Аксиома о потенциальной опасности

Бытовая, окружающая природная и производственная среды обитания человека, источники опасных факторов. Аксиома о потенциальной опасности взаимодействия человека со средой обитания. Сущность риска, источники формирования опасностей, их классификация.

Рубрика Безопасность жизнедеятельности и охрана труда
Вид курсовая работа
Язык русский
Дата добавления 20.05.2014
Размер файла 334,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Порошкообразные люминофоры наносят на внутреннюю поверхность трубки в виде тонкого равномерного слоя. Образующийся при включении электрический заряд в парах ртути дает линейчатый спектр, большая часть которого излучается в УФ-зоне на длине волны 254 нм. Это коротковолновое излучение ртути возбуждает видимое свечение люминесцентного покрытия внутри трубки. В зависимости от соотношения люминофоров в смеси люминесцентная лампа дает свечение голубоватого, желтоватого или белого цвета. Кроме излучения люминесцентного покрытия в свете люминесцентной лампы присутствуют и линии ртутного спектра, проникающие сквозь слой люминофора рис.7).

1.3.4 Оптические квантовые генераторы (лазеры)

Лазер - прибор, являющийся генератором вынужденного, когерентного во времени и пространстве излучения.

Устройство лазеров основано на управлении энергетическим состоянием атомов и молекул вещества, из которого они изготовлены. У рассмотренных ранее тепловых источников излучение света также связано с переходом атомов из одного состояния в другое. Однако эти переходы в тепловых источниках излучения хаотичны во времени, и поэтому излучаемые ими световые волны одновременно находятся в различных фазах. В лазерах процесс излучения у всех атомов происходит одновременно. Поэтому световые волны в излучении лазеров абсолютно когерентны, т.е. в одной и той же фазе.

Если создать систему возбужденных активных атомов (лазерную активную среду) и пропустить через нее излучение, то возможно усиление этого излучения. Такое усиление оптического излучения, основанное на использовании вынужденного излучения, называется лазерным усилением.

Для того чтобы лазер-усилитель превратить в лазер-генератор излучения, вводят положительную обратную связь. В качестве звена положительной обратной связи используют оптические резонаторы. Они состоят из двух полупрозрачных зеркал и обеспечивают многократное прохождение волны излучения через активное вещество. В общем случае оптический резонатор - это система отражающих, преломляющих и других оптических элементов в пространстве, между которыми могут возбуждаться волны оптического излучения.

Упрощенную структурную схему лазера можно представить в виде следующих основных элементов (рис.8).

1. Источник энергии, обеспечивающий создание энергии накачки. Под накачкой лазера подразумевается процесс возбуждения вещества, приводящего к возникновению лазерной активной среды. В зависимости от вида подводимой энергии различают оптическую, электрическую, электронную, химическую накачку.

2. Излучатель лазера, преобразующий энергию накачки в лазерное излучение и содержащий один или несколько активных элементов:

а) систему накачки - ряд элементов, предназначенных для преобразования энергии и передачи ее от источника энергии к лазерному активному элементу;

б) лазерный активный элемент, содержащий вещество, в котором создается активная среда в процессе накачки;

в) оптический резонатор.

Структурная схема лазера обычно бывает дополнена еще рядом элементов, обеспечивающих работоспособность лазера или служащих для управления лазерным излучением.

По типу применяемого активного элемента лазеры подразделяются на полупроводниковые, газовые, твердотельные и жидкостные. По характеру свечения лазеры делятся на импульсные и непрерывного свечения. Для полиграфии наибольший интерес представляют газовые и твёрдотельные лазеры.

Существующие газовые лазеры обеспечивают генерацию в широком диапазоне, с ультрафиолетового до далекой инфракрасной области спектра. Активной средой газовых лазеров является образующаяся при возникновении электрического заряда газоразрядная плазма. Используются два типа разрядов: дуговой - сильный высокотемпературный разряд с высокой степенью ионизации плазмы; тлеющий - низкотемпературный, с низкой степенью ионизации плазмы.

Наиболее распространенным типом газоразрядного лазера является гелий-неоновый, работающий на тлеющем разряде. Под действием разряда происходит возбуждение атомов гелия, которые при соударении передают энергию атомам неона, имеющим точно такие же уровни возбуждения.

Твердотельные лазеры отличаются от газовых принципиально только характером накачки. В качестве активной среды используется кристаллический или аморфный диэлектрик, имеющий центры люминесценции.

Заключение

Светотехника - область науки и техники, предметом которой являются исследование принципов и разработка способов генерирования, пространственного перераспределения и измерения характеристик оптического излучения, а также преобразование его энергии в другие виды энергии и использование в различных целях. Светотехника включает в себя также конструкторскую и технологическую разработку источников излучения и систем управления ими, осветительных, облучательных и светосигнальных приборов, устройств и установок, нормирование, проектирование, монтаж и эксплуатацию светотехнических установок.

Источники света, излучатели электромагнитной энергии в видимой (или оптической, т.е. не только видимой, но и ультрафиолетовой и инфракрасной) области спектра.

В конце 19 в. появились первые практически пригодные электрические источники света., в создание которых большой вклад внесли русские учёные П.Н. Яблочков, В.Н. Чиколев, А.Н. Лодыгин и др. С начала 20 в. электрическая лампа накаливания благодаря экономичности, гигиеничности и удобству в эксплуатации начинает быстро и повсеместно вытеснять источники света, основанные на сжигании. Современная электрическая лампа накаливания - тепловой источник света, в котором излучение создаётся спиралью из вольфрамовой проволоки, накалённой до высокой температуры (около 3000 К) проходящим через неё электрическим током. Лампы накаливания - наиболее массовые.

Начиная с 30-х гг.20 в. получают распространение газоразрядные источники света, в которых используется излучение электрического разряда в инертных газах или в парах различных металлов, особенно ртути. По принципу действия они относятся к люминесцентным источниками света или источниками смешанного излучения, т.е. люминесценции и теплового. Благодаря более высокому кпд излучения и большему разнообразию спектра и других характеристик, чем у ламп накаливания, они находят применение для освещения, сигнализации, рекламы и других целей. Особенно широко для освещения применяются люминесцентные лампы, в которых ультрафиолетовое излучение ртутного разряда с помощью люминофоров преобразуется в видимое; светоотдача современных люминесцентных ламп белого света до 80-85 лм/вт. В так называемых электролюминесцентных панелях люминесценция порошкообразных люминофоров, находящихся в среде диэлектрика, возникает под действием переменного электрического поля. По эффективности они близки к лампам накаливания и применяются главным образом как световые индикаторы, табло, декоративные элементы и т.д. В полупроводниковых источников света. Люминесценция возникает при прохождении тока. Арсенид галлия, например, даёт инфракрасное излучение, фосфид галлия и карбид кремния - видимое и т.д. Эти источники света применяются для специальных целей; кпд их пока невелик. Совершенно новый тип источников света представляют собой лазеры, которые дают когерентные световые пучки высоких интенсивностей, исключительной однородности по частоте и острой направленности.

9. Светильники: светораспределение, классификация и рекомендации к применению

Предисловие

Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. N 184-ФЗ "О техническом регулировании", а правила применения национальных стандартов Российской Федерации - ГОСТ Р 1.0-2004 "Стандартизация в Российской Федерации. Основные положения"

Сведения о стандарте

1 РАЗРАБОТАН Обществом с ограниченной ответственностью "Всероссийский научно-исследовательский, проектно-конструкторский светотехнический институт им. С.И.Вавилова" (ООО "ВНИСИ")

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 332 "Светотехнические изделия"

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 11 июля 2011 г. N 176-ст

4 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом информационном указателе "Национальные стандарты", а текст изменений и поправок - в ежемесячно издаваемых информационных указателях "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

ВНЕСЕНА поправка, опубликованная в ИУС N 8, 2012 год

Поправка внесена изготовителем базы данных

1 Область применения

Настоящий стандарт распространяется на осветительные приборы (светильники и/или прожекторы) для наружного и внутреннего освещения, предназначенные для работы в сетях переменного или постоянного тока напряжением до 1000 В включительно.

Стандарт устанавливает классификацию, светотехнические требования и соответствующие методы испытаний осветительных приборов с электрическими источниками света.

Стандарт не распространяется на осветительные приборы:

- для транспортных средств (автомобильных, железнодорожных, авиационных, морских);

- устанавливаемые на строительных и дорожных машинах;

- для рудников и шахт;

- с индивидуальными источниками питания;

- специальные медицинские, театральные, для фото-, кино- и телесъемок.

Светотехнические требования к светильникам для аварийного освещения - по ГОСТ Р МЭК 60598-2-22.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ Р МЭК 60598-1-2003 Светильники. Часть 1. Общие требования и методы испытаний

ГОСТ Р МЭК 60598-2-22-99 Светильники. Часть 2-22. Частные требования. Светильники для аварийного освещения

ГОСТ 2.601-2006 Единая система конструкторской документации. Эксплуатационные документы

ГОСТ 8.023-2003 Государственная система обеспечения единства измерений. Государственная поверочная схема для средств измерений световых величин непрерывного и импульсного излучений

ГОСТ 8.195-89 Государственная система обеспечения единства измерений. Государственная поверочная схема для средств измерений спектральной плотности энергетической яркости, спектральной плотности силы излучения и спектральной плотности энергетической освещенности в диапазоне длин волн от 0,25 до 25,00 мкм; силы излучения и энергетической освещенности в диапазоне длин волн от 0,2 до 25,0 мкм

ГОСТ 8.207-76 Государственная система обеспечения единства измерений. Прямые измерения с многократными наблюдениями. Методы обработки результатов наблюдений. Основные положения

ГОСТ 8.332-78 Государственная система обеспечения единства измерений. Световые измерения. Значения относительной спектральной световой эффективности монохроматического излучения для дневного зрения

ГОСТ 16703-79 Приборы и комплексы световые. Термины и определения

ГОСТ 17616-82 Лампы электрические. Методы измерения электрических и световых параметров

Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодно издаваемому информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по соответствующим ежемесячно издаваемым информационным указателям, опубликованным в текущем году. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применены термины по ГОСТ 16703, а также следующие термины с соответствующими определениями:

3.1 светодиод: Источник света, основанный на испускании некогерентного излучения в видимом диапазоне длин волн при пропускании прямого тока через переход полупроводникового прибора.

3.2 светодиодный модуль: Сборка из двух или более светодиодов с полным набором электрических, оптических, механических и тепловых компонентов без устройства управления.

3.3 светодиодная лампа: Светодиодный модуль, снабженный устройством управления и стандартным цоколем.

3.4 осветительный прибор со светодиодами: Осветительный прибор, в котором в качестве источника света используют светодиоды.

3.5 неразборный осветительный прибор со светодиодами: Осветительный прибор со светодиодами, из которого светодиодный модуль не может быть изъят без применения специальных инструментов или без нарушения его герметизации.

3.6 световая отдача осветительного прибора: Отношение светового потока осветительного прибора при установившемся тепловом режиме к потребляемой электрической мощности.

3.7 коэффициент световой отдачи осветительного прибора со светодиодами: Отношение световой отдачи осветительного прибора к световой отдаче содержащихся в нем светодиодов одного типа в номинальном режиме.

3.8 утилитарное наружное освещение: Наружное освещение, предназначенное для обеспечения безопасного и комфортного движения транспортных средств и пешеходов.

3.9 функционально-декоративное освещение: Наружное освещение, предназначенное для создания безопасной, комфортной и эстетичной обстановки преимущественно для пешеходных зон (тротуаров, парков, скверов, ландшафтов и т.д.).

3.10 гониофотометр ближней зоны: Распределительный фотометр, предназначенный для измерения распределения яркости в ближней зоне светового поля осветительного прибора и использующий в качестве приемника излучения цифровую камеру-яркомер со сменными объективами и нейтральными светофильтрами, обеспечивающими динамический диапазон измерения.

Примечание - Измерительный комплекс гониофотометра снабжен автоматической системой сканирования и программным обеспечением, позволяющим по измеренным данным рассчитывать основные светотехнические параметры: распределение силы света, световой поток, коэффициент полезного действия (КПД), габаритную яркость и др.

3.11 цветовая температура: Температура черного тела, при которой его излучение имеет ту же цветность, что и излучение рассматриваемого источника света.

Примечание - Цветовая температура источника света определяется точкой, соответствующей его цветности на линии черного тела, нанесенной на цветовом графике Международной комиссии по освещению (МКО).

3.12 коррелированная цветовая температура; КЦТ; : Температура черного тела, при которой координаты цветности его излучения близки в пределах заданного допуска к координатам цветности рассматриваемого излучения на цветовом графике МКО.

4 Маркировка

Маркировка - по ГОСТ Р МЭК 60598-1 со следующими дополнениями:

- символ, подтверждающий соответствие осветительных приборов требованиям настоящего стандарта;

- значение КЦТ, , для неразборных осветительных приборов со светодиодами, кроме светильников утилитарного наружного освещения.

Пример - 4500 К.

5 Классификация

5.1 Общая классификация светильников

5.1.1 Светильники подразделяют по классам светораспределения в зависимости от доли светового потока в нижнюю полусферу в соответствии с таблицей 1 и по типу кривой силы света в одной или нескольких характерных меридиональных плоскостях в нижней и/или верхней полусферах - в соответствии с таблицей 2 и рисунком 1.

Примечание - Здесь и далее под характерными плоскостями понимают плоскости, светораспределение в которых в наибольшей степени характеризует светильник. К ним относят плоскости симметрии распределения силы света, а также плоскости, содержащие направление максимума силы света.

5.1.2 При классификации светильника по типу кривой силы света, как правило, указывают, какой полусфере и меридиональной плоскости свойственна данная кривая. При необходимости допускается указывать тип кривых силы света для обеих полусфер и для нескольких меридиональных плоскостей. Если основная светотехническая характеристика светильника - это его кривая силы света в нижней полусфере, то не указывают, какой полусфере соответствует эта кривая силы света.

Для светильников с круглосимметричным светораспределением в классификации не указывают меридиональную плоскость, для которой дана кривая силы света. Для светильников, светораспределение которых имеет две плоскости симметрии, указывают типы кривых силы света в этих плоскостях. Допускается указывать тип кривой силы света только в одной (главной поперечной) плоскости, если кривая силы света в другой (главной продольной) плоскости - косинусная.

5.1.3 Светильники с кривыми силы света, не соответствующими признакам, указанным в таблице 2, относят к светильникам со специальным распределением силы света.

5.2 Классификация светильников наружного освещения

5.2.1 Светильники утилитарного наружного освещения дополнительно классифицируют по типу условной экваториальной кривой силы света в соответствии с таблицей 3 и типу светораспределения в зоне слепимости в соответствии с таблицей 4.

Примечания

1 Здесь и далее под условной экваториальной кривой силы света понимают проекцию на экваториальную плоскость линии пересечения фотометрического тела светильника с соосным круговым конусом, вершина которого совпадает со световым центром светильника, а боковая поверхность проходит через направление максимальной силы света или, если это направление совпадает с осью конуса, через иное характерное направление.

2 Тип светораспределения в зоне слепимости определяется значениями предельной силы света в меридиональной плоскости под углами 80° и 90° к оптической оси светильника, приведенными к световому потоку светильника 1000 лм.

5.3.2 Прожекторы по типу рассеяния подразделяют в зависимости от значения угла рассеяния 2 для характерных меридиональных плоскостей следующим образом:

- узкое - 230°;

- среднее - 30°80°;

- широкое - 280°.

6 Светотехнические требования к светильникам внутреннего освещения производственных, общественных и жилых зданий

6.1 Требования к светильникам общего освещения

6.1.1 Класс светораспределения и тип кривой силы света светильников общего освещения производственных и общественных зданий, а также класс светораспределения светильников общего освещения для жилых помещений должны соответствовать 5.1. Тип кривой силы света светильников для жилых помещений не нормируют. Класс светораспределения светильников для жилых помещений устанавливают визуально.

Для светильников со специальным светораспределением в стандартах или технических условиях на светильники конкретных типов или групп должны быть приведены одна или несколько характерных кривых силы света с указанием соответствующих меридиональных плоскостей.

6.1.2 Светильники общего освещения производственных зданий должны иметь в нижней полусфере защитный угол не менее 15°:

- в любой меридиональной плоскости - для круглосимметричных светильников;

- в продольной и поперечной плоскостях - для симметричных светильников.

Допускается изготовление светильников с защитным углом менее 15° и без защитного угла с указанием условий их применения в технических условиях на светильники конкретных типов или групп.

6.1.3 Зоны ограничения яркости и значения габаритной яркости светильников общего освещения для производственных помещений не нормируют.

6.1.4 Значения защитного (условного защитного) угла, зоны ограничения яркости в нижней полусфере и габаритной яркости подвесных, потолочных и встраиваемых светильников общего освещения помещений общественных зданий различных категорий по ограничению яркости должны соответствовать указанным в таблице 6.

Примечание - Требование к равномерности яркости при установлении габаритной яркости осветительного прибора со светодиодами и методы испытания находятся в стадии рассмотрения.

6.1.5 Значения защитного (условного защитного) угла, зоны ограничения яркости в нижней полусфере и габаритной яркости для подвесных, потолочных и встраиваемых светильников общего освещения помещений общественных зданий со светодиодами должны соответствовать 3-й категории по ограничению яркости, указанной в таблице 6.

6.1.6 Значения защитного (условного защитного) угла, зоны ограничения яркости настенных и напольных светильников общего освещения всех категорий по ограничению яркости должны соответствовать указанным в таблице 7.

* Указывают в эксплуатационных документах по ГОСТ 2.601 на светильники для жилых помещений; в технических условиях на светильники для общественных зданий конкретных типов или групп.

Значения габаритной яркости светильников устанавливают в стандартах или технических условиях на светильники конкретных типов или групп.

6.1.7 Значения габаритной яркости подвесных и потолочных светильников общего освещения жилых помещений с разрядными лампами и светодиодами должны быть не более 5000 кд/м в зоне ограничения яркости 60°-90°.

6.1.8 Значения защитного (условного защитного) угла, зоны ограничения яркости в нижней полусфере и габаритной яркости настенных и напольных светильников общего освещения жилых помещений с разрядными лампами и светодиодами должны соответствовать указанным в таблицах 7 и 8.

6.1.9 Не нормируют значения защитных углов, зоны ограничения яркости и габаритной яркости светильников общего освещения жилых и общественных зданий, устанавливаемых:

- в жилых помещениях при использовании в светильниках ламп накаливания и декоративных светильников с любым источником света;

- в парадных помещениях (например, актовых, зрительных залах, фойе театров, дворцов культуры) при высоте установки более 4 м;

- над светорассеивающей поверхностью светящего потолка;

- за элементами строительных конструкций, экранирующих лампы и светодиоды;

- в помещениях с временным пребыванием людей, кроме коридоров в лечебных учреждениях;

- в виде настенных протяженных светильников:

в продольной плоскости, если световой центр светильника находится на расстоянии не более 0,3 м от стены, при горизонтальном расположении светильника;

в поперечной плоскости в нижней полусфере, если световой центр светильника находится на расстоянии не более 1,0 м от пола.

6.1.10 Значения КПД светильников общего освещения производственных и общественных зданий, кроме светильников со светодиодами, должны соответствовать указанным в таблице 9.

Допускается снижение значения КПД по сравнению с указанным в таблице 9 не более чем на 5% для светильников:

- с двумя и более разрядными лампами;

- с диффузным отражателем;

- с экранирующей решеткой, создающей защитный угол более 40°;

- с защитной сеткой;

- настенных, напольных, встраиваемых.

При одновременном наличии нескольких указанных факторов допускается суммарное снижение нормируемого значения коэффициента полезного действия не более чем на 10%.

6.1.11 Значения световой отдачи светильников со светодиодами для общего освещения производственных и общественных зданий должны соответствовать указанным в таблице 10.

6.1.12 Коэффициент световой отдачи светильников со светодиодами для общего освещения производственных и общественных зданий должен быть не менее 60%.

6.1.13 КПД светильников общего освещения жилых помещений (кроме светильников со светодиодами) и коэффициент световой отдачи светильников общего освещения со светодиодами для жилых помещений должны быть не менее 50%.

Допускается снижение КПД и коэффициента световой отдачи не более чем на 10% для светильников с дополнительными экранирующими или рассеивающими элементами.

6.1.14 Светильники общего освещения производственных и общественных зданий с разрядными лампами, предназначенные для освещения помещений, оборудованных персональными электронно-вычислительными машинами в учреждениях начального и среднего образования и отдельных помещений медицинских учреждений, а также для помещений, в которых существует опасность стробоскопического эффекта, следует комплектовать электронными пускорегулирующими аппаратами.

6.1.15 В технических условиях на светильники конкретных типов или групп для общего освещения производственных, общественных и жилых зданий в зависимости от их назначения должны быть указаны следующие светотехнические параметры:

- класс светораспределения;

- тип кривой силы света (кроме светильников для жилых помещений);

- КПД (кроме светильников со светодиодами);

- защитные углы (светильников для производственных, общественных и жилых зданий);

- зона ограничения яркости и габаритная яркость в этой зоне (светильников для общественных и жилых зданий);

- КЦТ (светильников со светодиодами);

- световая отдача и коэффициент световой отдачи (светильников со светодиодами).

6.2 Требования к светильникам местного и комбинированного освещения

6.2.1 Класс светораспределения и тип кривой силы света светильников местного и комбинированного освещения производственных и общественных зданий, а также класс светораспределения светильников местного и комбинированного освещения для жилых помещений должны соответствовать 5.1.1-5.1.3. Тип кривой силы света светильников для жилых помещений не нормируют.

6.2.2 Значения защитных (условных защитных) углов и зоны ограничения яркости должны соответствовать указанным в таблице 11 для следующих светильников местного и комбинированного освещения общественных и жилых зданий:

- круглосимметричных светильников в любой меридиональной плоскости;

- симметричных светильников в продольной и поперечной плоскостях.

* Указывают в эксплуатационных документах по ГОСТ 2.601 светильников для жилых помещений; в технических условиях на светильники конкретных типов или групп для общественных зданий.

Примечание - Колба лампы, кроме лампы с зеркальным куполом колбы, декоративной колбы и колбы компактной люминесцентной лампы, не должна выходить за плоскость верхнего или нижнего выходного отверстия рассеивателя или отражателя светильника.

6.2.3 Светильники местного освещения для производственных зданий должны иметь отражатель из непросвечивающих материалов, обеспечивающий защитный угол не менее 30°.

6.2.4 Значение габаритной яркости светильников местного и комбинированного освещения общественных и жилых зданий должно быть не более 2000 кд/м в зоне ограничения яркости, указанной в таблице 11.

6.2.5 Значение защитного угла ночников в верхней полусфере должно быть равно 90° при допустимом значении габаритной яркости 500 кд/м.

6.2.6 КПД светильников с традиционными лампами, а также коэффициент световой отдачи и световую отдачу светильников со светодиодами для местного и комбинированного освещения производственных, общественных и жилых зданий не нормируют.

6.2.7 Значение освещенности рабочей поверхности должно быть не менее 300 лк. Отношение максимальной освещенности к минимальной в пределах освещаемой поверхности должно быть не более трех.

Размеры освещаемой поверхности, высота установки светильников местного или комбинированного освещения для производственных, общественных и жилых зданий и создаваемые ими уровни освещенности должны быть указаны в технических условиях на светильники конкретных типов или групп.

6.2.8 Светильники местного и комбинированного освещения с разрядными лампами должны быть укомплектованы электронными пускорегулирующими аппаратами (ЭПРА).

6.2.9 В технических условиях на светильники конкретных типов или групп местного и комбинированного освещения производственных, общественных и жилых зданий в зависимости от их назначения должны быть указаны следующие светотехнические параметры:

- класс светораспределения;

- тип кривой силы света (кроме светильников для жилых помещений);

- освещенность рабочей поверхности;

- защитные углы;

- габаритная яркость и зона ограничения яркости (кроме светильников для производственных зданий);

- КЦТ (светильников со светодиодами).

7. Светотехнические требования к светильникам наружного освещения

7.1 Класс светораспределения и тип кривой силы света в характерных меридиональных плоскостях должны соответствовать 5.1, а тип условной экваториальной кривой силы света в экваториальной плоскости - указанному в таблице 3.

7.2 Значения максимальной силы света светильников утилитарного наружного освещения в зависимости от типа светораспределения в зоне слепимости для любой меридиональной плоскости, приведенные к световому потоку светильника 1000 лм, не должны превышать указанных в таблице 4, при этом абсолютное значение силы света не должно превышать 1000 кд.

7.3 Для светильников, светораспределение которых не может быть охарактеризовано кривыми силы света, например световых столбиков (боллардов), световых колонн, световых комплексов с прожектором и отражающим экраном, в стандартах или технических условиях на светильники конкретных типов или групп должен быть указан класс светораспределения в соответствии с 5.1.1.

7.4 КПД светильников наружного освещения должен быть не менее:

- 65% - для светильников утилитарного наружного освещения;

- 50% - для светильников функционально-декоративного освещения.

7.5 Значение световой отдачи светильников наружного утилитарного освещения со светодиодами должно быть не менее 65 лм/Вт.

7.6 Коэффициент световой отдачи светильников утилитарного наружного освещения со светодиодами должен быть не менее 60%.

7.7 В технических условиях на светильники конкретных типов или групп в зависимости от их назначения должны быть указаны следующие светотехнические параметры:

- класс светораспределения (5.1.1);

- тип кривой силы света в характерных меридиональных плоскостях (5.1.2);

- тип условной экваториальной кривой силы света (5.2.1);

- тип светораспределения в зоне слепимости (5.2.1);

- максимальная сила света в зоне слепимости (7.2);

- КПД (кроме светильников со светодиодами);

- световая отдача и коэффициент световой отдачи (светильников со светодиодами);

- КЦТ светильников функционально-декоративного освещения со светодиодами.

8. Светотехнические требования к прожекторам

8.1 Прожекторы по типам светораспределения и рассеяния должны соответствовать 5.3.1 и 5.3.2.

8.2 Тип рассеяния прожекторов с симметричным светораспределением устанавливают для каждой плоскости симметрии.

Тип рассеяния прожекторов с асимметричным светораспределением (кососвет) устанавливают для главной поперечной плоскости и продольной плоскости, проходящей через направление максимальной силы света.

8.3 В технических условиях на прожекторы конкретных типов или групп должны быть указаны следующие светотехнические параметры:

- максимальная (осевая) сила света;

- угол рассеяния в характерных плоскостях в зависимости от типа рассеяния;

- КЦТ (прожекторов со светодиодами).

Кривые силы света прожекторов в характерных меридиональных плоскостях приводят в каталогах и/или эксплуатационной документации изготовителя.

9 Дополнительные светотехнические требования к осветительным приборам со светодиодами

9.1 Значение КЦТ неразборных осветительных приборов со светодиодами должно соответствовать номинальному значению из области допустимых значений КЦТ, указанных в таблице 12.

КЦТ не нормируют для осветительных приборов с цветными светодиодами, применяемых для архитектурного и функционально-декоративного освещения скверов, парков и бульваров и другого специального назначения.

9.2 Спад светового потока осветительного прибора со светодиодами не должен превышать 15% ко времени его стабилизации.

9.3 Осветительные приборы со светодиодами для наружного освещения должны сохранять в процессе и после воздействия температуры окружающего воздуха от минус 40 °С до плюс 40 °С цветовые

Осветительные приборы со светодиодами для внутреннего освещения должны сохранять в процессе и после воздействия температуры окружающего воздуха 40 °С световые и цветовые параметры.

При воздействии указанных температур световой поток осветительных приборов должен составлять не менее 70%, а значение КЦТ не должно отличаться более чем на 500 К от соответствующих номинальных значений.

После воздействия указанных температур значения светового потока и КЦТ не должны отличаться более чем на 5% от номинальных значений.

10 Светотехнические требования к ручным светильникам

В технических условиях на ручные светильники конкретных типов или групп должны быть указаны:

- освещенность рабочей поверхности при установке светильника на заданной высоте;

- размеры освещаемой поверхности.

11 Методы испытаний

11.1 Общие положения

11.1.1 Светотехнические измерения осветительных приборов выполняют в помещении с неподвижным воздухом при отсутствии дыма и пыли при температуре воздуха (25±2) °С, относительной влажности воздуха от 45% до 80% и атмосферном давлении от 84 до 107 кПа.

Воспроизводимость измерений не должна превышать указанной в таблице 13.

11.1.2 Измерение распределения силы света на гониофотометре проводят в помещении, стены, пол и потолок которого имеют глубокоматовое черное покрытие. Допускается использование экранов, диафрагм и тубусов в качестве средств защиты от засветки отражающих поверхностей помещения. Кроме того, должны быть приняты меры по исключению влияния постороннего света и ограничению влияния отраженного света от измерительного оборудования.

11.1.3 До проведения измерений время стабилизации световых характеристик осветительных приборов после их включения на номинальное напряжение сети должно быть не менее:

- 5 мин - для осветительных приборов с лампами накаливания;

- 15 мин - для осветительных приборов с разрядными лампами высокого давления;

- 40 мин - для осветительных приборов с люминесцентными лампами.

Для осветительных приборов со светодиодами время стабилизации световых характеристик должно быть указано в технических условиях на осветительные приборы конкретных типов или групп, а при отсутствии таких данных определено опытным путем по 11.14.

11.1.4 Применяемые средства измерений должны быть поверены, а испытательное оборудование аттестовано.

11.1.5 Для выполнения светотехнических измерений методом относительной фотометрии в осветительные приборы устанавливают измерительные (контрольные) лампы по ГОСТ 17616, которые калибруют путем сравнения с эталонными светоизмерительными лампами по ГОСТ 8.023.

11.1.6 При фотометрировании прожектор устанавливают в нормальном положении на фотометрическом стенде, имеющем лимбы для отсчета углов с погрешностью 0,5°. Под нормальным положением понимают положение прожектора, при котором его оптическая ось параллельна горизонтальной плоскости.

11.1.7 Измерения световых характеристик осветительных приборов осуществляют в измерительных установках (в гониофотометре или фотометрическом шаре), оснащенных фотометрами (фотометрическими головками с измерителями тока, люксметрами, яркомерами, цифровыми камерами), спектральные характеристики которых корригированы под относительную спектральную световую эффективность излучения для стандартного фотометрического наблюдателя МКО - (ГОСТ 8.332). Составляющие относительных погрешностей средств измерений приведены в таблице 14 для доверительной вероятности 0,95 по ГОСТ 8.207 и рекомендациям МКО [1]-[3].

Примечание - Для расчета координат цветности в системах диаграмм МКО 1931 г., 1960 г. и 1976 г. и определения коррелированной цветовой температуры рекомендуется использование измерительного оборудования со встроенным программным обеспечением.

Погрешность измерения световых и цветовых параметров указана в 11.1.7.

11.2 Измерение распределения силы света

11.2.1 Измерение распределения силы света осветительных приборов проводят на гониофотометре (распределительном фотометре) или на гониофотометре ближней зоны.

Гониофотометр должен обеспечивать измерение силы света осветительных приборов по одной из принятых по рекомендациям МКО [4] систем фотометрирования , , , и , в соответствии с приложением Б. Рекомендуются к использованию гониофотометры, работающие по системе фотометрирования , , в первую очередь, для фотометрирования осветительных приборов с круглосимметричным распределением силы света. Для фотометрирования осветительных приборов с симметричным и асимметричным распределениями силы света (например, прожекторы типа "кососвет") могут быть использованы гониофотометры, работающие по системе , . В ряде случаев используют гониофотометры, работающие по системе , , например для фотометрирования светильников, плоскость симметрии которых совпадает с главной поперечной плоскостью.

11.2.2 Требования к юстировке осветительных приборов на гониофотометре

11.2.2.1 Гониофотометр должен иметь приспособления для крепления осветительных приборов различной конструкции.

Крепление осветительных приборов должно соответствовать их рабочему положению. В качестве базового принимают рабочее положение, при котором с центром вращения гониофотометрической системы совмещен фотометрический центр осветительного прибора, а с ее полярной осью (линией пересечения полуплоскостей фотометрирования) совмещена оптическая (в системе , ), продольная (в системе , ) или поперечная (в системе , ) ось осветительного прибора.

Положение фотометрического центра осветительного прибора определяют в зависимости от его оптической схемы в соответствии с приложением В. В отдельных случаях указанное положение должно быть определено изготовителем.

Рекомендуется использование гониофотометров с неподвижным положением осветительного прибора во время цикла измерений. Допускается применение гониофотометров с вращением осветительного прибора при условии сохранения его рабочего положения. При этом, если положение осветительного прибора влияет на результаты измерения, вводят поправочный коэффициент, учитывающий это влияние.

11.2.2.2 Центр приемной поверхности фотометрической головки должен находиться на прямой, проходящей через фотометрический центр гониофотометра, а ее плоскость должна быть перпендикулярна к этой прямой. При наличии в гониофотометре зеркал данная прямая представляет собой ломаную, проходящую через центры этих зеркал. Размер зеркал должен быть таким, чтобы изображение светящей части осветительного прибора, видимое из центра приемной поверхности фотометрической головки по любому направлению фотометрирования, не выходило за пределы зеркал.

11.2.2.3 Расстояние фотометрирования, определяемое расстоянием от фотометрического центра гониофотометра до центра приемной поверхности фотометрической головки (с учетом отражения от зеркал, при наличии), должно быть таким, при котором его отношение к максимальному размеру светящей поверхности светильника составляет, не менее:

- десяти - для осветительных приборов с концентрированной кривой силы света;

- семи - для осветительных приборов с глубокой кривой силы света;

- пяти - для осветительных приборов с кривой силы света всех остальных типов.

Для прожекторов расстояние фотометрирования должно быть указано в технических условиях на прожекторы конкретных типов или групп, а при отсутствии таких данных определено опытным путем. Для этого прожектор устанавливают в положение, при котором его оптическая ось параллельна горизонтальной плоскости, и измеряют вертикальную освещенность на площадке, обращенной к прожектору, в точках оптической оси при удалении от прожектора. Расстояние , начиная с которого произведение остается постоянным в пределах погрешности 1%, принимают за расстояние фотометрирования.

При измерениях расстояние фотометрирования должно быть постоянным.

Для гониофотометров ближней зоны расстояние фотометрирования не нормируют.

11.2.3 Требования к сетке углов измерения

11.2.3.1 Сетку углов измерения устанавливают в зависимости от характера светораспределения осветительного прибора и принятой системы фотометрирования.

11.2.3.2 Для осветительных приборов, излучающих только в одну полусферу внешнего пространства (нижнюю или верхнюю в зависимости от рабочего положения осветительного прибора в гониофотометре), измерения проводят только в соответствующей полусфере.

В системе фотометрирования , измеряемый диапазон меридиональных углов устанавливают:

- от 0° до 90° - для нижней полусферы;

- от 90° до 180° - для верхней полусферы;

- от 0° до 180° - для полной сферы.

В системах фотометрирования , и , измеряемый диапазон меридиональных углов и устанавливают от минус 90°до плюс 90° для любой полусферы.

11.2.3.3 Начальные и конечные значения меридиональных углов должны строго соответствовать границам соответствующих диапазонов. Шаг меридиональных углов не должен превышать 5° независимо от системы фотометрирования. Для светильников с концентрированным типом кривой силы света и прожекторов шаг в области максимальных значений силы света выбирают таким образом, чтобы перепад силы света на одном шаге не превышал 10%. При этом набор значений меридиональных углов может иметь неравномерный шаг, но для каждой меридиональной плоскости этот набор должен быть одинаковым.

11.2.3.4 Диапазон экваториальных углов, определяющих соответствующие меридиональные плоскости, устанавливают:

- в системе фотометрирования , : от 0° до 360°;

- в системе фотометрирования , и , :

для нижней полусферы: от минус 90° до плюс 90°;

для верхней полусферы: от минус 180° до минус 90° и от 90° до 180°;

для полной сферы: от минус 180° до плюс 180°.

11.2.3.5 Начальные и конечные значения экваториальных углов должны строго соответствовать границам соответствующих диапазонов. Шаг экваториальных углов не должен превышать 10° независимо от системы фотометрирования. Для светильников с концентрированным типом кривой силы света и прожекторов, фотометрируемых в системе , или , , шаг в области максимальных значений силы света выбирают таким образом,

11.2.3.6 Для гониофотометров, не обеспеченных автоматическим сканированием, допускается проводить измерения в меньшем количестве меридиональных плоскостей. Минимально допустимое число меридиональных плоскостей и их ориентацию определяют следующим образом:

- для осветительных приборов с круглосимметричным светораспределением - две взаимно перпендикулярные плоскости и в системе фотометрирования , ;

- для осветительных приборов со светораспределением, симметричным относительно главной продольной и главной поперечной плоскостей по ГОСТ 16703,

- две взаимно перпендикулярные плоскости и в системе фотометрирования , , соответствующие плоскостям симметрии осветительного прибора;

- для осветительных приборов со светораспределением, имеющим максимумы силы света вне главных плоскостей осветительного прибора (например, уличных светильников с широкой или полуширокой боковой кривой силы света), - две взаимно перпендикулярные плоскости и , a также все промежуточные меридиональные плоскости , содержащие направления с максимальной силой света;

- для осветительных приборов с асимметричным светораспределением (типа "кососвет") - главная продольная и главная поперечная плоскости, а также продольная плоскость, содержащая направление с максимальной силой света.

Определение минимального числа плоскостей измерения кривых силы света и их ориентацию для осветительных приборов со светораспределением, отличающимся от указанных выше типов, включая светораспределение с кривыми силы света специального типа,

11.2.4 Требования к форме представления результатов измерений

11.2.4.1 Результаты измерений должны быть обработаны в зависимости от характера симметрии светораспределения осветительного прибора и принятой системы фотометрирования. Обработка (симметризация) заключается в усреднении полученных значений силы света для меридиональных плоскостей, симметрично расположенных относительно осей или плоскостей симметрии осветительного прибора. Среднее значение силы света определяют как среднеарифметическое соответствующего массива значений.

При симметризации исходных данных должно быть исключено отклонение от симметрии, связанное со случайными (разброс по плоскостям) или малосущественными факторами (например, наличие слепого отверстия в одной из торцевин цилиндрического отражателя для крепления лампы). Случаи, когда отклонение от симметрии обусловлено принципиальными конструктивными или оптическими особенностями осветительного прибора, должны быть отражены в светораспределении.

11.2.4.2 Усреднение для каждого значения меридионального угла проводят:

- для осветительных приборов с круглосимметричным светораспределением - по всем меридиональным плоскостям ;

- для осветительных приборов со светораспределением, симметричным относительно главной продольной и главной поперечной плоскостей, - по четырем симметричным меридиональным плоскостям, расположенным в соответствующих квадрантах внешнего пространства;

для осветительных приборов со светораспределением, симметричным относительно одной из главных плоскостей осветительного прибора, - по двум меридиональным плоскостям, симметрично расположенным относительно плоскости симметрии.

Для светораспределения осветительного прибора, симметричного относительно экваториальной плоскости, проводят усреднение значений силы света для соответствующих симметричных направлений в нижней и верхней полусферах внешнего пространства.

11.2.4.3 При необходимости для повышения качества представления результатов в графическом виде (в форме графиков кривых силы света) рекомендуется провести "сглаживание" полученных результатов. Для этого используют различные алгоритмы фильтрации и аппроксимации экспериментальных данных, которые, как правило, содержатся в программном обеспечении, прилагаемом к измерительному оборудованию.

11.2.4.4 В целях удобства сравнения распределений силы света осветительного прибора с источниками света, имеющими разный световой поток, проводят нормирование измеренных значений силы света под световой поток условного источника света, равный 1000 лм. Значения силы света осветительного прибора с условным источником света определяют по формуле

- суммарный световой поток источников света в осветительном приборе, равный сумме световых потоков отдельных источников света, лм.

Для осветительных приборов со светодиодами значение величины определяют значением светового потока осветительного прибора.

11.2.4.5 Окончательно распределение силы света осветительного прибора представляют в виде таблицы, содержащей значения силы света, кд/1000 лм, в зависимости от меридиональных и экваториальных углов с учетом симметрии светораспределения и системы фотометрирования. Примеры таких таблиц приведены в приложении Г.

При использовании компьютерного проектирования осветительных установок рекомендуется представлять светораспределение осветительных приборов в виде файлов стандартных форматов, например в IES-формате [5].

Примечание - В автоматизированных гониофотометрах процедуры симметризации, сглаживания и формирования файлов в IES-формате осуществляются с помощью специального программного обеспечения, как правило поставляемого вместе с измерительным оборудованием.

11.3 Определение светового потока

11.3.1 Определение светового потока осветительных приборов осуществляют с помощью гониофотометра по 11.3.2 или 11.3.3 или фотометрического шара по 11.3.4.

11.3.2 Определение светового потока по распределению силы света

11.3.2.1 По результатам измерения распределения силы света на гониофотометре по 11.2 световой поток осветительного прибора, излучающего по всему пространству, определяют в системе , по формуле

Для осветительных приборов с круглосимметричным светораспределением используют формулу

11.3.2.2 Расчет значения светового потока по формулам (5) и (6) проводят одним из известных методов численного интегрирования. Примеры расчета приведены в приложении Д.

11.3.3 Определение светового потока по распределению освещенности на сферической поверхности

11.3.3.1 Измерение распределения освещенности на условной сферической поверхности проводят с помощью гониофотометра в соответствии с рекомендациями МКО [6].

11.3.3.2 Измерение освещенности на сферической поверхности проводят по той же измерительной сетке углов, которую применяют при измерении распределения силы света для системы фотометрирования , (11.2.3).

11.3.3.3 По результатам измерения распределения освещенности световой поток осветительного прибора, излучающего по всему пространству, определяют по формуле

- освещенность на сферической поверхности в точке, определяемой углами и .

Расчет значения светового потока по формуле (7) проводят аналогично 11.3.2.

11.3.4 Измерение светового потока осветительного прибора в фотометрическом шаре

11.3.4.1 Измерение проводят по ГОСТ 17616 при выполнении следующих дополнительных требований:

- общая площадь поверхности осветительного прибора не должна превышать 2% площади внутренней поверхности шара, а для протяженных осветительных приборов отношение максимального габаритного размера осветительного прибора к диаметру шара должно быть не более 2:3;

- экран, закрывающий приемник излучения, должен находиться от него на расстоянии от 1/3 до 1/2 радиуса внутренней поверхности фотометрического шара;

- размеры экрана должны быть такими, чтобы размер тени от экрана на стенке шара при включенном светильнике или лампе был в два раза больше диаметра измерительного окна;

- светильник с люминесцентными лампами должен быть расположен в шаре таким образом, чтобы его главная продольная плоскость была параллельна плоскости измерительного окна;

- напольный светильник должен быть расположен в шаре так, чтобы его светящаяся часть находилась в центре шара.

Оценку селективности и равномерности окраски шара проводят по ГОСТ 17616.

11.3.4.2 Для осветительных приборов с плоским выходным отверстием допускается проводить измерение светового потока через окно в фотометрическом шаре. Диаметр окна не должен превышать 1/3 диаметра шара. При измерении осветительный прибор устанавливают с внешней стороны шара так, чтобы плоскость выходного отверстия осветительного прибора была расположена заподлицо с плоскостью окна шара (рисунок 2а). Зазор между краем окна шара и осветительным прибором должен быть перекрыт крышкой из материала с характеристиками отражения света, близкими к характеристикам отражения внутренней поверхности шара.

Для калибровки такой установки следует использовать эталонные источники света (например, галогенные лампы накаливания с зеркальным отражателем или светодиодные модули или лампы) с плоским выходным отверстием, которые устанавливают по аналогичной схеме с измеряемым осветительным прибором. При отсутствии таких эталонов допускается использование традиционных эталонных ламп накаливания, при этом их расположение в шаре (рисунок 2б) должно быть таким, при котором выполняются требования по экранированию приемного окна от прямого света эталонной лампы по 11.3.4.1.

11.4 Определение класса светораспределения

Класс светораспределения осветительного прибора определяют по доле светового потока в нижнюю полусферу , %, по формуле

- полный световой поток осветительного прибора, лм.

Значения величин и определяют по результатам измерения распределения силы света осветительного прибора в соответствии с 11.3.2.1 по формуле (5) или (6), при этом верхний предел интегралов по переменной при расчете должен соответствовать значению /2.

...

Подобные документы

  • Источники ионизирующего излучения и их физическая природа. Требования по эксплуатации радиационно-опасных объектов и меры защиты населения. Критерии и методы оценки опасных ситуаций, определение величины риска. Понятие очага химического поражения.

    контрольная работа [25,3 K], добавлен 14.04.2014

  • Среда обитания и жизнедеятельности человека. Факторы, воздействующие на человека в процессе его жизнедеятельности. Техногенные опасности в зоне действия технических систем. Классификация основных форм деятельности человека. Допустимые условия труда.

    реферат [18,3 K], добавлен 23.02.2009

  • Взаимодействие человека со средой обитания и ее составляющими. Понятие опасности, ее виды, источники и способы защиты. Возникновение и развитие научно-практической деятельности в сфере безопасности жизнедеятельности человека, ее сущность, цели и задачи.

    реферат [27,8 K], добавлен 09.11.2009

  • Основные положения безопасности жизнедеятельности. Факторы и ситуации, оказывающие отрицательное влияние на человека. Аксиома о потенциальной опасности любой деятельности. Вредные и опасные производственные факторы. Средства индивидуальной защиты.

    презентация [870,4 K], добавлен 01.06.2015

  • Допустимое воздействие вредных факторов на человека и среду обитания. Токсикологическая классификация вредных веществ. Действие ионизирующих излучений на организм человека. Основные виды, источники и уровни негативных факторов производственной среды.

    контрольная работа [47,3 K], добавлен 01.03.2015

  • Естественные, техногенные и антропогенные опасности. Воздействие вредных или опасных факторов на организм человека. Три зоны индивидуального риска. Значения риска смерти людей от условий жизни и деятельности. Риски смертельных случаев на производстве.

    контрольная работа [24,3 K], добавлен 05.02.2016

  • Человек как элемент среды обитания. Основные принципы существования и развития всего живого. Понятие среды обитания. Изучение состояния среды обитания и процессов взаимодействия живых существ с ней. Экология. Среда обитания человека. Техносфера.

    реферат [26,8 K], добавлен 20.10.2008

  • Понятие безопасности - состояния защищенности жизненно важных интересов личности, общества и государства от внутренних и внешних угроз. Аксиома потенциальной опасности и концепция приемлемого риска. Объекты и субъекты безопасности, принципы обеспечения.

    презентация [167,8 K], добавлен 24.06.2015

  • Анализ проблем безопасности жизнедеятельности как науки, его основание на раскрытии особенностей безопасного взаимодействия человека (группы людей) со средой обитания. Характеристика компонентов среды обитания (социальный, техногенный, природный).

    реферат [128,0 K], добавлен 17.12.2013

  • Сущность естественной, социальной и техногенной сферы. Детальная характеристика среды обитания современного человека. Основные причины возрастания потребности современного человека в общении с природой. Особенности искусственной среды обитания человека.

    презентация [274,7 K], добавлен 21.04.2015

  • Воздействие человека на среду вызывает ответные противодействия всех ее компонентов. Понятие среды обитания, ее эволюция и взаимодействие с человеком. Теплообмен человека с окружающей средой и влияние на него микроклимата. Тепловое самочувствие.

    реферат [24,7 K], добавлен 26.05.2008

  • Идентифицирование опасных и вредных факторов, негативно воздействующих на человека. Анализ источников опасностей. Классификация опасных и вредных производственных факторов. Вибрация, акустические колебания, механические и химические негативные факторы.

    презентация [605,9 K], добавлен 15.12.2014

  • Определение основных понятий и принципов безопасности человека и общества. Факторы, влияющие на повышение опасности, ее виды, классификация, анализ и количественная оценка. Управление безопасностью как система минимизации опасностей и вредных факторов.

    реферат [139,9 K], добавлен 20.05.2014

  • Влияние среды обитания и окружающей природной среды на жизнедеятельность человека. Основы физиологии труда. Воздействие на человека опасных и вредных факторов среды. Основы техники безопасности. Правовое обеспечение безопасности жизнедеятельности.

    методичка [160,0 K], добавлен 17.05.2012

  • Исследование метеорологических условий производственной среды. Параметры микроклимата производственных помещений. Характеристика влияния вредных и опасных факторов на организм человека. Санитарно-технические мероприятия по борьбе с вредными веществами.

    реферат [50,8 K], добавлен 02.10.2013

  • Характер воздействия на человека потоков жизненного пространства, их факторы. Опасности как негативные воздействия внешней среды, их источники и методы преодоления. Развитие научно-практической деятельности в области безопасности жизнедеятельности.

    реферат [24,7 K], добавлен 01.06.2009

  • Основные показатели степени потенциальной опасности радиационно-опасных объектов. Приборы радиационной разведки и дозиметрического контроля. Мероприятия по ограничению облучения населения и его защите в условиях радиационной аварии, алгоритм действий.

    контрольная работа [54,3 K], добавлен 26.02.2011

  • БЖД – степень защиты человека от чрезвычайных опасностей. Основная направленность мероприятий по безопасности жизнедеятельности. Понятие и критерий безопасности. Классификация рисков и опасностей, их проявления. Влияние факторов опасности на человека.

    курс лекций [33,2 K], добавлен 20.07.2010

  • Задачи безопасности жизнедеятельности: идентификация, защита и ликвидация опасности. Презумпция потенциальной опасности деятельности. Угрозы естественного и антропогенного происхождения. Оценка рисков по результату воздействия негативных факторов.

    презентация [254,8 K], добавлен 28.04.2014

  • Воздействие негативных факторов на человека и среду обитания. Вредные вещества и их действие на человека. Загрязнение атмосферы. Воздействие вибраций и акустических колебаний на человека. Действие ионизирующих излучений на организм человека.

    реферат [17,5 K], добавлен 06.11.2005

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.