Методика проведения пожарно-тактических расчетов
Методика решения задач по расчету основных показателей, характеризующих тактические возможности пожарных подразделений. Средства и способы обеспечения бесперебойной подачи воды на тушение возгорания, расстановка сил и средств для ликвидации пожаров.
Рубрика | Безопасность жизнедеятельности и охрана труда |
Вид | методичка |
Язык | русский |
Дата добавления | 16.04.2015 |
Размер файла | 136,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://allbest.ru
Методика проведения пожарно-тактических расчетов
1. Расчет основных показателей, характеризующих тактические возможности пожарных подразделений
пожар тушение тактический
Руководитель тушения пожара должен не только знать возможности подразделений, но и уметь определять основные тактические показатели:
Ш время работы стволов и приборов подачи пены;
Ш возможную площадь тушения воздушно-механической пеной;
Ш возможный объем тушения пеной средней кратности с учетом имеющегося на автомобиле запаса пенообразователя;
Ш предельное расстояние по подаче огнетушащих средств.
1.1 Определение тактических возможностей подразделения без установки пожарного автомобиля на водоисточник
1) Определение времени работы водяных стволов от автоцистерны:
раб = ( Vц - Np ?Vp) / Nст ?Qст ?60 (мин.),
Nр = k?L / 20 = 1,2? L / 20 (шт.),
где: раб - время работы стволов, мин.;
Vц - объем воды в цистерне пожарного автомобиля, л;
Nр - число рукавов в магистральной и рабочих линиях, шт.;
Vр - объем воды в одном рукаве, л (см. прилож.);
Nст - число водяных стволов, шт.;
Qст - расход воды из стволов, л/с (см. прилож.);
k - коэффициент, учитывающий неровности местности (k = 1,2 - стандартное значение),
L - расстояние от места пожара до пожарного автомобиля (м).
2) Определение возможной площади тушения водой SТ от автоцистерны:
SТ = ( Vц - Np ?Vp) / Jтр ?расч ? 60 (м2),
где: Jтр - требуемая интенсивность подачи воды на тушение, л/с?м2 (см. прилож.);
расч = 10 мин. - расчетное время тушения.
3) Определение времени работы приборов подачи пены от автоцистерны:
раб = ( Vр-ра- Np ?Vp) / Nгпс ?Qгпс ?60 (мин.),
где: Vр-ра - объем водного раствора пенообразователя, полученный от заправочных емкостей пожарной машины, л;
Nгпс число ГПС (СВП), шт;
Qгпс расход раствора пенообразователя из ГПС (СВП), л/с (см. прилож.).
Чтобы определить объем водного раствора пенообразователя, надо знать, насколько будут израсходованы вода и пенообразователь.
КВ = 100-С / С = 100-6 / 6 = 94 / 6 = 15,7 -
количество воды (л), приходящееся на 1 литр пенообразователя для приготовления 6-ти % раствора (для получения 100 литров 6-ти % раствора необходимо 6 литров пенообразователя и 94 литра воды).
Тогда фактическое количество воды, приходящееся на 1 литр пенообразователя, составляет:
Кф = Vц / Vпо ,
где Vц - объем воды в цистерне пожарной машины, л;
Vпо - объем пенообразоователя в баке, л.
если Кф < Кв , то Vр-ра = Vц / Кв + Vц (л) - вода расходуется полностью, а часть пенообразователя остается.
если Кф > Кв , то Vр-ра = Vпо ?Кв + Vпо (л) - пенообразователь расходуется полностью, а часть воды остается.
4) Определение возможной площади тушения ЛВЖ и ГЖ воздушно-механической пеной:
Sт= ( Vр-ра- Np ?Vp) / Jтр ?расч ? 60 (м2),
где: Sт - площадь тушения, м2;
Jтр - требуемая интенсивность подачи раствора ПО на тушение, л/с?м2;
При tвсп ? 28 оC - Jтр = 0,08 л/с•м2, при tвсп > 28 оC - Jтр = 0,05 л/с•м2.
расч = 10 мин. - расчетное время тушения.
5) Определение объема воздушно-механической пены, получаемого от АЦ:
Vп = Vр-ра ?К (л),
где: Vп - объем пены, л;
К - кратность пены;
6) Определение возможного объема тушения воздушно-механической пеной:
Vт = Vп / Кз (л, м3),
где: Vт - объем тушения пожара;
Кз = 2,5-3,5 - коэффициент запаса пены, учитывающий разрушение ВМП вследствие воздействия высокой температуры и других факторов.
Примеры решения задач
Пример № 1. Определить время работы двух стволов Б с диаметром насадка 13 мм при напоре 40 метров, если до разветвления проложен один рукав 77 мм, а рабочие линии состоят из двух рукавов 51 мм от АЦ-40(131)137А.
Решение
= (Vц - NрVр) / Nст ?Qст · 60 =2400 - (1· 90 + 4 · 40) / 2 · 3,5 · 60 = 4,8 мин.
Пример № 2. Определить время работы ГПС-600, если напор у ГПС-600 60 м, а рабочая линия состоит из двух рукавов диаметром 77 мм от АЦ-40 (130) 63Б.
Решение:
1) Определяем объем водного раствора пенообразователя:
Кф = Vц / Vпо= 2350/170 = 13,8.
Кф = 13,8 < Кв = 15,7 для 6-ти % раствора
Vр-ра = Vц / Кв + Vц = 2350/15,7 + 2350 2500 л.
2) Определяем время работы ГПС-600
= ( Vр-ра- Np ?Vp) / Nгпс ?Qгпс ?60 = (2500 - 2 · 90)/1 · 6 · 60 = 6,4 мин.
Пример № 3. Определить возможную площадь тушения бензина ВМП средней кратности от АЦ-4-40 (Урал-23202).
Решение
1) Определяем объем водного раствора пенообразователя:
Кф = Vц / Vпо = 4000/200 = 20.
Кф = 20 > Кв = 15,7 для 6-ти % раствора,
Vр-ра = Vпо ?Кв + Vпо = 200?15,7 + 200 = 3140 + 200 = 3340 л.
2) Определяем возможную площадь тушения:
Sт = V р-ра / Jтр ?расч ?60 = 3340/0,08 ·10 · 60 = 69,6 м2.
Пример № 4. Определить возможный объем тушения (локализации) пожара пеной средней кратности (К=100) от АЦ-40(130)63б (см. пример № 2).
Решение
Vп = Vр-ра · К = 2500 · 100 = 250000 л = 250 м3.
Тогда объем тушения (локализации):
Vт = Vп/Кз = 250/3 = 83 м3.
1.2 Определение тактических возможностей подразделения с установкой пожарного автомобиля на водоисточник
1) Определение предельного расстояния по подаче огнетушащих средств:
(м),
где
Lпр - предельное расстояние (м),
Hн = 90ч100 м - напор на насосе АЦ,
Hразв = 10 м - потери напора в разветвлении и рабочих рукавных линиях,
Hст = 35ч40 м - напор перед стволом,
Zм - наибольшая высота подъема (+) или спуска (-) местности (м),
Zст - наибольшая высота подъема (+) или спуска (-) стволов (м),
S - сопротивление одного пожарного рукава,
Q - суммарный расход воды в одной из двух наиболее загруженной магистральной рукавной линии (л/с),
2) Определение необходимого напора на пожарном насосе Hн:
Нн = Nрук ? S ? Q2 Zм Zст + Hразв + Hст (м),
где Nрук ? S ? Q2 - потери напора в наиболее загруженной рукавной линии (м),
Нрук = Nрук ? S ? Q2 - потери напора в рукавной линии (м)
2) Определение продолжительности работы водяных стволов от водоемов с ограниченным запасом воды:
(мин.),
где
VПВ - запас воды в пожарном водоеме (л);
VЦ - запас воды в цистерне пожарного автомобиля (л);
Nрук - количество рукавов в магистральных и рабочих линиях (шт.);
Vрук - объем одного рукава (л);
NСТ - количество подаваемых стволов от пожарного автомобиля (шт.);
qСТ - расход воды из ствола (л/с);
3) Определение продолжительности работы приборов подачи пены:
Продолжительность работы приборов подачи пены зависит от запаса пенообразователя в заправочной емкости пожарного автомобиля или доставленного на место пожара.
Способ № 1 (по расходу водного раствора пенообразователя):
раб = ( Vр-ра- Np ?Vp) / Nгпс ?Qгпс ?60 (мин.),
Np ?Vp = 0, т.к. весь водный раствор пенообразователя будет вытеснен из рукавов и примет участие в формировании ВМП (пенообразователь расходуется полностью, а вода остается), поэтому формула имеет окончательный вид:
раб = Vр-ра / Nгпс ?Qгпс ?60 (мин.),
Vр-ра = Vпо ?Кв + Vпо (л), т.к. воды заведомо больше и Кф > Кв = 15,7
Способ № 2 (по расходу запаса пенообразователя):
= Vпо / Nгпс ?Qгпспо? 60 (мин.),
где Nгпс число ГПС (СВП), шт;
Qгпспо расход пенообразователя из ГПС (СВП), л/с;
Vпо - объем пенообразоователя в баке, л.
4) Определение возможного объема тушения (локализации) пожара:
Для ускоренного вычисления объема воздушно-механической пены средней кратности (К = 100, 4- и 6 % -ный водный раствор пенообразователя), получаемой от пожарных автомобилей с установкой их на водоисточник при расходе всего запаса пенообразователя, используют следующие формулы:
а) Vп = (Vпо / 4) ·10 (м3) и Vп = (Vпо / 6) ·10 (м3),
где Vп объем пены, м3;
Vпо - количество пенообразователя (л);
4 и 6 количество пенообразователя (л), расходуемого для получения 1 м3 пены соответственно при 4- и 6 % -ном растворе.
Вывод формулы:
КВ = 100-С / С = 100-6 / 6 = 94 / 6
Vр-ра = Vпо ?Кв + Vпо = Vпо ? (Кв + 1) = Vпо ? (94 / 6 + 6 / 6) = Vпо ? 100 / 6
Vп = Vр-ра ?К = (Vпо ? 100 / 6)? 100 = Vпо ? 10000 / 6 (л)
б) Vп = Vпо ?Кп (л)
Vп = Vпо ?1700 (л) - при кратности 100;
Vп = Vпо ?170 (л) - при кратности 10.
Кп - количество пены, получаемой из 1 литра пенообразователя (для 6% раствора).
Примеры решения задач
Пример № 1. Определить предельное расстояние по подаче ствола А с насадка 19 мм и 2-х стволов Б с диаметром насадка 13 мм, если напор у стволов 40 м, напор на насосе 100 м, высота подъема местности 8 м, высота подъема стволов 12 м. Рукава магистральной линии 77 мм.
Решение
Lпр = (Нн - (Нр zм zст))/S?Q2)·20 = (100 -50-8-12) /0,015 ·142) · 20 = 204 (м),
Нр = Нст + 10 = 40 + 10 = 50 (м).
Пример № 2. Определить время работы двух стволов А с насадка 19 мм и 2-х стволов Б с диаметром насадка 13 мм от автонасоса, установленного на пожарный водоем вместимостью 50 м3. Расстояние от места установки разветвления до водоема 100 метров.
Решение
(мин)
Пример № 3. Определить время работы двух ГПС-600 от АЦ-5-40 (КАМАЗ - 4310), установленной на пожарный гидрант.
Решение
= Vпо / Nгпс ·Qгпспо· 60 = 300 / 2 · 0,36 · 60 7 мин.
Пример № 4. Определить возможный объем тушения (локализации) воздушно-механической пеной средней кратности, если использовался 6 %-ный раствор пенообразователя от АЦ-4-40 (ЗиЛ-433104).
Решение
Vп = (Vпо / 6) ·10 = (300 / 6) ·10 = 500 м3.
Vт = Vп / Кз = 500 / 3 167 м3.
Расчет основных показателей тактических возможностей подразделений позволяет заблаговременно определить возможный объем боевых действий на пожаре и их реальное выполнение.
2.Организация бесперебойной подачи воды на боевые позиции
2.1 Методика расчета потребного количества пожарных автомобилей для перекачки воды к месту тушения пожара
Перекачку воды насосами пожарных машин применяют, если расстояние от водоисточника до места пожара велико (до 2 км), напор, развиваемый одним насосом, недостаточен для преодоления потерь напора в рукавных линиях и для создания рабочих пожарных струй.
Перекачка применяется также, если невозможен подъезд к водоисточнику для пожарных автомобилей (при крутых или обрывистых берегах, в заболоченных местах, при вымерзании пруда или реки у берегов и т.д.). Для этого способа перекачки применяют переносные технические устройства с установленными на них насосами (переносные пожарные мотопомпы).
Размещено на http://allbest.ru
Рис. 1. Схема подачи воды в перекачку
Расстояние в рукавах (штуках) |
Расстояние в метрах |
|
1) Определение предельного расстояния от места пожара до головного пожарного автомобиля Nгол (Lгол). |
||
2) Определение расстояния между пожарными машинами Nмм (Lмм), работающими в перекачку (длины ступени перекачки). |
||
3) Определение количества ступеней перекачки Nст |
||
, где |
||
4) Определение общего количества пожарных машин для перекачки Nавт |
||
5) Определение фактического расстояния от места пожара до головного пожарного автомобиля Nфгол (Lфгол). |
||
Hн = 90ч100 м - напор на насосе АЦ,
Hразв = 10 м - потери напора в разветвлении и рабочих рукавных линиях,
Hст = 35ч40 м - напор перед стволом,
Hвх ? 10 м - напор на входе в насос следующей ступени перекачки,
Zм - наибольшая высота подъема (+) или спуска (-) местности (м),
Zст - наибольшая высота подъема (+) или спуска (-) стволов (м),
S - сопротивление одного пожарного рукава,
Q - суммарный расход воды в одной из двух наиболее загруженной магистральной рукавной линии (л/с),
L - расстояние от водоисточника до места пожара (м),
Nрук - расстояние от водоисточника до места пожара в рукавах (шт.).
Пример . Для тушения пожара необходимо подать три ствола Б с диаметром насадка 13 мм, максимальная высота подъема стволов 10 м. Ближайшим водоисточником является пруд, расположенный на расстоянии 1,5 км от места пожара, подъем местности равномерный и составляет 12 м. Определить количество автоцистерн АЦ?40(130) для перекачки воды на тушение пожара.
Решение:
1) Принимаем способ перекачки из насоса в насос по одной магистральной линии.
2) Определяем предельное расстояние от места пожара до головного пожарного автомобиля в рукавах.
NГОЛ = [HН ? (НР ± ZМ ± ZСТ )] / SQ2 = [90 ? (45 + 0 + 10)] / 0,015 ? 10,52 = 21,1 = 21.
3) Определяем предельное расстояние между пожарными автомобилями, работающими в перекачку, в рукавах.
NМР = [HН ? (HВХ ± ZМ )] / SQ2 = [90 ? (10 + 12)] / 0,015 ? 10,52 = 41,1 = 41.
4) Определяем расстояние от водоисточника до места пожара с учетом рельефа местности.
NР = 1,2 ? L/20 = 1,2 ? 1500 / 20 = 90 рукавов.
5) Определяем число ступеней перекачки
NСТУП = (NР ? NГОЛ ) / NМР = (90 ? 21) / 41 = 2 ступени
6) Определяем количество пожарных автомобилей для перекачки.
NАЦ = NСТУП + 1 = 2 + 1 = 3 автоцистерны
7) Определяем фактическое расстояние до головного пожарного автомобиля с учетом установки его ближе к месту пожара.
NГОЛ ф = NР ? NСТУП ? NМР = 90 ? 2 ? 41 = 8 рукавов.
Следовательно, головной автомобиль можно приблизить к месту пожара.
2.2 Методика расчета потребного количества пожарных автомобилей для подвоза воды к месту тушения пожара
Если застройка сгораемая, а водоисточники находятся на очень большом расстоянии, то время, затраченное на прокладку рукавных линий, будет слишком большим, а пожар скоротечным. В таком случае лучше подвозить воду автоцистернами с параллельной организацией перекачки. В каждом конкретном случае необходимо решать тактическую задачу, принимая во внимание возможные масштабы и длительность пожара, расстояние до водоисточников, скорость сосредоточения пожарных автомобилей, рукавных автомобилей и другие особенности гарнизона.
Подвоз воды осуществляется при удалении водоисточника на расстоянии более 2 км или, если имеются сложности в заборе воды и отсутствии технических средств, позволяющих забрать воду в неблагоприятных условиях.
(шт.),
где
(мин.) - время следования АЦ к водоисточнику или обратно;
(мин.) - время заправки АЦ;
(мин.) - время расхода воды АЦ на месте тушения пожара;
L - расстояние от места пожара до водоисточника (км);
1 - минимальное количество АЦ в резерве (может быть увеличено);
Vдвиж - средняя скорость движения АЦ (км/ч);
Wцис - объем воды в АЦ (л);
Qп - средняя подача воды насосом, заправляющим АЦ, или расход воды из пожарной колонки, установленной на пожарный гидрант (л/с);
Nпр - число приборов подачи воды к месту тушения пожара (шт.);
Qпр - общий расход воды из приборов подачи воды от АЦ (л/с).
Рис. 2. Схема подачи воды способом подвоза пожарными автомобилями.
Подвоз воды должен быть бесперебойным. Следует иметь в виду, что у водоисточников необходимо (в обязательном порядке) создавать пункт заправки автоцистерн водой.
Пример. Определить количество автоцистерн АЦ?40(130)63б для подвоза воды из пруда, расположенного в 2 км от места пожара, если для тушения необходимо подать три ствола Б с диаметром насадка 13 мм. Заправку автоцистерн осуществляют АЦ?40(130)63б, средняя скорость движения автоцистерн 30 км/ч.
Решение:
1) Определяем время следования АЦ к месту пожара или обратно.
СЛ = L · 60 / VДВИЖ = 2 ? 60 / 30 = 4 мин.
2) Определяем время заправки автоцистерн.
ЗАП = VЦ /QН ? 60 = 2350 / 40 ? 60 = 1 мин.
3)Определяем время расхода воды на месте пожара.
РАСХ = VЦ / NСТ ? QСТ ? 60 = 2350 / 3 ? 3,5 ? 60 = 4 мин.
4) Определяем количество автоцистерн для подвоза воды к мусту пожара.
NАЦ = [(2СЛ + ЗАП ) / РАСХ ] + 1 = [(2 ? 4 + 1) / 4] + 1 = 4 автоцистерны.
2.3 Методика расчета подачи воды к месту тушения пожара с помощью гидроэлеваторных систем
При наличии заболоченных или густо заросших берегов, а так же при значительном расстоянии до поверхности воды (более 6,5-7 метров), превышающем глубину всасывания пожарного насоса (высокий крутой берег, колодцы и т.п.) необходимо применять для забора воды гидроэлеватор Г-600 и его модификации.
1) Определим требуемое количество воды VСИСТ, необходимое для запуска гидроэлеваторной системы:
VСИСТ = NР ?VР ?K ,
NР = 1,2?(L + ZФ) / 20,
где NР ? число рукавов в гидроэлеваторной системе (шт.);
VР ? объем одного рукава длиной 20 м (л);
K ? коэффициент, зависящий от количества гидроэлеваторов в системе, работающей от одной пожарной машины (К = 2 - 1 Г-600, K =1,5 - 2 Г-600);
L - расстояние от АЦ до водоисточника (м);
ZФ - фактическая высота подъема воды (м).
Определив требуемое количество воды для запуска гидроэлеваторной системы, сравнивают полученный результат с запасом воды, находящимся в пожарной автоцистерне, и выявляют возможность запуска данной системы в работу.
2) Определим возможность совместной работы насоса АЦ с гидроэлеваторной системой.
И = QСИСТ / QН ,
QСИСТ = NГ (Q1 + Q2),
где И - коэффициент использования насоса;
QСИСТ ? расход воды гидроэлеваторной системой (л/с);
QН ? подача насоса пожарного автомобиля (л/с);
NГ ? число гидроэлеваторов в системе (шт.);
Q1 = 9,1 л/с ? рабочий расход воды одного гидроэлеватора;
Q2 = 10 л/с ? подача одного гидроэлеватора.
При И < 1 система будет работать, при И = 0,65-0,7 будет наиболее устойчивая совместная работа гидроэлеваторной системы и насоса.
Следует иметь в виду, что при заборе воды с больших глубин (18-20м) необходимо создавать на насосе напор 100 м. В этих условиях рабочий расход воды в системах будет повышаться, а расход насоса - понижаться против нормального и может оказаться, что сумма рабочего и эжектируемого расходов превысит расход насоса. В этих условиях система работать не будет.
3) Определим условную высоту подъема воды ZУСЛ для случая, когда длина рукавных линий ш77 мм превышает 30 м:
ZУСЛ = ZФ + NР ? hР (м),
где NР ? число рукавов (шт.);
hР ? дополнительные потери напора в одном рукаве на участке линии свыше 30 м: hР = 7 м при Q = 10,5 л/с, hР = 4 м при Q = 7 л/с, hР = 2 м при Q = 3,5 л/с.
ZФ - фактическая высота от уровня воды до оси насоса или горловины цистерны (м).
4) Определим напор на насосе АЦ:
При заборе воды одним гидроэлеватором Г?600 и обеспечении работы определенного числа водяных стволов напор на насосе (если длина прорезиненных рукавов диаметром 77 мм до гидроэлеватора не превышает 30 м) определяют по табл. 1.
Определив условную высоту подъема воды, находим напор на насосе таким же образом по табл. 1.
5) Определим предельное расстояние LПР по подаче огнетушащих средств:
LПР = (НН - (НР ZМ ZСТ) / SQ2) · 20 (м),
где HН ? напор на насосе пожарного автомобиля, м;
НР ? напор у разветвления (принимается равным: НСТ +10) , м;
ZМ ? высота подъема (+) или спуска (?) местности, м;
ZСТ ? высота подъема (+) или спуска (?) стволов, м;
S ? сопротивление одного рукава магистральной линии
Q ? суммарный расход из стволов, подсоединенных к одной из двух наиболее нагруженной магистральной линии, л/с.
Таблица 1. Определение напора на насосе при заборе воды гидроэлеватором Г?600 и работе стволов по соответствующим схемам подачи воды на тушение пожара.
Высота подъема воды, м |
Напор на насосе, м |
|||
Один ствол А или три ствола Б |
Два ствола Б |
Один ствол Б |
||
10 |
70 |
48 |
35 |
|
12 |
78 |
55 |
40 |
|
14 |
86 |
62 |
45 |
|
16 |
95 |
70 |
50 |
|
18 |
105 |
80 |
58 |
|
20 |
- |
90 |
66 |
|
22 |
- |
102 |
75 |
|
24 |
- |
- |
85 |
|
26 |
- |
- |
97 |
6) Определим общее количество рукавов в выбранной схеме:
NР = NР .СИСТ + NМРЛ ,
где NР.СИСТ ? число рукавов гидроэлеваторной системы, шт;
NМРЛ ? число рукавов магистральной рукавной линии, шт.
Пример. Для тушения пожара необходимо подать два ствола соответственно в первый и второй этажи жилого дома. Расстояние от места пожара до автоцистерны АЦ?40(130)63б, установленной на водоисточник, 240 м, подъем местности составляет 10 м. Подъезд автоцистерны до водоисточника возможен на расстояние 50 м, высота подъема воды составляет 10 м. Определить возможность забора воды автоцистерной и подачи ее к стволам на тушение пожара.
Решение:
1) Принимаем схему забора воды с помощью гидроэлеватора (см. рис. 3).
Рис. 3. Схема забора воды гидроэлеватором Г-600.
2) Определяем число рукавов, проложенных к гидроэлеватору Г?600 с учетом неровности местности.
NР = 1,2? (L + ZФ) / 20 = 1,2 ? (50 + 10) / 20 = 3,6 = 4
Принимаем четыре рукава от АЦ до Г?600 и четыре рукава от Г?600 до АЦ.
3) Определяем количество воды, необходимое для запуска гидроэлеваторной системы.
VСИСТ = NР ?VР ?K = 8? 90 ? 2 = 1440 л < VЦ = 2350 л
Следовательно воды для запуска гидроэлеваторной системы достаточно.
4) Определяем возможность совместной работы гидроэлеваторной системы и насоса автоцистерны.
И = QСИСТ / QН = NГ (Q1 + Q2) / QН = 1?(9,1 + 10) / 40 = 0,47 < 1
Работа гидроэлеваторной системы и насоса автоцистерны будет устойчивой.
5) Определяем необходимый напор на насосе для забора воды из водоема с помощью гидроэлеватора Г?600.
Поскольку длина рукавов к Г?600 превышает 30 м, сначала определяем условную высоту подъема воды:
ZУСЛ = ZФ + NР ? hР = 10 + 2 ? 4 = 18 м.
По табл. 1. определяем, что напор на насосе при условной высоте подъема воды 18 м будет равен 80 м.
6) Определяем предельное расстояние по подаче воды автоцистерной к двум стволам Б.
LПР = (НН - (НР ZМ ZСТ) / SQ2) · 20 = [80 ? (46 +10 + 6) / 0,015 · 72 ] · 20 = 490 м.
Следовательно, насос автоцистерны будет обеспечивать работу стволов т.к. 490 м 240 м.
7) Определяем необходимое количество пожарных рукавов.
NР = NР .СИСТ + NМРЛ = NР .СИСТ + 1,2 L / 20 = 8 + 1,2 · 240 / 20 = 22 рукава.
К месту пожара необходимо доставить дополнительно 12 рукавов.
3. Методика расчета сил и средств для тушения пожара
Расчеты сил и средств выполняют в следующих случаях:
Ш при определении требуемого количества сил и средств на тушение пожара;
Ш при оперативно-тактическом изучении объекта;
Ш при разработке планов тушения пожаров;
Ш при подготовке пожарно-тактических учений и занятий;
Ш при проведении экспериментальных работ по определению эффективности средств тушения;
Ш в процессе исследования пожара для оценки действий РТП и подразделений.
3.1 Расчет сил и средств для тушения пожаров твердых горючих веществ и материалов водой (распространяющийся пожар)
Исходные данные для расчета сил и средств:
Ш характеристика объекта (геометрические размеры, характер пожарной нагрузки и ее размещение на объекте, размещение водоисточников относительно объекта);
Ш время с момента возникновения пожара до сообщения о нем (зависит от наличия на объекте вида средств охраны, средств связи и сигнализации, правильности действий лиц, обнаруживших пожар и т.д.);
Ш линейная скорость распространения пожара Vл;
Ш силы и средства, предусмотренные расписанием выездов и время их сосредоточения;
Ш интенсивность подачи огнетушащих средств Iтр.
1) Определение времени развития пожара на различные моменты времени.
Выделяются следующие стадии развития пожара:
Ш 1, 2 стадии свободного развития пожара, причем на 1 стадии ( до 10 мин) линейная скорость распространения принимается равной 50% ее максимального значения (табличного), характерного для данной категории объектов, а с момента времени более 10 мин она принимается равной максимальному значению;
Ш 3 стадия характеризуется началом введения первых стволов на тушение пожара, в результате чего линейная скорость распространения пожара уменьшается, поэтому в промежутке времени с момента введения первых стволов до момента ограничения распространения пожара (момент локализации), ее значение принимается равным 0,5Vл. В момент выполнения условий локализации Vл = 0.
Ш 4 стадия - ликвидация пожара.
св = обн + сооб + сб + сл + бр (мин.), где
св - время свободного развития пожара на момент прибытия подразделения;
обн - время развития пожара с момента его возникновения до момента его обнаружения (2 мин. - при наличии АПС или АУПТ, 2-5 мин. - при наличии круглосуточного дежурства, 5 мин. - во всех остальных случаях);
сооб - время сообщения о пожаре в пожарную охрану (1 мин. - если телефон находится в помещении дежурного, 2 мин. - если телефон в другом помещении);
сб = 1 мин. - время сбора личного состава по тревоге;
сл - время следования пожарного подразделения (2 мин. на 1 км пути);
бр - время боевого развертывания (3 мин. при подаче 1-го ствола, 5 мин. в остальных случаях).
2) Определение расстояния R, пройденного фронтом горения, за время.
при св ? 10 мин.:
R = 0,5?Vл ?св (м);
при вв > 10 мин.:
R = 0,5?Vл ?10 + Vл ?(вв - 10)= 5?Vл + Vл?(вв - 10) (м);
при вв < * ?лок :
R = 5?Vл + Vл?(вв - 10) + 0,5?Vл?(* - вв) (м).
где св - время свободного развития,
вв - время на момент введения первых стволов на тушение,
лок - время на момент локализации пожара,
* - время между моментами локализации пожара и введения первых стволов на тушение.
3) Определение площади пожара.
Площадь пожара Sп - это площадь проекции зоны горения на горизонтальную или (реже) на вертикальную плоскость. При горении на нескольких этажах за площадь пожара принимают суммарную площадь пожара на каждом этаже.
Периметр пожара Рп - это периметр площади пожара.
Фронт пожара Фп - это часть периметра пожара в направлении (направлениях) распространения горения.
Для определения формы площади пожара следует вычертить схему объекта в масштабе и от места возникновения пожара отложить в масштабе величину пути R, пройденного огнем во все возможные стороны.
При этом принято выделять три варианта формы площади пожара:
Ш круговую (Рис.2);
Ш угловую (Рис. 3, 4);
Ш прямоугольную (Рис. 5).
При прогнозировании развития пожара следует учитывать, что форма площади пожара может меняться. Так, при достижении фронтом пламени ограждающей конструкции или края площадки, принято считать, что фронт пожара спрямляется и форма площади пожара изменяется (Рис. 6).
а) Площадь пожара при круговой форме развития пожара.
Sп = k ? ? R2 (м2),
где k = 1 - при круговой форме развития пожара (рис. 2),
k = 0,5 - при полукруговой форме развития пожара (рис. 4),
k = 0,25 - при угловой форме развития пожара (рис. 3).
б) Площадь пожара при прямоугольной форме развития пожара.
Sп = n ?b ? R (м2),
где n - количество направлений развития пожара,
b - ширина помещения.
в) Площадь пожара при комбинированной форме развития пожара (рис 7)
Sп = S1 + S2 (м2)
4) Определение площади тушения пожара
Площадь тушения Sт - это часть площади пожара, на которую осуществляется эффективное воздействие огнетушащими веществами.
Для практических расчетов используется параметр, называемый глубиной тушения hт, который равен для ручных стволов hт = 5 м, для лафетных hт = 10 м.
Тушение пожара производят, вводя стволы либо со всех сторон пожара - по периметру пожара (Рис. 8), либо на одном или нескольких направлениях, как правило, по фронту пожара (Рис. 9).
В некоторых случаях пожарные подразделения не могут подать огнетушащее средство одновременно на всю площадь пожара, например, при недостатке сил и средств, тогда тушение осуществляется по фронту распространяющегося пожара. При этом пожар локализуется на решающем направлении, а затем осуществляется процесс его тушения на других направлениях
а) Площадь тушения пожара по периметру при круговой форме развития пожара.
Sт = k ? ? (R2 - r2) = k ???hт? (2?R - hт) (м2),
где r = R - hт ,
hт - глубина тушения стволов (для ручных стволов - 5м, для лафетных - 10 м).
б) Площадь тушения пожара по периметру при прямоугольной форме развития пожара.
Sт = 2?hт? (a + b - 2?hт) (м2)- по всему периметру пожара,
где а и b соответственно длина и ширина фронта пожара.
Sт = n?b?hт (м2)- по фронту распространяющегося пожара,
где b и n - соответственно ширина помещения и количество направлений подачи стволов.
5) Определение требуемого расхода воды на тушение пожара.
Qттр = Sп ? Iтр - при Sп ?Sт (л/с) или Qттр = Sт ? Iтр - при Sп >Sт (л/с)
Интенсивность подачи огнетушащих веществ Iтр - это количество огнетушащего вещества, подаваемое за единицу времени на единицу расчетного параметра.
Различают следующие виды интенсивности:
Линейная - когда в качестве расчетного принят линейный параметр: например, фронт или периметр. Единицы измерения - л/с•м. Линейная интенсивность используется, например, при определении количества стволов на охлаждение горящих и соседних с горящим резервуаров с нефтепродуктами.
Поверхностная - когда в качестве расчетного параметра принята площадь тушения пожара. Единицы измерения - л/с•м2. Поверхностная интенсивность используется в практике пожаротушения наиболее часто, так как для тушения пожаров в большинстве случаев используется вода, которая тушит пожар по поверхности горящих материалов.
Объемная - когда в качестве расчетного параметра принят объем тушения. Единицы измерения - л/с•м3. Объемная интенсивность используется, преимущественно, при объемном тушении пожаров, например, инертными газами. Требуемая Iтр - количество огнетушащего вещества, которое необходимо подавать за единицу времени на единицу расчетного параметра тушения. Определяется требуемая интенсивность на основе расчетов, экспериментов, статистических данных по результатам тушения реальных пожаров и т.д. Фактическая Iф - количество огнетушащего вещества, которое фактически подано за единицу времени на единицу расчетного параметра тушения.
6) Определение требуемого количества стволов на тушение.
а) Nтст = Qттр / qтст - по требуемому расходу воды,
б) Nтст = Рп / Рст - по периметру пожара,
Рп - часть периметра, на тушение которого вводятся стволы
Рст = qст / Iтр • hт - часть периметра пожара, которая тушится одним стволом. Р = 2? ?L (длина окружности), Р = 2?а + 2?b (прямоугольник)
в) Nтст = n? (m + A) - в складах со стеллажным хранением (рис. 11),
где n - количество направлений развития пожара (ввода стволов),
m - количество проходов между горящими стеллажами,
A - количество проходов между горящим и соседним негорящим стеллажами.
7) Определение требуемого количества отделений для подачи стволов на тушение.
Nтотд = Nтст / nст отд ,
где nст отд - количество стволов, которое может подать одно отделение.
8) Определение требуемого расхода воды на защиту конструкций.
Qзтр = Sз ? Iзтр (л/с),
где Sз - защищаемая площадь (перекрытия, покрытия, стены, перегородки, оборудование и т.п.),
Iзтр = (0,3-0,5)?Iтр - интенсивность подачи воды на защиту.
9) Определение требуемого количества стволов на защиту конструкций.
Nзст = Qзтр / qзст ,
Также количество стволов часто определяется без аналитического расчета из тактических соображений, исходя из мест размещения стволов и количества защищаемых объектов, например, на каждую ферму по одному лафетному стволу, в каждое смежное помещение по стволу РС-50.
10) Определение требуемого количества отделений для подачи стволов на защиту конструкций.
Nзотд = Nзст / nст отд
11) Определение требуемого количества отделений для выполнения других работ (эвакуация людей, мат. ценностей, вскрытия и разборки конструкций).
Nлотд = Nл / nл отд , Nмцотд = Nмц / nмц отд , Nвскотд = Sвск / Sвск отд
12) Определение общего требуемого количества отделений.
Nобщотд = Nтст + Nзст + Nлотд + Nмцотд + Nвскотд
На основании полученного результата РТП делает вывод о достаточности привлеченных к тушению пожара сил и средств. Если сил и средств недостаточно, то РТП делает новый расчет на момент прибытия последнего подразделения по следующему повышенному номеру (рангу) пожара.
13) Сравнение фактического расхода воды Qф на тушение, защиту и водоотдачи сети Qвод противопожарного водоснабжения
Qф = Nтст?qтст + Nзст?qзст ? Qвод
14) Определение количества АЦ, устанавливаемых на водоисточники для подачи расчетного расхода воды.
На водоисточники устанавливают не всю технику, которая прибывает на пожар, а такое количество, которое обеспечило бы подачу расчетного расхода, т.е.
NАЦ = Qтр / 0,8 Qн ,
где Qн - подача насоса, л/с
Такой оптимальный расход проверяют по принятым схемам боевого развертывания, с учетом длинны рукавных линий и расчетного количества стволов. В любом из указанных случаев, если позволяют условия (в частности, насосно-рукавная система), боевые расчеты прибывающих подразделений должны использоваться для работы от уже установленных на водоисточники автомобилей.
Это не только обеспечит использование техники на полную мощность, но и ускорит введение сил и средств на тушение пожара.
В зависимости от обстановки на пожаре требуемый расход огнетушащего вещества определяют на всю площадь пожара или на площадь тушения пожара. На основании полученного результата РТП может сделать вывод о достаточности привлеченных к тушению пожара сил и средств.
3.2 Расчет сил и средств для тушения пожаров воздушно-механической пеной на площади (не распространяющиеся пожары или условно приводящиеся к ним)
Исходные данные для расчета сил и средств:
Ш площадь пожара;
Ш интенсивность подачи раствора пенообразователя;
Ш интенсивность подачи воды на охлаждение;
Ш расчетное время тушения.
При пожарах в резервуарных парках за расчетный параметр принимают площадь зеркала жидкости резервуара или наибольшую возможную площадь разлива ЛВЖ при пожарах на самолетах.
На первом этапе боевых действий производят охлаждение горящих и соседних резервуаров.
1) Требуемое количество стволов на охлаждение горящего резервуара.
Nзгств = Qзгтр / qств = n • р • Dгор• Iзгтр / qств, но не менее 3х стволов,
Iзгтр = 0,8 л/с•м - требуемая интенсивность для охлаждения горящего резервуара,
Iзгтр = 1,2 л/с•м - требуемая интенсивность для охлаждения горящего резервуара при пожаре в обваловании,
Охлаждение резервуаров Wрез ? 5000 м3 и более целесообразно осуществлять лафетными стволами.
2) Требуемое количество стволов на охлаждение соседнего не горящего резервуара.
Nзсств = Qзстр / qств = n • 0,5 • р • Dсос• Iзстр / qств, но не менее 2х стволов,
Iзстр = 0,3 л/с•м - требуемая интенсивность для охлаждения соседнего не горящего резервуара,
n - количество горящих или соседних резервуаров соответственно,
Dгор, Dсос - диаметр горящего или соседнего резервуара соответственно (м),
qств - производительность одного пожарного ствола (л/с),
Qзгтр, Qзстр - требуемый расход воды на охлаждение (л/с).
3) Требуемое количество ГПС Nгпс на тушение горящего резервуара.
Nгпс = Sп • Iр-ортр / qр-оргпс (шт.),
Sп - площадь пожара (м2),
Iр-ортр - требуемая интенсивность подачи раствора пенообразователя на тушение (л/с•м2). При tвсп ? 28 оC Iр-ортр = 0,08 л/с•м2, при tвсп > 28 оC Iр-ортр = 0,05 л/с•м2 (см. приложение № 9)
qр-оргпс - производительность ГПС по раствору пенообразователя (л/с).
4) Требуемое количество пенообразователя Wпо на тушение резервуара.
Wпо = Nгпс • qпогпс • 60 • фр • Кз (л),
фр = 15 минут - расчетное время тушения при подаче ВМП сверху,
фр = 10 минут - расчетное время тушения при подаче ВМП под слой горючего,
Кз = 3 - коэффициент запаса (на три пенные атаки),
qпогпс - производительность ГПС по пенообразователю (л/с).
5) Требуемое количество воды Wвт на тушение резервуара.
Wвт = Nгпс • qвгпс • 60 • фр • Кз (л),
qвгпс - производительность ГПС по воде (л/с).
6) Требуемое количество воды Wвз на охлаждение резервуаров.
Wвз = Nзств • qств • фр • 3600 (л),
Nзств - общее количество стволов на охлаждение резервуаров,
qств - производительность одного пожарного ствола (л/с),
фр = 6 часов - расчетное время охлаждения наземных резервуаров от передвижной пожарной техники (СНиП 2.11.03-93),
фр = 3 часа - расчетное время охлаждения подземных резервуаров от передвижной пожарной техники (СНиП 2.11.03-93).
7) Общее требуемое количество воды на охлаждение и тушение резервуаров.
Wвобщ = Wвт + Wвз (л)
8) Ориентировочное время наступления возможного выброса Т нефтепродуктов из горящего резервуара.
T= (H - h) / (W+ u + V) (ч),
где
H - начальная высота слоя горючей жидкости в резервуаре, м;
h - высота слоя донной (подтоварной) воды, м;
W - линейная скорость прогрева горючей жидкости, м/ч (табличное значение);
u - линейная скорость выгорания горючей жидкости, м/ч (табличное значение);
V - линейная скорость понижения уровня вследствие откачки, м/ч (если откачка не производится, то V= 0).
3.3 Тушение пожаров в помещениях воздушно-механической пеной по объему
При пожарах в помещениях иногда прибегают к тушению пожара объемным способом, т.е. заполняют весь объем воздушно-механической пеной средней кратности (трюмы кораблей, кабельные тоннели, подвальные помещения и т.д.).
При подаче ВМП в объем помещения должно быть не менее двух проемов. Через один проем подают ВМП, а через другой происходит вытеснение дыма и избыточного давления воздуха, что способствует лучшему продвижению ВМП в помещении.
1) Определение требуемого количества ГПС для объемного тушения.
Nгпс = Wпом ?Кр / qгпс •н , где
Wпом - объем помещения (м3);
Кр = 3 - коэффициент, учитывающий разрушение и потерю пены;
qгпс - расход пены из ГПС (м3/мин.);
н = 10 мин - нормативное время тушения пожара.
2) Определение требуемого количества пенообразователя Wпо для объемного тушения.
Wпо = Nгпс • qпогпс • 60 • фр • Кз (л),
Литература
1. Боевой устав пожарной охраны (приложение № 2 к приказу МВД России № 257 от 05.07.95);
2. «Рекомендации об особенностях ведения боевых действий и проведения первоочередных аварийно-спасательных работ, связанных с тушением пожаров на различных объектах» (утв. ГУГПС МВД РФ от 02.06.2000 г.);
3. Повзик Я.С., Пожарная тактика: М.:ЗАО «СПЕЦТЕХНИКА», 1999 год;
...Подобные документы
История города Красноярск. Анализ основных статистических показателей, характеризующих оперативную обстановку с пожарами в крае. Оценка временных показателей оперативного реагирования пожарных подразделений Государственной противопожарной службы.
курсовая работа [914,5 K], добавлен 23.03.2015Конструктивные решения современных зданий детских учреждений. Первоочередные задачи обслуживающего персонала, личного состава пожарных подразделений при пожарах в школах, детских учреждениях до прибытия пожарных подразделений. Инструкции на случай пожара.
контрольная работа [84,8 K], добавлен 15.11.2016Общие сведения, виды пожаров, классификация средств тушения лесных пожаров. Способы их обнаружения и ликвидации, применяемые для борьбы машины и оборудование. Обзор лесопожарных аппаратов, использование авиации для ликвидации возгорания в лесной зоне.
презентация [11,7 M], добавлен 22.08.2013Разработка методов повышения эффективности управления силами и средствами пожарной охраны при тушении пожаров и спасании людей. Рекомендации по совершенствованию управления силами ОАО "Юргахлеб" в г. Юрга. Примеры решения пожарно-тактических задач.
дипломная работа [1,7 M], добавлен 09.11.2014Описание видов лесных пожаров. Этапы работ по тушению: разведка, локализация, ликвидация, окарауливание пожарищ. Способы и технические средства тушения пожара: сбивание пламени, построение заградительных полос, тушение водой, отжиг и засыпка землёй.
презентация [2,6 M], добавлен 05.12.2014Оперативно-тактическая оценка здания больницы. Разработка замысла и решения пожарно-тактической задачи по тушению пожара в здании больницы. Оценка сил и средств, характер действий пожарных подразделений. План-схема объекта с расстановкой сил и средств.
курсовая работа [88,9 K], добавлен 09.02.2016Организация тушения пожара. Средства и способы тушения пожара. Методика расчета сил и средств. Использование стационарных систем тепловой защиты и тушения пожара. Горение жидкостей с открытой поверхности, паров жидкостей и газов в виде факелов.
курсовая работа [235,7 K], добавлен 13.02.2015Последствия стихийных возгораний. Меры защиты от природных и техногенных пожаров. Этапы возникновения горения. Причина возгорания в шахтах, лесных массивах, в электроэнергетике, после авиакатастроф. Классификация пожаров, способы и средства тушения.
презентация [4,0 M], добавлен 19.12.2013Задачи и тактические возможности при ведении боевых действий по тушению пожаров и проведению связанных с ними первоочередных аварийно-спасательных работ. Силы и средства пожарной охраны. Выезд и следование к месту вызова. Требование правил охраны труда.
курсовая работа [41,5 K], добавлен 22.03.2014Обстановка на пожаре в зданиях музеев и выставок. Исследование вариантов развития пожаров. Характеристика действий подразделений пожарной охраны по тушению пожаров. Разведка пожара. Эвакуация материальных ценностей. Особенности тушения локальных пожаров.
реферат [18,5 K], добавлен 21.10.2014Особенности организации и тушения пожаров на объектах энергетики. Действия работников органов подразделений по чрезвычайным ситуациям при тушении пожаров в электроустановках. Организация проведения аварийно-спасательных работ, связанных с тушением пожара.
реферат [402,5 K], добавлен 13.02.2016Изучение комплекса технических средств, предназначенного для обнаружения признаков возгорания на объекте и подачи сигнала тревоги на пульт охраны. Сравнительный анализ пожарных извещателей. Обзор категорий пожарной опасности. Определение пожарных зон.
курсовая работа [1,4 M], добавлен 14.12.2012Авиапатрулирование, космический мониторинг и наземное обнаружение пожаров. Изучение влияния факторов окружающей среды на пожар. Особенности тушения торфяников, низовых и верховых лесных пожаров. Техника и оборудование пожарных команд, меры безопасности.
реферат [34,3 K], добавлен 07.01.2017Развитие пожаров на предприятиях металлургии и машиностроения. Количество пожарных водоемов, их емкость. Наружный и внутренний противопожарный водопровод. Характеристика системы вентиляции. Зависимость тушения пожаров от технологического процесса.
курсовая работа [26,1 K], добавлен 27.08.2014Тушение пожаров при неблагоприятных климатических условиях. Особенности развития пожаров при сильном ветре. Организация и проведение эвакуационно–спасательных работ. Тушение пожаров в больницах, школах, домах-интернатах и детских дошкольных учреждениях.
презентация [750,0 K], добавлен 01.10.2015Понятие и определение основных причин пожаров и взрывов. Техника тушения пожаров: методы, оборудование, средства, огнетушители. Пути и правила эвакуации людей. Пожарная связь и сигнализация. Методы защиты от статического и атмосферного электричества.
презентация [86,5 K], добавлен 24.07.2013Разработка плана тушения пожара в здании колледжа: оценка возможной обстановки на объекте к моменту прибытия первых подразделений гарнизона, расчет сил и средств для ликвидации горения, определение количества боевых участков, создание схемы пожаротушения.
курсовая работа [1,6 M], добавлен 08.07.2011Пожарная защита и способы тушения пожаров. Огнетушащие вещества и материалы: охлаждение, изоляция, разбавление, химическое торможение реакции горения. Мобильные средства и установки пожаротушения. Основные виды автоматических установок пожаротушения.
реферат [193,3 K], добавлен 20.12.2010Общие сведения и понятия о пожарах, классификации и огнестойкости. Основные способы прекращение пожаров. Пожарная безопасность, основные виды мероприятий. Средство тушение пожаров, оборудование для тушения. Инженерные решения противопожарной зашиты.
контрольная работа [19,1 K], добавлен 12.12.2012Выбор и обоснование возможного места пожара. Выбор огнетушащих веществ. Основные формулы и справочные данные для расчета сил и средств, необходимых для тушения пожара. Расписания выездов пожарных аварийно-спасательных подразделений Гомельского гарнизона.
курсовая работа [336,0 K], добавлен 25.10.2013