Некоторые аспекты безопасности жизнедеятельности

Понятие травм, влекущих за собой смерть либо утрату работником трудоспособности. Определение вредных факторов производственной среды. Виды стихийных природных явлений. Механизмы образования и разрушения озонового слоя. Поражения при ядерном взрыве.

Рубрика Безопасность жизнедеятельности и охрана труда
Вид курсовая работа
Язык русский
Дата добавления 27.06.2014
Размер файла 281,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

КУРСОВАЯ РАБОТА

Некоторые аспекты безопасности жизнедеятельности

1. Производственная травма

Производственная травма - причинение вреда здоровью рабочего или служащего вследствие несчастного случая на производстве, повлекшего за собой: необходимость перевода работника на другую работу, временную или стойкую утрату работником трудоспособности, смерть работника.

Производственной травмой считается повреждение, которое сотрудник получил в рабочее время на территории предприятия или выполняя поручение руководства за его пределами. Кроме того, производственной травмой считается повреждение, полученное во время установленных трудовым договором перерывов, переработки, подготовки к началу работы, а также рабочих командировок.

2. Шум как вредный фактор производственной среды

Шум - один из наиболее распространенных неблагоприятных физических факторов окружающей среды, приобретающих важное социально-гигиеническое значение, в связи с урбанизацией, а также механизацией и автоматизацией технологических процессов, дальнейшим развитием авиации, транспорта.

Шум определяют как звук, оцениваемый негативно и наносящий вред здоровью.

Шум - это совокупность апериодических звуков различной интенсивности и частоты (шелест, дребезжание, скрип, визг и т. п.).

С физиологической точки зрения шум - это всякий неблагоприятно воспринимаемый звук.

Окружающие человека шумы имеют разную интенсивность: разговорная речь - 50-60 дБА, автосирена - 100 дБА, шум двигателя легкового автомобиля - 80 дБА, громкая музыка - 70 дБА, шум от движения трамвая - 70-80 дБА, шум в обычной квартире - 30-40 дБА.

По спектральному составу в зависимости от преобладания звуковой энергии в соответствующем диапазоне частот различают низко-, средне- и высокочастотные шумы. Шум по временным характеристикам может быть постоянным по уровню и непостоянным. Непостоянный шум может быть колеблющимся по уровню, прерывистым и импульсным, по длительности действия - продолжительным и кратковременным. Шум как акустический процесс характеризуется с физической и физиологических сторон. С гигиенических позиций придается большое значение амплитудно-временным, спектральным и вероятностным параметрам непостоянных шумов, наиболее характерных для современного производства. С физической стороны он представляет собой явление, связанное с волнообразным распространением колебаний частиц упругой среды.

По физической сущности шум - это волнообразное движение частиц упругой среды (газовой, жидкой или твердой) и поэтому характеризуется амплитудой колебания (м.), частотой (Гц), скоростью распространения (м/с) и длиной волны (м.). Характер негативного воздействия на органы слуха и подкожный рецепторный аппарат человека зависит еще и от таких показателей шума, как уровень звукового давления (дБ) и громкость. Первый показатель называется силой звука (интенсивностью) и определяется звуковой энергией в эргах, передаваемой за секунду через отверстие в 1 см. кв. Громкость шума определяется субъективным восприятием слухового аппарата человека. Порог слухового восприятия зависит еще и от диапазона частот. Так, ухо менее чувствительно к звукам низких частот интенсивность в различных отраслях экономики имеются источники шума - это механическое оборудование, людские потоки, городской транспорт.

По источникам возникновения шум классифицируется:

1) Механический шум, обусловленный колебаниями деталей машин и их взаимным перемещением;

2) Аэрогидродинамические шумы возникают при движении газов и жидкостей, их взаимодействия с твердыми телами;

3) Электромагнитный шум возникает в электрических машинах и электрооборудовании.

По характеру спектра шум классифицируется на:

1) Широкополосный шум;

2) Тональный шум.

Звуковые колебания различных диапазонов и спектрального состава могут возникать в результате работы машин, агрегатов, вентиляторов, компрессоров, газотурбинных установок, нагревательных печей, трансформаторов и др. Автотранспортные средства: автобусы, грузовые и легковые машины, средства железнодорожного, воздушного и водного транспорта также являются источниками акустических колебаний.

Воздействие шума на организм человека вызывает негативные изменения прежде всего в органах слуха, нервной и сердечнососудистой системах. Степень выраженности этих изменений зависит от параметров шума, стажа работы в условиях воздействия шума, длительности действия шума в течение рабочего дня, индивидуальной чувствительности организма.

Субъективная реакция человека на шумовое воздействие зависит от степени умственного и физического напряжения, возраста, пола, состояния здоровья, длительности влияния и уровня шума.

Под влиянием шума у людей изменяются показатели переработки информации, снижается темп и ухудшается качество выполняемой работы.

Изучение влияния шума на жителей разного пола и возраста показало, что более чувствительны к нему женщины и лица старших возрастных групп.

Длительное воздействие шума на организм человека приводит к развитию утомления, нередко переходящего в переутомление, к снижению производительности и качества труда.

Особенно неблагоприятно шум действует на орган слуха. Шум с уровнем звукового давления до 30-35 дБ привычен для человека и не беспокоит его. Повышение этого уровня до 40-70 дБ в условиях среды обитания создает значительную нагрузку на нервную систему, вызывая ухудшение самочувствия и при длительном действии может быть причиной неврозов. Воздействие шума уровнем свыше 75 дБ может привести к потере слуха - профессиональной тугоухости. При действии шума высоких уровней (более 140 дБ) возможен разрыв барабанных перепонок, контузия, а при еще более высоких (более 160 дБ) и смерть.

Как правило, оба уха страдают в одинаковой степени. Начальные проявления профессиональной тугоухости чаще всего встречаются у лиц со стажем работы в условиях шума около 5 лет. Риск потери слуха у работающих при 10-летней продолжительности воздействия шума составляет 10% при уровне 90 дБ (шкала А), 29% - при 100 дБ (шкала А) и 55% - при 110 дБ (шкала А).

Неспецифическое воздействие шума обычно проявляется раньше, чем изменения в органе слуха, и выражается в нарушениях нервно-психической сферы в форме невротического и астенического синдрома в сочетании с вегетативной дисфункцией, сопровождающихся раздражительностью, общей слабостью, головной болью, головокружением, повышенной утомляемостью, расстройством сна, ослаблением памяти и др.

Не исключена возможность развития нейроциркуляторного синдрома, преимущественно по гипертоническому типу.

Больные с потерей слуха требуют рационального трудоустройства, переквалификации или переводятся на инвалидность. Прием на работу с поражением органов слуха и гипертонической болезнью исключен.

Механизм комплексного действия шума на организм сложен и недостаточно изучен.

Наряду с органом слуха восприятие звуковых колебаний часто может осуществляться и через кожный покров рецепторами вибрационной чувствительности. Это подтверждается наблюдениями о том, что люди, лишенные слуха, при прикосновении к источникам, генерирующим звуки, не только ощущают их, но и могут оценивать звуковые сигналы определенного характера. Симптомы снижения слуха, которое бывает обычно двусторонним: звон в ушах, головная боль, быстрая утомляемость, нарушения сна, боли в сердце. В производственных условиях воздействие шума на работающих обычно сочетается с рядом других неблагоприятных факторов - вибрацией, определенной степенью напряженности и тяжести труда, неудовлетворительными микроклиматическими условиями, воздействием химических веществ, инфразвука и ультразвука, электромагнитного поля и др.

Шум может усугублять неблагоприятное воздействие сопутствующих факторов физической и химической природы, оказывая прежде всего отрицательное влияние на состояние здоровья и работоспособность профессиональных групп, труд которых сопровождается нервным напряжением. У лиц, подвергающихся воздействию шума, также могут наблюдаться изменения секреторной и моторной функций желудочно-кишечного тракта, сдвиги в обменных процессах - нарушение основного, витаминного, углеводного, белкового, жирового и солевого обменов, нарушения функционального состояния сердечнососудистой системы в виде брадикардии, повышения тонуса периферических сосудов и др.

Помимо действия шума на органы слуха установлено его вредное влияние на многие органы и системы организма, в первую очередь на центральную нервную систему, функциональные изменения в которой происходят раньше, чем диагностируется нарушение слуховой чувствительности. Поражение нервной системы под действием шума сопровождается раздражительностью, ослаблением памяти, апатией, подавленным настроением, изменением кожной чувствительности и другими нарушениями, в частности замедляется скорость психических реакций, наступает расстройство сна и т. д.

У работников умственного труда происходит снижение темпа работы, ее качества и производительности.

Интенсивный шум на производстве способствует снижению внимания и увеличению числа ошибок при выполнении работы, исключительно сильное влияние оказывает шум на быстроту реакции, сбор информации и аналитические процессы, из-за шума снижается производительность труда и ухудшается качество работы. Шум затрудняет своевременную реакцию работающих на предупредительные сигналы внутрицехового транспорта (автопогрузчиков, мостовых кранов и т. п.), что способствует возникновению несчастных случаев на производстве.

Таким образом, воздействие шума может привести к сочетанию профессиональной тугоухости (неврит слухового нерва) с функциональными расстройствами центральной нервной, вегетативной, сердечнососудистой и других систем, которые могут рассматриваться как профессиональное заболевание - шумовая болезнь.

Профессиональный неврит слухового нерва (шумовая болезнь) чаще всего встречается у рабочих различных отраслей машиностроения, текстильной промышленности и проч.

Случаи заболевания встречаются у лиц, работающих на ткацких станках, с рубильными, клепальными молотками, обслуживающих пресс штамповочное оборудование, у испытателей-мотористов и других профессиональных групп, длительно подвергающихся интенсивному шуму.

Нормируемые параметры шума на рабочих местах определены ГОСТ 12.1.003-83 и Санитарными нормами СН 2.2.4/2.1.8.562-96 «Шум на рабочих местах, в помещениях жилых, общественных зданий и на территории жилой застройки». Для нормирования постоянных шумов применяют допустимые уровни звукового давления в 9 октавных полосах частот в зависимости от вида деятельности.

Для ориентировочной оценки в качестве характеристики постоянного широкополосного шума на рабочих местах допускается принимать уровень звука (дБА), определяемый по шкале А шумомера с коррекцией низкочастотной составляющей по закону чувствительности органов слуха и приближением результатов объективных измерений к субъективному восприятию. Защита от шума достигается разработкой шумовой безопасной техники, применением средств и методов коллективной защиты, индивидуальной защиты и строительно-акустическими методами.

Акустические средства защиты от шума в зависимости от принципа действия подразделяются на средства звукоизоляции, средства звукопоглощения, глушители шума. Наиболее эффективным методом защиты является уменьшение шума в источнике его образования, что достигается применением технологических процессов и оборудования, не создающих чрезмерного шума. Наиболее эффективными звукоизолирующими материалами являются:

- трипласт;

- полимерные покрытия;

- пластобетон.

Звукопоглощающие материалы: мрамор, бетон, гранит, кирпич, фанера, стекловата.

Для борьбы с шумом в помещениях проводятся мероприятия как технического, так и медицинского характера. Основными из них являются:

- устранение причины шума, т. е., замена шумящего оборудования, механизмов на более современное не шумящее оборудование;

- изоляция источника шума от окружающей среды (применение глушителей, экранов, звукопоглощающих строительных материалов);

- ограждение шумящих производств зонами зеленых насаждений;

- применение рациональной планировки помещений;

- использование дистанционного управления при эксплуатации шумящего оборудования и машин;

- использование средств автоматики для управления и контроля технологическими производственными процессами;

- использование против шумов - индивидуальных средств защиты. Эти приспособления снижают уровень громкости шума, но не мешают восприятию необходимых команд и сигналов. Противошумы по назначению и конструктивному исполнению подразделяют на три типа: вкладыши, наушники и шлемы. Выбор индивидуальных средств защиты органа слуха зависит от мощности шумов, спектрального их состава, времени действия за рабочую смену. Противошумы следует применять с первого дня пребывания в шумной обстановке, что способствует предотвращению нарушений слуха и возникновению других неблагоприятных эффектов, связанных с воздействием шума;

- проведение периодических медицинских осмотров с прохождением аудиометрии;

- соблюдение режима труда и отдыха;

- проведение профилактических мероприятий, направленных на восстановление здоровья.

В России разработана система оздоровительно-профилактических мероприятий по борьбе с шумом на производствах, среди которых важное место занимают санитарные нормы и правила.

Выполнение установленных норм и правил контролируют органы санитарной службы и общественного контроля. Таким образом, эффективная защита работающих от неблагоприятного влияния шума требует осуществления комплекса организационных, технических и медицинских мер на этапах проектирования, строительства и эксплуатации производственных предприятий, машин и оборудования.

В целях повышения эффективности борьбы с шумом введены обязательный гигиенический контроль объектов, генерирующих шум, регистрация физических факторов, оказывающих вредное воздействие на окружающую среду и отрицательно влияющих на здоровье людей.

3. Естественные (природные) опасности: классификация и примеры

О классификации…

Стихийные природные явления, соответственно с масштабами их последствий классифицируются как глобальные, локальные и региональные.

К глобальным стихийным бедствиям относят цунами и смерчи, они могут быть присущи каждому материку и нанести вред не только региону со своим эпицентром, но и близлежащим территориям.

Региональные стихийные природные явления характерны для определенных материков и чаще всего связаны с климатом и географическим расположением местности. Так к числу региональных бедствий принадлежат наводнения, пыльные бури, ураганы.

Локальные стихийные явления суховеи, дожди и аномальные для местности температуры, не охватывают большие территории, однако это не мешает наносить ими вреда хозяйству и населению.

Влияние стихийных природных явлений.

Наиболее уязвимы перед лицом стихийных явлений являются малоразвитые государства и страны с развивающейся экономикой.

Экономически развитые станы, которые находятся в зоне возможно риска (США ураганы, Япония землетрясения) на государственном уровне разрабатывают национальные программы, которые помогают предотвратить человеческие и экономические потери от стихийных бедствий.

Также в этих государствах проводятся научные исследования, благодаря которым появляется возможность предвидеть, а иногда и отвратить надвигающуюся катастрофу.

Однако развивающиеся страны и «третьего мира» по-прежнему остаются бессильными перед лицом стихийных явлений. Тарегионов Центральной Африки и Ближнего Востока является засуха, которая обезвоживает почву, что в свою очередь ведет к голоду.

Страны Индонезии ежегодно сталкиваются с тропическими торнадо, при которых скорость ветра достигает 200 км/час. Тропические торнадо уносят жизни сотен людей.

Для того, чтобы помогать беднейшим странам бороться с последствиями стихийных природных явлений, создано множество благотворительных организаций, активисты которых помогают пострадавшим восстанавливать свое имущество, а также предоставляют им материальную гуманитарную помощь. Но как показывает практика, даже развитые страны не всегда имеют возможность противостоять природным стихийным явлениям.

Яркий пример тому цунами в Японии в 2011 году, которое фактически разрушило страну.

Поэтому, следует помнить, что спасение жизни человека, прежде всего в его же руках. И правильная подготовка к возможному бедствию это почти стопроцентная вероятность спасения.

Пример, наводнения происходят практически в одни и те же сроки, а их сила может быть заблаговременно предсказана. Поэтому степень приспособленности населения к ним достаточно высока. Некоторые опасные природные явления происходят:

- в определенные сезоны (например, тропические циклоны - летом, а внетропические - зимой), но в пределах сезона возникают в случайный момент времени, предсказать который не всегда удается;

- нерегулярно действующие, т. е., возникающие в случайный момент времени. Момент наступления таких опасных явлений (например, землетрясений), как правило, заблаговременно не предсказывается и потому они являются чрезвычайно опасными.

Место возникновения опасного природного явления также может быть либо детерминированным (известным), либо случайным (неизвестным).

При этом необходимо иметь в виду условность такого деления.

Так, если падение метеоритов на поверхность Земли возможно повсюду с примерно равной вероятностью, то выход тайфуна на побережье случаен лишь в пределах определенного района (например, Приморского края). Эпицентр землетрясения случаен в пределах сейсмоопасной зоны.

Ураганы, смерчи и другие опасные явления также имеют свои определенные географические зоны возникновения и распространения, а траектории их движения в пределах этих зон случайны. Например, ущербы от ураганов, распространяющихся вдоль и поперек полуострова Флорида, несоизмеримо различны.

4. Озоновый слой

Озоновый экран - это воздушный слой в верхних слоях атмосферы (стратосфере), состоящий из особой формы кислорода - озона.

Толщина озонового слоя в масштабе атмосферы - не больше листа бумаги в объеме домашней библиотеки.

Озон имеет существенное эколого-биологическое значение и является важнейшим компонентом атмосферы, несмотря на то что процентное содержание его невелико - менее 0,0001%. Связано это с тем, что именно озон активно поглощает УФ-излучение.

Озон - форма молекулярного кислорода (03). Основное его количество сосредоточено в стратосфере на высоте 15-25 км. (верхняя граница - 45-50 км.). Парадокс, но те же самые молекулы озона в тропосфере (нижний слой атмосферы) представляют собой опасные элементы, разрушающие живую ткань, включая легкие человека. Однако здесь озона весьма мало, и образуется он лишь во время грозовых разрядов.

Начало образования озона в стратосфере связано с реакцией расщепления молекулярного кислорода коротковолновым (X < 242 нм) УФ-излучением Солнца:

02 + hv - О + О

Далее происходит взаимодействие атомов кислорода (в присутствии третьего тела - м.) с его же молекулами. В результате образуется молекула:

О + О2 + м - О3 + М

Так что же представляет собой слой озона в атмосфере? Теоретически, если весь озон «сжать» до плотности воды и разместить на поверхности Земли, то он образовал бы пленку всего 2-4 мм. толщиной, причем минимум пришелся бы на экватор, а максимум оказался бы у полюсов. Высотное же распределение озона таково, что максимум концентрации отмечается на высоте 25 км. Но она повышается также и на высоте 70 км. Большая часть озона находится в стратосфере, и этот слой в Арктике обычно расположен низко, тогда как в тропической зоне - высоко. Что касается тропосферы, то здесь озона меньше, к тому же он в большей мере подвержен как сезонным, так и другим изменениям, в частности вызванным загрязнениями.

Рис. 1:

Утончение слоя озона может привести к серьезным последствиям для человечества. Уменьшение концентрации озона на 1% вызывает увеличение интенсивности жесткого ультрафиолета у поверхности Земли в среднем на 2%. По своему воздействию на живые организмы жесткий ультрафиолет близок к ионизирующим излучениям, однако из-за большей, чем у у-излучения, длины волны он не способен проникать глубоко в ткани, поэтому поражает только поверхностные органы. Жесткий ультрафиолет обладает достаточной энергией для разрушения ДНК и других органических молекул.

Рис. 2. - Схема разрушения озонового экрана:

Жесткие ультрафиолетовые лучи способны вызвать у человека рак кожи, в частности быстротекущую злокачественную меланому, а также катаракту и иммунную недостаточность, не говоря уже об обычных ожогах кожи и роговицы. Они наносят вред животным и растениям, в частности морским экосистемам, поскольку плохо поглощаются водой.

Впервые мысль об опасности разрушения озонового слоя была высказана в конце 1960-х гг. Большую тревогу со стороны экологов вызвало негативное влияние водяного пара и оксидов азота (NOx), которые выбрасываются реактивными двигателями сверхзвуковых самолетов и ракет на высоте 20-25 км. Именно на этой высоте находится защитный слой озона, задерживающий жесткое ультрафиолетовое излучение космоса. Такие опасения основаны на свойстве оксида азота разрушать озон:

2NO + 03 = N20 + 202

В 1974 г. ученые установили, что вызывать разрушение озонового экрана могут хлорфторуглероды (ХФУ).

Начиная с этого времени так называемая «хлорфторуглеродная проблема» стала одной из основных в исследованиях по загрязнению атмосферы. К хлорфторуглеродам относятся, в частности, фреоны - химически инертные на поверхности Земли вещества.

Они уже более 60 лет используются как хладагенты в холодильниках и кондиционерах, пропелленты для аэрозольных смесей (в бытовых аэрозольных баллончиках), ион образующие агенты в огнетушителях, очистители для электронных приборов, при химической чистке одежды, при производстве пенопластиков.

Почти весь производимый в мире фреон (или фторорганические соединения) в конечном счете поднимается в верхние слои атмосферы и разлагается там под влиянием ультрафиолетовых лучей, которые разрушают устойчивые в обычных условиях молекулы ХФУ.

Последние распадаются на компоненты, обладающие высокой реакционной способностью, в частности атомный хлор. В ходе фотохимического разложения фреона в стратосфере ион хлора выступает как агент разрушения озона. Таким образом, ХФУ переносят хлор с поверхности Земли через тропосферу и нижние слои атмосферы, где менее инертные соединения хлора разрушаются, в стратосферу, к слою с наибольшей концентрацией озона. Осколки фреоновых молекул разрушительно действуют на слой атмосферного озона. ХФУ уже разрушили от 3 до 5% озонового слоя атмосферы.

Очень важно, что при разрушении озона хлор действует подобно катализатору: в ходе химического процесса его количество не уменьшается. Вследствие этого один атом хлора может разрушить до 100000 молекул озона, прежде чем он будет дезактивирован или вернется в тропосферу. Сейчас выбросы ХФУ в атмосферу исчисляются миллионами тонн, но следует заметить, что даже в случае полного прекращения производства и использования ХФУ немедленного результата достичь не удастся: действие уже попавших в атмосферу ХФУ будет продолжаться несколько десятилетий. Для использования в качестве пропеллента в аэрозолях уже найден неплохой заменитель ХФУ - пропан бутановая смесь. По физическим параметрам она практически не уступает фреонам, но, в отличие от них, огнеопасна. Тем не менее такие аэрозоли уже производятся во многих странах, в том числе в России.

Сложнее обстоит дело с холодильными установками - вторыми по величине потребителями фреонов. Дело в том, что из-за полярности молекулы ХФУ имеют высокую теплоту испарения, что очень важно для рабочего тела в холодильниках и кондиционерах.

Лучшим известным на сегодня заменителем фреонов является аммиак, но он токсичен и все же уступает ХФУ по физическим параметрам. Неплохие результаты получены для полностью фторированных углеводородов. Во многих странах ведутся разработки новых заменителей, но полностью эта проблема еще не решена.

Уменьшение плотности озонового щита планеты влечет за собой снижение урожаев сельскохозяйственных культур и продуктивности животноводства, резкое уменьшение биологической продуктивности приповерхностного слоя Мирового океана, а следовательно, уловов рыбы, существенный рост заболеваемости людей раком кожи.

Ясно, что без знания общих экологических законов дальнейший прогресс человечества и поступательное развитие экономики невозможны.

Разрушение озонового слоя.

Озоновый слой находится в атмосфере между 15 и 40 км. над поверхностью Земли. Этот слой выполняет роль экрана смертоносной ультрафиолетовой радиации, ослабляя ее примерно в 6500 раз. В атмосфере озон образуется из кислорода под действием электрических разрядов и космической радиации (рис. 3).

Рис. 3. - Механизмы образования озонового слоя (внизу) и его роль в атмосфере (вверху):

Разрушение озонового слоя на 50% увеличило бы УФ-радиацию в 10 раз, что повлияло бы на зрение человека и животных и могло бы оказать другие губительные воздействия на живые организмы.

Исчезновение же озонового слоя привело бы к непредсказуемым последствиям - вспышкам рака кожи, уничтожению планктона в океане, мутациям растительного и животного мира.

Впервые появление озоновой «дыры» над Антарктидой было зафиксировано еще в 1970-е годы. Как показали измерения со спутников, озона в этой «дыре» было на 30-50% меньше нормы. Подобное явление в Антарктиде наблюдается осенью, тогда как в другие времена года содержание озона колеблется около нормы. Позднее выяснилось, что толщина озонового слоя изменяется также в средних и высоких широтах Северного полушария, особенно над Европой, США, Тихим океаном, Европейской частью России, Японией и Восточной Сибирью. Причинами разрушения озонового слоя могли быть: сверхзвуковые самолеты, запуск космических кораблей, большие масштабы производства фреонов.

На основании научных исследований было выяснено, что основной причиной являются фреоны, широко используемые в холодильной технике и в аэрозольных баллончиках.

Международным сообществом был принят ряд мер, направленных на предотвращение разрушения озонового слоя.

В 1977 г. в Программе ООН по окружающей среде был принят план действий по озоновому слою, а в 1985 г. в Вене состоялась конференция, принявшая Конвекцию по охране озонового слоя. Был установлен список веществ, отрицательно влияющих на озоновый слой, и принято решение о взаимном информировании государств о производстве и использованию этих веществ и о принимаемых мерах. Таким образом, было официально заявлено о пагубном воздействии изменений озонового слоя на здоровье людей и окружающую среду, и что меры по охране озонового слоя требуют международного сотрудничества. Решающим стало подписание Монреальского протокола в 1987 г., в соответствии с которым устанавливался контроль за производством и использованием фреонов. Протокол подписало большинство стран мира, в том числе и Россия. По этим соглашениям производство фреонов должно было быть прекращено к 2010 г. Однако соглашение и к 2011 г. полностью не выполнено.

Озоновая же дыра над Арктикой в 2011 г., по последним данным, составляет 2 млн. км. кв. Но до конца не ясно, только ли за счет антропогенных факторов она появляется!

5. Ядерный взрыв

При ядерном взрыве в атмосфере возникают следующие поражающие факторы: воздушная ударная волна, световое излучение, проникающая радиация, электромагнитный импульс, радиоактивное заражение местности (только при наземном (подземном) взрыве).

Распределение общей энергии взрыва зависит от типа боеприпаса и вида взрыва. При взрыве в атмосфере до 50% энергии расходуется на образование воздушной ударной волны, 35% - на световое излучение, 4% - на проникающую радиацию, 1% - на электромагнитный импульс. Еще около 10% энергии выделяется не в момент взрыва, а в течение длительного времени при распаде продуктов деления взрыва. При наземном взрыве осколки деления ядер выпадают на землю, где и происходит их распад. Так происходит радиоактивное заражение местности.

Воздушная ударная волна - это область резкого сжатия воздуха, распространяющаяся во все стороны от центра взрыва со сверхзвуковой скоростью. Источником возникновения воздушной волны являются высокое давление в области взрыва (миллиарды атмосфер) и температура, достигающая миллионов градусов.

Раскаленные газы, стремясь расшириться, сильно сжимают и нагревают окружающие слои воздуха, в результате чего от центра взрыва распространяется волна сжатия или ударная волна. Вблизи центра взрыва скорость распространения воздушной ударной волны в несколько раз превышает скорость звука в воздухе.

С увеличением расстояния от центра взрыва скорость снижается и ударная волна трансформируется в звуковую волну. Наибольшее давление в сжатой области наблюдается на передней ее кромке, которая называется фронтом ударной воздушной волны.

Разность между нормальным атмосферным давлением и давлением на передней кромке ударной волны составляет величину избыточного давления.

Непосредственно за фронтом ударной волны образуются сильные потоки воздуха, скорость которых достигает нескольких сотен километров в час. (Даже на расстоянии 10 км. от места взрыва боеприпаса мощностью 1 Мт скорость движения воздуха более 110 км/час.).

При встрече с преградой создается нагрузка скоростного напора или нагрузка торможения, которая усиливает разрушающее действие воздушной ударной волны. Действие воздушной ударной волны на объекты носит довольно сложный характер и зависит от многих причин: угла падения, реакции объекта, расстояния от центра взрыва и др.

Когда фронт ударной волны достигает передней стенки объекта, происходит ее отражение. Давление в отраженной волне повышается в несколько раз, что и определяет степень разрушения данного объекта.

Для характеристики разрушений зданий, сооружений приняты четыре степени разрушения: полные, сильные, средние и слабые:

- Полные разрушения - когда разрушаются все основные элементы здания, в том числе и несущие конструкции. Подвальные помещения могут частично сохраняться;

- Сильные разрушения - когда разрушаются несущие конструкции и перекрытия верхних этажей, деформируются перекрытия нижних этажей. Использование зданий невозможно, а восстановление нецелесообразно;

- Средние разрушения - когда разрушаются крыши, внутренние перегородки и частично перекрытия верхних этажей. После расчистки часть помещений нижних этажей и подвалы могут быть использованы. Восстановление зданий возможно при проведении капитального ремонта;

- Слабые разрушения - когда разрушаются оконные и дверные заполнения, кровля и легкие внутренние перегородки. Возможны трещины в стенах верхних этажей. Здание может эксплуатироваться после текущего ремонта.

Степень разрушения техники (оборудования):

- Полные разрушения - объект не может быть восстановлен;

- Сильные повреждения - повреждения, которые могут быть устранены капитальным ремонтом в заводских условиях;

- Средние повреждения - повреждения, устраняемые силами ремонтных мастерских;

- Слабые повреждения - это повреждения, существенно не влияющие на использование техники и устраняются текущим ремонтом. При оценке воздействия воздушной ударной волны на людей и животных различают непосредственные и косвенные поражения. Непосредственные поражения возникают в результате действия избыточного давления и скоростного напора, в результате чего человек может быть отброшен, травмирован. Косвенные поражения могут быть нанесены в результате действия обломков зданий, камней, стекла и других предметов, летящих под воздействием скоростного напора. Воздействие ударной волны на людей характеризуется легкими, средними, тяжелыми и крайне тяжелыми поражениями;

- Легкие поражения наступают при избыточном давлении 20-40 кПа. Они характеризуются временным нарушением слуха, легкими контузиями, вывихами, ушибами;

- Поражения средней тяжести возникают при избыточном давлении 40-60 кПа. Они проявляются в контузиях головного мозга, повреждении органов слуха, кровотечении из носа и ушей, вывихах конечностей;

- Тяжелые поражения возможны при избыточных давлениях от 60 до 100 кПа. Они характеризуются сильными контузиями всего организма, потерей сознания, переломами, возможны повреждения внутренних органов;

- Крайне тяжелые поражения наступают при избыточном давлении свыше 100 кПа. У людей отмечаются травмы внутренних органов, внутреннее кровотечение, сотрясение мозга, сильные переломы. Эти поражения часто приводят к смертельному исходу.

Защитой от ударной волны являются убежища. На открытой местности действие ударной волны снижается различными углублениями, препятствиями.

Рекомендуется лечь на землю головой по направлению к взрыву, лучше в углубление или за складку местности.

Световое излучение представляет собой поток лучистой энергии, включающий ультрафиолетовую, видимую и инфракрасную области спектра.

Источником является светящаяся область взрыва, состоящая из нагретых до высокой температуры паров конструкционных материалов боеприпаса и воздуха, а при наземных взрывах и испарившегося грунта.

Размеры и формы светящейся области зависят от мощности и вида взрыва. При воздушном взрыве - это шар, при наземном - полусфера.

Максимальная температура поверхности светящейся области примерно 5700-7700°С. Когда температура снижается до 1700°С, свечение прекращается. Результатом действия светового излучения может быть оплавление, обугливание, большие температурные напряжения в материалах, а также воспламенение и возгорание.

Поражение людей световым импульсом выражается в появлении ожогов открытых и защищенных одеждой участков тела, а также в поражении глаз. Независимо от причин ожогов, поражение делится на четыре степени:

- Ожоги первой степени выражаются поверхностным поражением кожи: покраснением, припухлостью и болезненностью. Они не представляют опасности;

- Ожоги второй степени характеризуются образованием пузырей, наполненных жидкостью. Требуется специальное лечение. При поражении до 50-60% поверхности тела обычно наступает выздоровление;

- Ожоги третьей степени характеризуются омертвлением кожи и росткового слоя, а также появлением язв;

- Ожоги четвертой степени сопровождаются омертвлением кожи и поражением более глубоких тканей (мышц, сухожилий и костей).

Поражение ожогами третьей и четвертой степени значительной части тела может привести к смертельному исходу.

Поражение глаз проявляется в ослеплении от 2 до 5 минут днем, до 30 и более минут ночью, если человек смотрел в сторону взрыва.

Защитой от светового излучения может служить любая непрозрачная преграда. Проникающая радиация представляет собой гамма-излучение и поток нейтронов, испускаемых из зоны ядерного взрыва. Время действия проникающей радиации составляет 15-20 секунд. Поражающее действие проникающей радиации на материалы характеризуется поглощенной дозой, мощностью дозы и потоком нейтронов.

Радиус поражающего действия проникающей радиации при взрывах в атмосфере меньше, чем радиусы поражения от светового излучения и воздушной ударной волны.

Однако на больших высотах, в стратосфере и космосе - это основной фактор поражения.

Проникающая радиация может вызывать обратимые и необратимые изменения в материалах, элементах радиотехнической, оптической и другой аппаратуры за счет нарушения кристаллической решетки вещества, а также в результате различных физико-химических процессов под воздействием ионизирующих излучений.

Поражающее действие на людей характеризуется дозой излучения.

Степень тяжести лучевого поражения зависит от поглощенной дозы, а также от индивидуальных особенностей организма и его состояния в момент облучения. Доза облучения в 1 Зв (100 бэр) не приводит в большинстве случаев к серьезному поражению человеческого организма, а 5 Зв (500 бэр) - вызывает очень тяжелую форму лучевой болезни.

Для поражения воздушной ударной волны и проникающей радиации примерно равны, а для боеприпасов мощностью более 100 кТ зона действия воздушной ударной волны значительно перекрывает зону действия проникающей радиации в опасных дозах. Из этого можно сделать вывод, что при взрывах средних и больших мощностей не требуется специальной защиты от проникающей радиации, так как защитные сооружения, предназначенные для укрытия от ударной волны, в полной мере защищают и от проникающей радиации. Для взрывов сверхмалых и малых мощностей, а также для нейтронных боеприпасов, где зоны поражения проникающей радиацией значительно выше, необходимо предусматривать защиту от проникающей радиации.

Защитой от проникающей радиации служат различные материалы, ослабляющие излучение и поток нейтронов.

Радиоактивное заражение местности.

Его источником являются продукты деления ядерного горючего, радиоактивные изотопы, образующиеся в грунте и других материалах под воздействием нейтронов - наведенная активность, а также не разделившаяся часть ядерного заряда.

Радиоактивные продукты взрыва испускают три вида излучения: альфа, бета и гамма. Время их воздействия на окружающую среду будет весьма продолжительным. Поскольку при наземном взрыве в огненный шар вовлекается значительное количество грунта и других веществ, то при охлаждении эти частицы выпадают в виде радиоактивных осадков. По мере перемещения облака, по его следу происходит выпадение радиоактивных осадков, и, таким образом, на земле остается радиоактивный след. Плотность заражения в районе взрыва и по следу движения радиоактивного облака убывает по мере удаления от центра взрыва.

Форма следа может быть самой разнообразной, в зависимости от конкретных условий. Конфигурация следа реально может быть определена только после окончания выпадения радиоактивных частиц на землю. Местность считается зараженной при уровнях радиации 0,5 P/ч и более. В связи с естественным процессом распада радиоактивность уменьшается, особенно резко в первые часы после взрыва. Уровень радиации на один час после взрыва является основной характеристикой при оценке радиоактивного заражения местности.

Радиоактивное поражение людей и животных на следе радиоактивного облака может вызываться внешним и внутренним облучением.

Последствием облучения может быть лучевая болезнь:

- Лучевая болезнь первой степени возникает при однократной дозе облучения 100-200 Р (0,026-0,052 Кл/кг). Скрытый период болезни может длиться две-три недели, после чего появляется недомогание, слабость, головокружение, тошнота. В крови уменьшается количество лейкоцитов. Через несколько дней эти явления проходят. В большинстве случаев специального лечения не требуется;

- Лучевая болезнь второй степени возникает при дозе облучения 200-400 Р (0,052-0,104 Кл/кг). Скрытый период продолжается около недели. Затем наблюдается общая слабость, головные боли, повышение температуры, расстройство функций нервной системы, рвота. Количество лейкоцитов снижается наполовину. При активном лечении выздоровление наступает через полтора-два месяца. Возможны смертельные исходы - до 20% пораженных;

- Лучевая болезнь третьей степени наступает при дозах облучения 400-600 Р (0,104-0,156 Кл/кг). Скрытый период длится несколько часов. Отмечается общее тяжелое состояние, сильные головные боли, озноб, повышение температуры до 40°С, потеря сознания (иногда - резкое возбуждение). Болезнь требует длительного лечения (6-8 месяцев). Без лечения до 70% пораженных погибают;

- Лучевая болезнь четвертой степени возникает при однократной дозе облучения свыше 600 Р (0,156 Кл/кг). Болезнь сопровождается затемнением сознания, лихорадкой, резким нарушением водно-солевого обмена и заканчивается смертельным исходом через 5-10 суток. Лучевые болезни у животных возникают при более высоких дозах облучения. Внутреннее облучение людей и животных обусловливается радиоактивным распадом изотопов, попавших в организм с воздухом, водой или пищей. Значительная часть изотопов (до 90%) выводится из организма в течение нескольких дней, а остальные всасываются в кровь и разносятся по органам и тканям.

Некоторые изотопы распределяются в организме почти равномерно (цезий), а другие концентрируются в определенных тканях. Так, в костных тканях отлагаются источники a-излучений (радий, уран, плутоний), b-излучений (стронций, иттрий) и g-излучений (цирконий). Эти элементы очень слабо выводятся из организма.

Изотопы йода преимущественно откладываются в щитовидной железе, изотопы лантана, церия и прометия - в печени и почках и т. п.

Биологическое (бактериологическое) оружие.

Основу поражающего действия бактериологического оружия составляют болезнетворные микроорганизмы - бактерии, вирусы, риккетсии, грибки и бактериальные яды (токсины).

Биологические (бактериологические) средства применяются в виде биологических рецептур - смесей биологического агента и специальных препаратов, обеспечивающих благоприятные условия биологическому (бактериологическому) агенту в условиях хранения и применения.

Возможные способы применения биологического (бактериологического) оружия:

- аэрозольный способ - заражение приземного слоя воздуха частицами аэрозоля путем распыления биологических (бактериологических) рецептур;

- трансмиссивный способ - рассеивание искусственно зараженных кровососущих переносчиков заболевания - клещей, блох, комаров и т. п.;

- диверсионный способ - преднамеренное скрытное заражение биологическими (бактериологическими) средствами замкнутых пространств воздуха, воды, а также продовольствия в заранее выбранных районах.

В качестве биологических (бактериологических) агентов могут использоваться возбудители чумы, натуральной оспы, сибирской язвы, холеры, туляремии. К опасным заболеваниям животных относятся ящур, чума крупного рогатого скота, сап, чума овец, свиней и др.

Опасными заболеваниями растений являются фитофтороз картофеля, ржавчина злаковых культур и др.

Бурное развитие молекулярной генетики, расшифровка в 2000 г. генома человека обусловливает возможности создания принципиально новых типов бактериологического оружия.

С помощью генной инженерии можно получить сильнодействующие токсины и, включая генетический материал с токсическими свойствами в вирулентные бактерии или вирусы человека, можно получить бактериологические средства, способные вызвать тяжелые эпидемии. В результате применения биологического (бактериологического) оружия образуются зоны и очаги биологического (бактериологического) поражения.

Зона биологического (бактериологического) заражения - это район местности и воздушного пространства, зараженный биологическими (бактериологическими) возбудителями заболевания.

Очагом биологического (бактериологического) поражения называется территория, на которой в результате воздействия биологического (бактериологического) оружия противника произошли массовые поражения людей, сельскохозяйственных животных и растений.

Очаг может образоваться как в зоне заражения, так и за ее пределами за счет перемещения зараженных людей и животных.

Для предотвращения распространения инфекционных заболеваний устанавливается карантин или обсервация.

Химическое оружие.

Основу химического оружия составляют отравляющие вещества (ОВ) - токсические химические соединения, поражающие людей и животных, заражающие воздух, местность, водоемы и различные предметы на местности.

Некоторые ОВ предназначены для поражения растений.

В химических боеприпасах и приборах ОВ находятся в жидком или твердом состоянии, В момент применения химического оружия ОВ переходят в боевое состояние - пар, аэрозоль или капли и поражают людей через органы дыхания или при попадании на человека - через кожу.

ОВ классифицируются по физиологическому воздействию на организм человека, тактическому назначению, быстроте поступления и длительности поражающего действия, токсическим свойствам и пр.

По физиологическому действию ОВ делятся на группы:

- ОВ нервнопаралитического действия - зарин, зоман, Vx. Они вызывают расстройство функций нервной системы, мышечные судороги, параличи и смерть;

- ОВ кожно-нарывного действия - иприт. Поражает кожу, глаза, органы дыхания и пищеварения (при попадании внутрь);

- ОВ обще-ядовитого действия - синильная кислота и хлорциан. При отравлении появляется тяжелая отдышка, чувство страха, судороги, паралич;

- ОВ удушающего действия - фосген. Поражает легкие, вызывает их отек, удушье;

- ОВ психохимического действия - BZ (Би-Зет). Поражает через органы дыхания. Нарушает координацию движений, вызывает галлюцинации и психические расстройства;

- OB раздражающего действия - хлорацетофенон, адамсит, CS (Си-Эс) и CR (Си-Ар). Эти ОВ вызывают раздражение органов дыхания и зрения.

Нервнопаралитические, кожно-нарывные, обще-ядовитые и удушающие ОВ являются ОВ смертельного действия. ОВ психохимического и раздражающего действия - временно выводят из строя людей.

По быстроте наступления поражающего действия различают быстро действующие ОВ (зарин, зоман, синильная кислота, Си-Эс, Си-Ар) и медленно действующие (Ви-Икс, иприт, фосген, Би-Зет).

По длительности действия ОВ делятся на стойкие и нестойкие.

Стойкие сохраняют поражающее действие несколько часов или суток.

Нестойкие - несколько десятков минут.

Токсодоза - количество ОВ, необходимое для получения определенного эффекта поражения.

При применении химического боеприпаса образуется первичное облако ОВ.

Под действием движущихся масс воздуха облако ОВ распространяется на некотором пространстве, образуя зону химического заражения.

Зоной химического заражения называют район, подвергшийся непосредственному воздействию химического оружия, и территорию, над которой распространилось облако, зараженное ОВ с поражающими концентрациями.

В зоне химического заражения могут возникать очаги химического поражения. Очаг химического поражения - это территория, в пределах которой в результате воздействия химического оружия произошли массовые поражения людей, сельскохозяйственных животных и растений.

Защита от отравляющих веществ достигается использованием средств индивидуальной защиты органов дыхания и кожи, а также коллективные средства. К особым группам химического оружия можно отнести бинарные химические боеприпасы, представляющие собой две емкости с различными газами - не ядовитыми в чистом виде, но при их смешении во время взрыва получается ядовитая смесь. Очаг комбинированного поражения (ОКП) - это территория, в пределах которой в результате одновременного или последовательного применения двух или более видов оружия массового поражения произошли поражения людей, сельскохозяйственных животных, растений и повреждения зданий и сооружений.

ОКП нельзя рассматривать как простое наложение различных поражающих факторов, поскольку люди, получившие ранения, не могут в достаточной степени противостоять радиации, в свою очередь облученный организм не противодействует инфекциям и т. д.

Очаги комбинированного поражения могут возникнуть даже при применении обычных средств поражения в районах расположения химически или радиационно-опасных объектов.

Краткая характеристика новых видов оружия.

В этом разделе содержатся некоторые сведения о новых типах и видах оружия, которые существуют в ряде стран, или которые могут появиться в ближайшие 10-20 лет.

Нейтронное оружие. Это оружие характеризуется тем, что боеприпас может иметь малую (менее 10 кТ в тротиловом эквиваленте) мощность и малые размеры. Так, нейтронные боеприпасы, состоящие на вооружении в США, изготавливаются не только в виде боеголовок ракет типа "Першинг-2", но и в виде артиллерийского снаряда калибром 203 мм. Нейтронное оружие характеризуется мощным потоком нейтронного излучения, а поскольку эффективность биологического воздействия нейтронного излучения превышает в 10 раз соответствующую эффективность гамма-излучения, то нейтронное оружие предназначено прежде всего для уничтожения живой силы противника. При воздушном взрыве сверхмалого (1 кТ) нейтронного боеприпаса суммарная доза облучения свыше 500 бэр (а эта доза является летальной) простирается на расстояние до 1300 м. от эпицентра взрыва.

Высокоточное оружие с неядерным боеприпасом. Такое оружие может поражать отдельные точечные цели, не нанося ущерба другим объектам.

К такому виду оружия можно отнести крылатые ракеты, которые представляют собой небольшой летательный аппарат с турбореактивным двигателем, оснащенный системой наведения, позволяющей поражать цель с точностью до нескольких метров. Крылатая ракета летит на небольшой (порядка 50-100 м.) высоте, следуя рельефу местности, и может запускаться на расстоянии более тысячи километров от цели либо с борта самолета, либо корабля. Навигационная система крылатой ракеты использует заранее подготовленную специальную карту местности, при этом точность наведения на цель определяется точностью составления карты. Если учесть, что современные средства космической разведки позволяют идентифицировать наземные объекты размером порядка метра, то точность наведения, в принципе, может быть очень высокой. К высокоточному оружию относятся и авиационные бомбы с лазерным наведением, что позволяет также поражать объекты противника точечными ударами и исключить массированные бомбовые удары, которые причиняют разрушения на больших площадях.

Лучевое оружие. После провозглашения программы СОИ начались работы в области создания космического лазерного оружия, способного поражать баллистические ракеты на фазе разгона и космические аппараты противника. Однако трудности, обусловленные в основном проблемой расходимости лазерного пучка, пока не преодолены и создание эффективного космического лазерного оружия большой мощности пока задача будущего. Что касается наземного лазерного оружия малой и средней мощности, то оно может применяться для ослепления экипажей боевой техники, личного состава стрелковых частей, пилотов вертолетов, вывода из строя различного рода аппаратуры и комплексов связи и управления. Еще один тип лучевого оружия - пучковое. Направленный пучок нейтральных или заряженных частиц высоких энергий, полученный в ускорителе, способен разрушать защитные барьеры и оболочки, выводить из строя бортовое радиоэлектронное оборудование, уничтожать живую силу противника. Ускорители различных типов эксплуатируются с научными целями уже много лет, достаточно хорошо отработаны и изучены. В будущем могут быть разработаны специфические типы ускорителей для военных целей.

Электромагнитное оружие. Мощные генераторы микроволнового излучения могут воздействовать на радиоэлектронные средства и системы противника, вызывать сбои и отказы в системах наведения, управления, обнаружения и запуска. Кроме того, определенные виды электромагнитного излучения могут воздействовать на человека, нарушая работу мозга и центральной нервной системы. травма озоновый ядерный

Так называемое этническое оружие может поражать одни этнические группы населения и не оказывать вредного влияния на другие. Оно может быть использовано путем целенаправленного специфического химического или бактериологического воздействия на клетки, органы и ткани человека, обладающие внутривидовыми групповыми наследственными особенностями. Большая опасность этнического оружия в том, что оно может быть применимо в мирное время. Кроме вышеперечисленных, могут быть разработаны и применены такие виды оружия, как системы локального изменения климата, искусственное создание озоновых дыр над территорией противника, средства, вызывающие катастрофические природные явления (землетрясения, цунами и т. д.). Таким образом, основная роль в войне будущего отводится оружию, которое способно достаточно быстро разрушить основные объекты экономики и инфраструктуру страны и парализовать деятельность военных и гражданских предприятий, систем транспорта, связи и управления.

...

Подобные документы

  • Влияние среды обитания и окружающей природной среды на жизнедеятельность человека. Основы физиологии труда. Воздействие на человека опасных и вредных факторов среды. Основы техники безопасности. Правовое обеспечение безопасности жизнедеятельности.

    методичка [160,0 K], добавлен 17.05.2012

  • Исследование метеорологических условий производственной среды. Параметры микроклимата производственных помещений. Характеристика влияния вредных и опасных факторов на организм человека. Санитарно-технические мероприятия по борьбе с вредными веществами.

    реферат [50,8 K], добавлен 02.10.2013

  • Очаги поражения при стихийных бедствиях и авариях. Основные причины разрушений и гибели людей при извержениях. Причины образования оползней. Наиболее сильные цунами современности. Виды пожаров по месту возникновения. Характер поражения людей и животных.

    реферат [1,7 M], добавлен 12.10.2014

  • Понятие условий труда как совокупности факторов производственной среды, влияющих на здоровье и работоспособность человека в процессе труда. Виды опасных и вредных факторов в работе технолога: физические, химические, биологические и психофизиологические.

    контрольная работа [22,1 K], добавлен 08.11.2014

  • Особенности развития стихийных явлений, их воздействие на население, объекты экономики и среды обитания. Понятие "опасные природные процессы". Классификация опасных явлений. Вредители лесного и сельского хозяйства. Воздействие на население ураганов.

    презентация [1,7 M], добавлен 26.12.2012

  • Определение избыточного давления, ожидаемого в районе при взрыве емкости. Тяжесть поражения людей при взрыве газовоздушной смеси. Зона детонационной волны. Энергия взрыва баллона. Скоростной напор воздуха. Коэффициент пересчета уровня радиации.

    контрольная работа [198,7 K], добавлен 14.02.2012

  • Допустимое воздействие вредных факторов на человека и среду обитания. Токсикологическая классификация вредных веществ. Действие ионизирующих излучений на организм человека. Основные виды, источники и уровни негативных факторов производственной среды.

    контрольная работа [47,3 K], добавлен 01.03.2015

  • Классификация опасных и вредных производственных факторов по природе действия. Влияние факторов производственной среды на здоровье работников. Оценка фактического состояния степени профессионального риска на рабочих местах. Нормативы безопасности труда.

    контрольная работа [157,3 K], добавлен 14.04.2014

  • Основные понятия и терминология безопасности труда. Классификация негативных факторов. Классификация условий труда по тяжести и напряженности трудового процесса. Эргономические основы безопасности труда. Метеорологические условия производственной среды.

    лекция [2,6 M], добавлен 22.08.2010

  • Опасные и вредные факторы производственной среды: химические, биологические, психофизиологические. Правила безопасности при работе с веществами, применяемыми в реставрации графики. Классификация вредных веществ по степени воздействия на организм.

    курсовая работа [49,1 K], добавлен 05.06.2011

  • Виды стихийных бедствий и их возможные причины. Источники чрезвычайных ситуаций в природной сфере. Классификация опасных природных явлений. Инфекционная заболеваемость людей и сельскохозяйственных животных. Общее число жертв природных катастроф.

    презентация [135,4 K], добавлен 21.06.2012

  • Предмет и методы инженерной охраны труда. Правовые, нормативно-технические и организационные основы обеспечения безопасности жизнедеятельности. Требования производственной санитарии, электро-, пожаробезопасности, защиты от излучений и вредных веществ.

    курс лекций [1,3 M], добавлен 05.06.2014

  • Виды стихийных бедствий. Основные повреждающие факторы при стихийных бедствиях. Защита человека при стихийных бедствиях. Доврачебная помощь при стихийных бедствиях. Мероприятия по защите населения при стихийных бедствиях. Культура безопасности.

    реферат [37,1 K], добавлен 10.02.2008

  • Особенности аттестации рабочих мест по условиям труда. Общая характеристика основных опасных и вредных факторов производственной среды. Анализ и оценка значений вредных и опасных производственных факторов на рабочих местах в ОАО ГРЭС-2 г. Зеленогорска.

    реферат [72,9 K], добавлен 24.07.2010

  • Оценка условий труда на рабочих местах маляра на металлообрабатывающем производстве. Анализ вредных факторов производства. Гигиенические нормативы условий труда и способы защиты работающих от воздействия вредных и опасных факторов производственной среды.

    курсовая работа [130,0 K], добавлен 14.01.2018

  • Основные поражающие факты ядерного взрыва: зоны поражения, методы защиты населения. Экономическая безопасность: возможные угрозы, криминализация экономики. Опасные геологические процессы на городских территориях. Порядок и принципы тушения пожаров.

    контрольная работа [43,9 K], добавлен 14.03.2011

  • Действие населения при авариях на производстве, где используются сильнодействующие ядовитые вещества. Антидотная специфическая терапия при некоторых отравлениях. Характеристика факторов производственной среды. Сущность защитных свойств местности.

    контрольная работа [32,5 K], добавлен 26.05.2010

  • Влияние окружающей среды на трудоспособность человека. Вредные производственные факторы. Виды опасных факторов производственной среды и параметры, определяющие ее влияние на организм человека. Предложения по улучшению окружающей среды на предприятии.

    реферат [53,3 K], добавлен 23.09.2011

  • Характеристика вредных и опасных производственных факторов: физические, химические, биологические, психофизиологические. Изучение понятия риска и его видов (приемлемый, мотивированный, немотивированный). Методы обеспечения безопасности деятельности.

    реферат [146,7 K], добавлен 23.02.2010

  • Выбор методов и средств обеспечения безопасной жизнедеятельности. Идентификация возможных поражающих, опасных и вредных факторов. Характеристика помещения по электроопасности, взрывопожароопасности и молниезащите. Проектирование искусственного освещения.

    курсовая работа [1,4 M], добавлен 19.09.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.