
0.74 |
0.97 |
1.00 |
1.07 |
1.10 |
1.25 |
Пример 3.
Определить приближенным методом, по таблице избыточное давление во фронте ВУВ на расстоянии 100 м. от емкости, в которой находится 55 т., пропана, хранящегося в жидком виде под давлением, при ее разгерметизации и взрыве образовавшейся ГВС.
1. Определение r0:
2. Определение:
R / r0 = 100 / 31 = 3,2
3. По таблице 4 находим, что Рф = 80 кПа (с учетом интерполяции 74 кПа).
Оценка степени повреждения зданий в условиях городской застройки.
При взрывах в условиях городской застройки характер распространения ударной волны существенно изменяется из-за ее многократного отражения и экранирования стенами зданий. По этим же причинам обычно используемые для расчета значений P формулы, в том числе и рассмотренные выше, неприменимы.
Для оценки степени повреждения или разрушения зданий в городе широко используется формула, полученная в Великобритании по результатам анализа последствий бомбардировок во время второй мировой войны:
(15)
Где:
R - расстояние от места взрыва в метрах;
MT - тротиловый эквивалент заряда в килограммах;
K - коэффициент, соответствующий различным степеням разрушения:
К < 5,6 - полное разрушение зданий;
К = 5,6 - 9,6 - сильные разрушения здания (здание подлежит сносу);
К = 9,6 - 28 - средние разрушения (возможно восстановление здания);
К = 28 - 56 - разрушение внутренних перегородок и проемов;
К = 56 - разрушение 90% остекления.
Пример 4.
Определить для условий городской застройки расстояние, начиная с которого здания получат сильные разрушения при взрыве боеприпаса, начиненного 500 кг гексогена.
1. Определение тротилового эквивалента:
MT = k * Mвв = 1,3 * 500 = 650
2. Определение искомого расстояния:
Оценка степени повреждения отдельно стоящих зданий.
Под воздействием ударной волны здания и сооружения ведут себя как упругие колебательные системы. Расчетная оценка такого воздействия требует решения достаточно сложных динамических задач, связанных с описанием поведения упругих конструктивных элементов зданий и сооружений под воздействием ударных нагрузок, определяемых изменяющимися во времени и пространстве параметрами ударной волны. Возникающие в конструктивных элементах нагрузки зависят от параметров волны, характеристик объекта, его размеров и ориентации относительно фронта волны.
Наиболее точную оценку последствий воздействия ударной волны на конкретный объект позволяет получить эксперимент, проводимый на его макете с соблюдением правил подобия. Однако применение экспериментальных методов оценки далеко не всегда возможно.
Накопленный опыт исследования объектов, подвергавшихся воздействию взрывов, и результатов экспериментов с макетами выявил ряд закономерностей, позволяющих упрощенными методами оценивать возможные ожидаемые последствия воздействия взрывов на здания и сооружения. Ниже будут рассмотрены два метода: по допустимому давлению при взрыве и по диаграмме разрушения объекта.
По допустимому давлению при взрыве.
Избыточные давления, при которых наступают различные степени разрушений одного из возможных типов зданий, приведены в Таблице 5. При использовании таблицы следует иметь ввиду, что она соответствует ударной волне ядерного взрыва, т. е., учитывает воздействие на объект только избыточного давления и не учитывает поражающее действие импульса. Для других видов взрывов, например для взрывов конденсированных ВВ или ГВС, значения давлений, приведенных в таблице, должны быть увеличены в 1,5 раза и более в зависимости от мощности взрыва и после этого сопоставлены со значениями избыточного давления. рассчитанными по формуле (5). При использовании таблицы следует иметь ввиду, что результат оценки будет приблизительным, поскольку не учитывается действие импульса.
Таблица 5. - Действие PФ на объекты и людей:
Объект воздействия |
Степень воздействия |
PФ |
|
Кирпичное здание производственного типа |
Полное разрушение |
>70 кПа |
|
Сильные разрушения |
33-70 кПа |
||
Средние разрушения |
25-33 кПа |
||
Слабые разрушения |
12-25 кПа |
||
Остекление |
Разрушение на 90% |
5 - 10 кПа |
|
на 50% |
2 - 5 кПа |
||
на 5% |
1 - 2 кПа |
||
Люди |
Крайне тяжелое поражение |
>100 кПа |
|
Тяжелое поражение |
60-100 кПа |
||
Среднее поражение |
40-60 кПа |
||
Легкие поражения |
20-40 кПа |
В таблице в качестве примера приведены данные только для одного типа здания. В справочной литературе имеются аналогичные сведения для большого числа различных зданий и сооружений. В таблице также приведены данные, позволяющие оценить степень поражения людей действием давления ударной волны.
Пример 5.
Определить по таблице степень разрушения кирпичного здания при взрыве на расстоянии 10 м., от него на грунте заряда гексогена массой 10 кг.
1. Определение тротилового эквивалента:
= 2 * 0,6 * 1,3 * 10 = 1,56
2. Определение :
3. Определение PФ:
4. Увеличивая табличные значения давлений или уменьшая рассчитанное значение PФ в 1.5 раза по таблице 5 определяем, что здание получит средние разрушения.
По диаграмме разрушений.
Более точная оценка может быть получена на основе использования диаграмм, в которых результат воздействия ударной волны зависит от давления и импульса. Каждому конкретному объекту соответствует своя диаграмма степени разрушений, типичная форма.
Как следует из диаграммы, лишь небольшая зона А характеризуется зависимостью степени разрушений как от давления, так и от импульса. Остальная часть плоскости соответствует прямым P=const (зона В), где влияние импульса мало, и прямым I=const (зона С), где не ощущается влияния давления.
Недостаток такого подхода к оценке степени разрушения зданий состоит в том, что составление диаграммы для конкретного объекта представляет собой достаточно сложную задачу. Безопасными расстояниями для людей при взрывах считаются такие расстояния, при которых человек не получает травм. При прямом воздействии воздушной ударной волны на человека границей опасной зоны является расстояние от центра взрыва до условной линии (радиус окружности), где давление фронта ударной волны Pф не превышает 10 кПа.
В Российской федерации установлены единые правила определения безопасных расстояний обязательные к соблюдению всеми организациями, выполняющими взрывные работы. За основу проведения расчета минимально возможного безопасного расстояния в этих правилах принята формула:
(16)
взрывобезопасность разгерметизация газовоздушный
Где:
R > Rбез - безопасное расстояние в метрах;
MT - тротиловый эквивалент взрывчатого вещества в килограммах;
К - коэффициент, зависящий от условий взрыва.
Значения коэффициента К при размещении людей без укрытий устанавливаются в диапазоне от 30 до 45 для разных типов взрывов. В исключительных случаях, когда требуется максимально возможное приближение персонала к месту взрыва, R без может быть определено при коэффициенте 15, а например при укрытии людей в блиндажах К составляет 9,3. Единые правила определения безопасных расстояний предусматривают правила расчета этих расстояний не только для человека, но и для зданий (сооружений), и для различных видов взрывов.
Размещено на Allbest.ru
...Подобные документы
Оценка устойчивости работы объекта экономики в условиях заражения атмосферы химически опасным веществом. Расчет ударной волны ядерного взрыва. Оценка устойчивости объектов к воздействию ударной волны, возникающей при взрывах газовоздушных смесей.
контрольная работа [789,4 K], добавлен 29.12.2014Определение радиуса взрывоопасной зоны при аварийной разгерметизации стандартной цистерны со сжиженным пропаном. Расчет величины избыточного давления во фронте ударной волны при взрыве облака топливно-воздушных смесей при аварии цистерны с пропаном.
контрольная работа [67,8 K], добавлен 19.05.2015Поражающие факторы наземного ядерного взрыва и их воздействие на человека. Расчет поражающего действия ударной воздушной волны. Оценка химической обстановки на объекте экономики при разрушении емкости со СДЯВ. Оказание помощи при отравлении аммиаком.
контрольная работа [40,8 K], добавлен 25.05.2013Опасность: сущность, признаки и классификация. Параметры ударной волны и светового излучения взрыва. Показатели травматизма и методы их определения. Производственная вибрация и защита от нее. Расчет естественного освещения для планового отдела.
контрольная работа [909,9 K], добавлен 21.01.2011Условия размещения студии видео-звукозаписи. Исследования устойчивости помещения в чрезвычайных ситуациях: при воздействии ударной волны; заражении местности радиоактивными и аварийно химически опасными веществами; авариях на химически опасных объектах.
курсовая работа [57,5 K], добавлен 08.07.2012Методика расчёта степени воздействия ударной волны на объекты и человека при детонационном взрыве газо-паровоздушного облака. Степень теплового воздействия при диффузионном горении горючей жидкости после ее аварийного разлива, при горении огненного шара.
курсовая работа [1,1 M], добавлен 16.11.2010Определение избыточного давления при взрыве газовоздушной смеси; избыточного давления во фронте ударной волны; категории взрывоопасности. Оценка степени поражения людей; устойчивости энергоблока ГРЭС к воздействию ЭМИ. Уровень радиации и доза облучения.
контрольная работа [142,7 K], добавлен 14.02.2012Возможные причины аварий и чрезвычайных ситуаций на водоочистной станции, меры по защите и ликвидации последствий. Дозиметрический и химический контроль на объектах. Оценка радиационной и химической обстановки на станции, воздействия ударной волны.
курсовая работа [309,3 K], добавлен 03.11.2013Оценка химической обстановки в чрезвычайной ситуации. Воздействие на организм человека хлора, оценка его негативного влияния. Расчет зон бедствия при взрыве топливно-воздушных смесей. Основные поражающие факторы пожара и взрыва, опасность данных явлений.
контрольная работа [177,4 K], добавлен 12.02.2015Прогнозирование химической обстановки при разрушении резервуаров с ОХВ. Расчет суммарного эквивалентного количества хлора, перешедшего во вторичное облако. Определение возможных потерь персонала. Первичные действия во время аварии. Оповещение персонала.
курсовая работа [44,0 K], добавлен 04.01.2009Расчет зоны действия ударной волны для наземного трубопровода, вертикального резервуара, дожимной насосной станции, групповой замерной установки с целью оценки физической устойчивости элементов инженерно-технического комплекса хозяйственного объекта.
контрольная работа [39,2 K], добавлен 02.12.2010Оценка безопасности жизнедеятельности людей, устойчивости функционирования объекта в случаях воздействия УВ, СИ и сейсмической волны, взрыва хранилища дизельного топлива на территории объекта, аварии на химическом предприятии, радиоактивного загрязнения.
контрольная работа [243,6 K], добавлен 20.04.2012Прогнозирование обстановки в зоне взрыва аммонита при проведении работ по ликвидации весеннего затора. Расчет безопасных расстояний при хранении взрывчатого вещества и проведении работ. Моделирование аварийной ситуации и оценка индивидуального риска.
дипломная работа [8,0 M], добавлен 13.08.2010Методика оценки химической обстановки, глубина распространения облака, зараженного АОХВ, на открытой местности. Определение размеров зон наводнений при разрушении гидротехнических сооружений. Значение давления ударной волны при взрыве газовоздушной смеси.
методичка [31,1 K], добавлен 30.06.2015Сущность и признаки взрыва. Основные поражающие факторы, действующие при этом, зоны действия взрыва. Его действие на здания, сооружения, оборудование. Поражение человека. Правила безопасного поведения при угрозе взрыва, последствия и поведение после него.
презентация [703,8 K], добавлен 08.08.2014Ударная волна – скачок уплотнения, распространяющаяся со сверхзвуковой скоростью область, в которой происходит резкое увеличение плотности, давления и скорости вещества: структура, воздействие на людей, здания, сооружения; средства и способы защиты.
реферат [77,8 K], добавлен 15.03.2011Обеспечение безопасности при ликвидации последствий взрыва. Причины образования взрывоопасной газовоздушной смеси в топках и газоходах газифицированной котельной. Порядок оповещения персонала и эвакуация из зоны аварии. Мероприятия по защите населения.
курсовая работа [1,4 M], добавлен 07.05.2019Возможность возникновения завалов и их высота для заданной плотности застройки. Определение уровня радиации после взрыва. Расчет параметров волны пропуска на расстоянии 70 км от плотины при ее разрушении. Характер разрушения объекта при землетрясении.
контрольная работа [30,0 K], добавлен 10.11.2015Определение дозы излучения, которую получают рабочие на экскаваторах. Допустимая продолжительность спасательных и других неотложных работ. Определение размеров и площади зоны химического заражения. Радиус действия детонационной волны и продуктов взрыва.
контрольная работа [105,0 K], добавлен 15.06.2013Сущность завалов, образующихся при разрушении зданий, их расчет. Дальность разлета обломков, их показатели. Определение высоты завалов и потерь населения. Особенности взрыва конденсированных веществ. Структура и объемно-массовые характеристики завалов.
курсовая работа [827,9 K], добавлен 02.05.2011