Искусственное освещение

Создание благоприятных условий видимости и сохранение хорошего самочувствия человека. Уменьшение утомляемости глаз. Модель газового завода в Мюнхенском музее. Создание электрогенераторов постоянного тока с приводом от паровой машины. Дуговые светильники.

Рубрика Безопасность жизнедеятельности и охрана труда
Вид статья
Язык русский
Дата добавления 04.10.2015
Размер файла 127,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Искусственное освещение

Виктор Лаврус

Назначение искусственного освещения - создать благоприятные условия видимости, сохранить хорошее самочувствие человека и уменьшить утомляемость глаз. При искусственном освещении все предметы выглядят иначе, чем при дневном свете. Это происходит потому, что изменяется положение, спектральный состав и интенсивность источников излучения.

История искусственного освещения началась тогда, когда человек стал использовать огонь. Костер, факел и лучина стали первыми искусственными источниками света. Затем появились масляные лампы и свечи. В начале XIX века научились выделять газ и очищенные нефтепродукты, появилась керосиновая лампа [1], которая используется по сегодняшний день.

При зажигании фитиля возникает светящееся пламя. Пламя испускает свет только тогда, когда твердое тело нагревается этим пламенем. Не горение порождает свет, а лишь вещества, доведенные до раскаленного состояния, излучают свет. В пламени свет излучают раскаленные частички сажи. В этом можно убедиться, если поместить стекло над пламенем свечи или керосиновой лампы.

На улицах Москвы и Петербурга осветительные масляные фонари появилось в 30-х годах XVIII века. Затем масло заменили спиртово-скипидарной смесью. Позднее, в качестве горючего вещества, стали использовать керосин и, наконец, светильный газ, который получали искусственным путем. Световая отдача таких источников была очень мала из-за низкой цветовой температуры пламени. Она не превышала 2000 К.

По цветовой температуре искусственный свет сильно отличается от дневного, и это различие давно было замечено по изменению цвета предметов при переходе от дневного к вечернему искусственному освещению. В первую очередь было замечено изменение цвета одежды. В ХХ веке с широким распространением электрического освещения изменение цвета при переходе к искусственному освещению уменьшилось, но не исчезло.

Рис. 1. Модель газового завода в Мюнхенском музее.

Сегодня редкий человек знает о заводах, производивших светильный газ (рис. 1). Газ получали при нагревании каменного угля в ретортах. Реторты - это большие металлические или глиняные полые сосуды, которые наполняли углем и нагревали в печи. Выделившийся газ очищали и собирали в сооружениях для хранения светильного газа - газгольдерах.

Более ста лет назад, в 1838 году, "Общество освещения газом Санкт-Петербурга" построило первый газовый завод. К концу XIX века почти во всех крупных городах России появились газгольдеры. Газом освещали улицы, железнодорожные станции, предприятия, театры и жилые дома. В Киеве инженером А.Е. Струве газовое освещение было устроено в 1872 году.

Создание электрогенераторов постоянного тока с приводом от паровой машины позволило широко использовать возможности электричества. В первую очередь изобретатели позаботились об источниках света и обратили внимание на свойства электрической дуги, которую впервые наблюдал Василий Владимирович Петров в 1802 году. Ослепительно яркий свет позволял надеяться, что люди смогут отказаться от свечей, лучины, керосиновой лампы и даже газовых фонарей.

В дуговых светильниках приходилось постоянно пододвигать поставленные "носами" друг к другу электроды - они достаточно быстро выгорали. Сначала их сдвигали вручную, затем появились десятки регуляторов, самым простым из которых был регулятор Аршро. Светильник состоял из неподвижного положительного электрода, закрепленного на кронштейне, и подвижного отрицательного, соединенного с регулятором. Регулятор состоял из катушки и блока с грузом.

При включении светильника через катушку протекал ток, сердечник втягивался в катушку и отводил отрицательный электрод от положительного. Дуга поджигалась автоматически. При уменьшении тока втягивающее усилие катушки уменьшалось и отрицательный электрод поднимался под действием груза. Широкого распространения эта и другие системы не получили из-за низкой надежности.

В 1875 году Павел Николаевич Яблочков предложил надежное и простое решение. Он расположил угольные электроды параллельно, разделив их изолирующим слоем. Изобретение имело колоссальный успех, и "свеча Яблочкова" или "Русский свет" нашел широкое распространение в Европе.

Кто придумал лампочку?

Изобретателем электрической лампочки накаливания считают русского электротехника А.Н. Лодыгина. В 1872 году он продемонстрировал образец лампы накаливания с угольной нитью и получил привилегию (патент) №1847. видимость электрогенератор ток

В то же время, другой изобретатель электрической лампочки, по другую сторону Атлантики, впервые задумался об использовании электрического освещения, когда газовая компания отключила газ в его мастерской за неуплату [2]. Его имя - Томас Алва Эдисон. На Всемирной выставке в 1881 г. он представил разработанную им систему освещения. Позднее его современник Эмиль Ратенау Эмиль Ратенау - основатель концерна "Альгемайне электрицитетс-акциенгезельшафт" ("АЭГ"), Германия. так описал свои впечатления: "По тогдашним понятиям гигантский генератор тока, названный "Джумбо", по своей конструкции и мощности намного уступал современным колоссам. Однако впервые были созданы машины, которые могли претендовать на это название. В центре новой системы находился шедевр - лампа накаливания с угольной нитью. Система освещения Эдисона была настолько продумана до мельчайших деталей и мастерски выполнена, что высказывалось мнение, будто она десятилетиями опробовалась в многочисленных городах" [3]. Следует отметить, что современные лампы с телом накала из спирализованной вольфрамовой проволоки имеют световую отдачу в 8...10 раз выше, чем первые лампы с угольной нитью.

Несколько лет спустя Эмиль Ратенау оснастил лампами накаливания Эдисона королевский театр в Мюнхене, чтобы продемонстрировать публике преимущества этого технического достижения.

Главной трудностью на пути к широкому применению угольно-дугового освещения было отсутствие надежного и недорогого источника электрической энергии. Это препятствие было устранено в 1867 году Греммом, который изобрел самовозбуждаемую динамомашину, вырабатывающую постоянный ток. Примерно в то же время было сделано еще одно открытие, повлиявшее на прогресс электрического освещения: Спренгел изобрел мощный вакуумный насос.

Многие материалы, которые окисляются при накаливании на воздухе, благополучно выполняли свои функции в "вакууме".

В 1878 году Эдисон обратился к нерешенной проблеме электрического освещения в быту. Электрическому свету нужно было выдержать конкуренцию в цене, яркости и удобстве с газовым рожком. Прежде чем приступить к лабораторным исследованиям, Эдисон до тонкостей изучил газовую промышленность. На бумаге он разработал план центральной электростанции и схему радиальных линий к домам и фабрикам. Затем он подсчитал стоимость меди и других материалов, которые потребуются для изготовления ламп и добычи электроэнергии с помощью динамомашин, движимых паром. Анализ этих цифр определил не только размеры лампы, но и цену ее, равнявшуюся 40 центам.

Когда Эдисон убедился, что сможет решить проблему электрического освещения, он принялся работать над лампой с угольной нитью накаливания, помещенной в стеклянный шар, из которого выкачан воздух. 27 января 1880 года Эдисон получил патент на изобретение №223898.

Сама по себе мысль была не новой, если не считать того, что по конструкции лампа Эдисона отличалась от своих предшественниц. Главное его достижение - это исчерпывающее изучение материалов и то, что он в удивительно короткий срок нашел наиболее эффективный и надежный уголь для нити накаливания.

Первые нити накаливания представляли собой обыкновенные швейные нитки, покрытые углем. Они могли находиться в раскаленном виде в течение сорока часов. Эдисон перепробовал все вещества, содержащие углерод: продукты питания, смолы - в общем счете шесть тысяч разновидностей растительного волокна. Лучший результат показал бамбук, особенно тот сорт бамбука, из которого был сделан футляр японского пальмового веера.

В последний день 1879 года на заказанных Эдисоном специальных поездах три тысячи человек прибыли поглядеть на сотни электрических лампочек, которые горели в его мастерской и на окрестных дорогах, энергия подводилась к ним от центральной динамомашины по подземным проводам.

Слава Эдисона была так велика, что еще до того, как в 1880 году был выдан первый патент на новое изобретение, слухи о том, что Эдисон решил проблему электрического освещения, повлекли за собой резкое падение акций газовых компаний.

После каждой демонстрации, устраиваемой Эдисоном, цены акций начинали колебаться, а однажды на лондонской бирже произошла настоящая паника.

Но планы Эдисона были значительно шире, чем усовершенствование электрической лампы. "Все это настолько ново, - говорил Эдисон, - что каждый шаг делаешь в потемках. Нужно создавать динамомашину, лампы, проводники и думать о тысяче вещей, о которых еще никто никогда не слышал". Эдисон употреблял термины, применяемые в газовом освещении: динамомашины соответствовали газовым резервуарам; изолированные провода, уложенные вдоль улиц, были эквивалентом газовых труб. Предстояло еще изобрести электрические счетчики по аналогии с газовыми для измерения потребления энергии.

Эдисон сконструировал двухфазный генератор, тем самым решив проблему, казавшуюся безнадежной даже ведущим электрикам того времени. Люди, которые высмеивали Эдисона за его невежество в теоретических вопросах, не могли поверить, что можно изобрести динамомашину, которая работала бы в условиях меняющейся электрической нагрузки. Ведь потребители все время включают и выключают свет в доме или в разных домах на одной улице. Динамомашина Эдисона была построена вопреки всем канонам конструкторской науки того времени, но он и на этот раз оказался прав.

Затем Эдисон приступил к изготовлению динамомашин, кабелей, лампочек и осветительных приборов. Он вызвал из Англии Сэмюэла Инсэлла и назначил его распорядителем своей фирмы. Так началась карьера Инсэлла на поприще создания городских коммунальных удобств.

После того как производство было налажено, многие вспомогательные фабрики были проданы концерну, возглавляемому Генри Уиллардом, который нажил состояние на постройке железных дорог на Западе. Новая корпорация стала называться "Эдисон Дженерал Электрик компани".

Эдисон оставался в электроламповой компании просто из принципа. Он дал себе слово добиться, чтобы лампочка стоила не больше 40 центов, иначе весь проект не будет иметь коммерческого значения, и должен был сдержать это слово, чтобы не уронить себя в собственных глазах. Он занялся механизацией метода производства ламп. В первый год лампа стоила 1 доллар 25 центов, на следующий год - 1 доллар 10 центов, а уже в течение третьего года цена ее снизилась до 50 центов. На следующий год каждая лампа уже приносила прибыль в три цента, и новые доходы покрыли все предыдущие потери. Когда цена лампы стала равна 22 центам, Эдисон продал фабрику.

Суд над электролампочкой

Внедрение научно-технических достижений в повседневную практику нередко сталкивалось с таким противодействием, что поборникам нового приходилось порой использовать форму судебного процесса с обвинителями, защитниками и судьями для доказательства преимуществ новой техники. Удивительно, но факт, что с помощью судебного процесса пришлось доказывать широкой публике, казалось бы, очевидные преимущества электрического освещения. Для этого в марте 1879 года английский парламент учредил комиссию, которая должна была положить конец кривотолкам и нелепым слухам, распускавшимся противниками электричества - газовыми компаниями.

Комиссия обладала значительными полномочиями: она имела право вызывать всех свидетелей, каких сочтет нужными, и на тех же правах, на которых их вызывает суд. Дознание производилось так же, как судебное следствие. Ответчиком было электричество.

Свидетели давали показания относительно его свойства и действий, стенографисты записывали их. Члены комиссии занимали судейские места. Стол с вещественными доказательствами был заставлен различными электрическими приборами, с которыми тут же проводились опыты. Стены покрывали чертежи и диаграммы.

Председателем суда был избран профессор химии Л. Плейфер. Строго соблюдая процедуру суда, комиссия "допросила" свидетелей защиты - Тиндаля, Томсона, Приса, Сименса, Кука и других.

Доводы свидетелей обвинения были следующими. По мнению художников, электрический свет "холоден и представляет мало экспрессии Экспрессия [лат. expressio выражение] - выразительность, сила проявления (чувств, переживаний).". Английские леди находили, что он придает "какую-то мертвенность лица и, кроме того, затрудняет выбор одежды, так как освещенные электрическим светом костюмы кажутся иными, чем при вечернем освещении". Торговцы Биллинсгсэтского рынка жаловались на то, что "электрический свет придает дурной вид рыбе, и просили снять устроенное у них освещение". Многие жаловались на резь в глазах и мигание света.

Свидетели защиты терпеливо разъясняли, что следует смотреть не на фонари, а на освещенные ими предметы, что смотреть прямо на солнце еще больнее, но никто не ставит это в вину солнечному свету. Что мертвенность лица замечается только "при смешении газового света с электрическим". Что "мигание" дуги в лампах от некачественно изготовленных электродов. И т.д. и т.п.

В приговоре комиссия постановила, что электрический свет вышел из области опытов и проб и ему необходимо предоставить возможность конкуренции с газовым освещением. Комиссия запретила передавать электрическое освещение газовым компаниям, "как некомпетентным в вопросах электротехники". Что же касается экономичности, то электротехнике предстояло пройти еще длительный путь - к созданию центральных электрических станций, линий электропередачи и распределительных устройств [4].

Первые шаги электрического света

Первые случаи применения электричества в Украине для нужд освещения известны с 70-х годов прошлого века. В 1878 г. русский инженер А.П. Бородин оборудовал токарный цех киевских железнодорожных мастерских четырьмя электрическими дуговыми фонарями. Каждый фонарь имел свою электромагнитную машину Грамма. Фонари были расположены в два ряда в шахматном порядке. Угли рассчитаны на 3 часа работы. В 1880 г. были применены лампы П.Н. Яблочкова для освещения мастерских Днепровского пароходства.

Первая электростанция в России появилась в Петербурге в 1879 году и предназначалась для освещения Литейного моста, а следующая еще через пару лет в Москве - для освещения Лубянского пассажа. В 1886 году в России работало несколько электростанций - под Санкт-Петербургом и Москвой, Киевом и Нижним Новгородом, Баку, Харьковом. Работали они на привозном топливе и вырабатывали постоянный ток для уличного освещения.

В 80-х годах строятся первые городские электростанции общего пользования в Москве и Петербурге, создаются благоприятные условия для широкого применения электрического освещения в быту и промышленности. В 1886 г. было установлено электрическое освещение в парке "Шато-де-Флер" в Киеве Теперь стадион "Динамо".. Опыт использования электрического света продемонстрировал его огромные преимущества перед другими видами освещения. Через 10 лет в Киеве начала действовать первая электрическая станция общего пользования.

Первый контракт на устройство электрического освещения города был заключен с обществом "Савицкий и Страус", в состав которого входили коммерсанты Киева. Работы по сооружению электрической станции выполнялись отечественными специалистами. Осветительные линии прокладывали отставные унтер-офицеры минных классов из Петербурга. Они же монтировали оборудование. Консультировали проект и строительство профессор физики Киевского университета Н.Н. Шиллер и начальник киевского железнодорожного училища И.М. Мацон, имевший ученую степень по электротехнике. Главным инженером общества "Савицкий и Страус" стал инженер-технолог М.К. Бахмутов.

Первая центральная электрическая станция Киева общего пользования начала работать в конце 1890 г. Станция давала ток для освещения городского театра, Крещатика и домов частных абонентов. Она была расположена в каменном здании на Театральной площади В настоящее время на площади находится Государственный академический театр оперы и балета им. Т.Г. Шевченко. Старый театр сгорел в 1895 г. и имела изолированную котельную, машинное отделение и распределительное устройство. В котельной были установлены три паровых котла, отапливавшихся дровами. Вода поступала из городского водопровода. Котлы давали пар для трех горизонтальных двухцилиндровых паровых машин по 60 л.с. (44,1 кВт) каждая. Эти машины приводили в действие три динамомашины Сименса. Кроме того, для питания 14 дуговых фонарей установленных на Крещатике, были установлены две динамомашины с приводом от паровых машин мощностью по 20 л.с. (14,7 кВт). Мощность электростанции составляла около 150 л.с. (110,3 кВт).

Плата за электроэнергию взимались за 1 ч горения лампы фонаря. Цена не препятствовала увеличению числа потребителей. Домовладельцы города охотно проводили электрическое освещение.

В 1886 году в России была построена первая в стране и очень небольшая по мощности (всего 350 лошадиных сил) гидроэлектростанция на реке Охте в Петербурге. Следующая - в три раза мощнее была сооружена в 1903 году на горной речке Подкумке вблизи Ессентуков. Получаемая от нее электроэнергия позволила осветить улицы Кисловодска, Железноводска и Пятигорска.

В 1888 году "Общество электрического освещения 1886 года" построило на углу Большой Дмитровки и Георгиевского переулка в Москве первую относительно мощную электростанцию, способную снабжать электроэнергией частных потребителей. На станции вырабатывался постоянный ток напряжением 120 В, который поступал к абонентам по подземным кабелям. Но потери энергии при электропередаче оказались столь велики, что уже следующая московская электростанция, сооруженная на Раушской набережной в 1897 году, вырабатывала переменное напряжение 2 кВ частотой 50 Гц. К потребителю подавалось переменное напряжение 127 В после понижающих трансформаторов.

Тем не менее, потери в кабельных магистралях оставались весьма значительными. Возрастала потребность в передаче все больших и больших мощностей. Поэтому с 1910 года большинство проектируемых электростанций было рассчитано на напряжение 6,6 кВ которое используется и сегодня.

Чтобы еще больше снизить потери при передаче электроэнергии, требовалось повысить напряжение, поступающее непосредственно к потребителю. Эта работа растянулась на десятилетия.

Напряжение 220 В начали использовать в Москве с 1925 года. Через 20 лет его получали 20% потребителей. В 1970 году было решено перевести всю московскую электросеть на напряжение 220 В. Это было практически повсеместно выполнено к концу 1995 года. Постепенность в этом деле вполне объяснима: нельзя было заставлять людей одновременно заменить в своих квартирах все электроприборы, да и взять их в таких количествах было неоткуда. Что же касается небольших "личных" понижающих трансформаторов, то широкое их применение свело бы на нет всю задуманную экономию энергии. И все же 25 лет - слишком долго. Тем более, что даже теперь в Москве сохранилось какое-то количество домов все с тем же дореволюционным напряжением 127 В. В их числе - Российская государственная библиотека, которая просто не имеет денег на замену всей существующей у нее аппаратуры и приборов, а также Большой театр, Министерство иностранных дел и несколько десятков жилых домов Новые проблемы энергетиков. Дубинский Е., главный инженер Энергосбыта АО "Мосэнерго"..

Они были и остаются в числе первых

Важнейшим, после изобретения паровой машины и железной дороги, событием в хозяйственной жизни XIX в. был переход к использованию электричества. Нужны были люди нового склада. Немцы явились нацией, которая в числе первых выдвинула таких людей.

С самого начала во главе электротехнической промышленности стояли два семейства, которые придали силу немецкой индустрии и помогли ей добиться мирового признания. Их предприятия и сегодня дают работу сотням тысяч людей. Это семейства Сименсов и Ратенау.

Феноменальным в истории семейства Сименсов явился даже не тот факт, что оно в нужное время выдвинуло из своих рядов гения, а то, что в одном поколении дало сразу целый квартет людей, обладавших исключительными способностями: братья Вильгельм, Карл, Вернер и их кузен Георг Сименс.

Примой этой четверки стал Вернер Сименс. Он был человеком, который встречается, вероятно, раз в столетие. Журналист Феликс Пиннер, отличавшийся известной критичностью своих суждений, писал о нем: "Вернер Сименс представлял собой, быть может, самый яркий сплав гениальных начал в области техники, науки и предпринимательства, которые когда-либо соединял в себе житель Германии". Ни наука, ни техника никогда не были самоцелью для Вернера. Развивая свои идеи, он всегда исходил из той проблемы, для которой они представляли собой возможное решение.

12 октября 1847 г. было зарегистрировано открытое торговое общество фирма "Сименс унд Хальске". Ее основателями стали Вернер Сименс и, механик Георг Хальске. Негласным участником фирмы стал советник юстиции Георг Сименс.

Эмиль Ратенау, родившийся на 22 года позже Вернера Сименса, был выходцем из состоятельной купеческой семьи Берлина. Он изучал машиностроение в Ганновере и Цюрихе, работал конструктором у Августа Борзига [3], а затем отправился в Англию для углубления своих знаний.

Однажды, на обратном пути из Англии, он встретился с Вернером Сименсом и обсуждал возможности освещения городских улиц электрическим светом. Год спустя в Париже Эмиль Ратенау пережил главное событие своей жизни. На Всемирной выставке 1881 г. он повстречался с Томасом Эдисоном.

Ратенау получил у Эдисона одну-единственную лицензию на производство его лампочки и в апреле 1883 г. основал фирму "Дойче Эдисон-гезельшафт фюр ангевандте электрицитет АГ" В 1887 г. название фирмы было изменено на "Альгемайне электрицитетс-акциенгезельшафт" ("АЭГ").. "Вначале - местная электрическая промышленность умеренных масштабов и устремлений в рамках германской экономики; в конце - мировая промышленность, которая по своим размерам не уступает промышленности никакой другой страны", - поражался журналист Феликс Пиннер тем событиям, которые произошли в следующие годы [3].

Сфера электротехники чересчур велика для того, чтобы в ней могла господствовать одна-единственная фирма, а дальнейшее совершенствование техники требует все больших затрат. Поэтому первого июня 1919 года три фирмы: "АЭГ", "Сименс унд Хальске АГ" и "Ауер Гезельшафт АГ" объединили свои усилия по производству ламп накаливания. Так возникла торговая марка ОСРАМ и фирма "ОСРАМ ГмбХ" Торговая марка ОСРАМ была зарегистрирована в 1906 году и принадлежит к старейшим торговым маркам.. На сегодняшний день единственным учредителем "ОСРАМ" является Сименс АГ.

Вторым известным производителем источников света является Филипс Лайтинг. Эта компания является частью концерна Филипс Электроникс - одной из известных мировых компаний в области электроники. Лайтинг - старейшее подразделение концерна Филипс, которому более ста лет. В начале двадцатого века господин Энтони Филипс, брат основателя фирмы Герарда Филипса, совершил ряд удачных деловых поездок в Россию с тем, чтобы представить на российском рынке последние достижения фирмы. Освещение Зимнего Дворца было в то время самым большим проектом компании Филипс.

В 1914 году в Санкт-Петербурге открылось торговое представительство фирмы. Двумя годами позже она продавала в России уже два миллиона лампочек в год. В 1917 году торговое представительство было закрыто. После восьмидесятилетнего отсутствия компания Филипс Лайтинг возобновила свою деятельность на рынках России, Украины, Белоруссии. Сегодня открыты представительства в Москве, Санкт-Петербурге, Киеве, Минске, Алма-Ате, Ташкенте.

В тройку крупнейших производителей источников света также входит электротехническая компания Дженерал Электрик (США), которая основана в 1892.

Источники информации

1. Лаврус В.С. Источники энергии. К.: НиТ, 1997.

2. Изобретено назло. "Наука и жизнь" №1, 1988.

3. Гюнтер Оггер. Грюндеры и грюндерство. - М.: Прогресс, 1985.

4. Б. Хасапов. Процесс над... электролампочкой. "Техника - молодежи", 1988.

Размещено на Allbest.ru

...

Подобные документы

  • Назначение искусственного освещения - создание условий видимости, сохранение хорошего самочувствия человека, уменьшение утомляемости глаз. Достоинства и недостатки использования ламп накаливания. Гигиеническое нормирование искусственного освещения.

    презентация [536,0 K], добавлен 02.10.2014

  • Рациональное освещение помещений и рабочих мест как один из важнейших элементов благоприятных условий труда. Основные гигиенические требования к искусственному освещению производственных помещений. Количественные и качественные показатели освещения.

    контрольная работа [22,9 K], добавлен 03.05.2009

  • Особенности естественного и искусственного освещения, их основные преимущества и недостатки. Общее и местное освещение в интерьере, описание и расположение комбинированного освещения. Специфика рабочего, аварийного, охранного и дежурного освещения.

    презентация [609,1 K], добавлен 16.05.2019

  • Создание безопасных условий труда. Комплекс гигиенических условий для правильного светового режима. Общие вопросы искусственного? естественного освещения. Распределение освещенности в помещении при естественном освещении. Расчет площади световых проемов.

    реферат [141,3 K], добавлен 23.03.2009

  • Естественное, искусственное, совмещенное производственное освещение. Разделение освещения по конструктивному исполнению. Типы искусственного и производственного освещения. Освещение рабочего места как важный фактор создания нормальных условий труда.

    презентация [2,0 M], добавлен 24.01.2012

  • Связь организма с внешней средой посредством света. Функции освещения: утилитарные, биологические, эстетические и экономические. Системы освещения производственных помещений. Нормирование естественного и искусственного освещения. Метод удельных мощностей.

    контрольная работа [31,7 K], добавлен 08.11.2009

  • Ожоги как следствие случайных коротких замыканий в электроустановках, при отключениях разъединителей и рубильников под нагрузкой. Воздействия электрической дуги и прохождения тока через тело человека. Поражения глаз, разрывы кожи и кровеносных сосудов.

    презентация [56,9 K], добавлен 12.11.2014

  • Понятие абиотических и биотических факторов окружающей среды, оказывающих значительное влияние на человека. Создание модели комнаты отдыха студенческого общежития с учетом применения экологически чистых материалов. Цветовой вариант и освещение помещения.

    курсовая работа [28,0 K], добавлен 22.03.2016

  • Создание нормальных условий труда. Лампа накаливания общего назначения, ее преимущества и недостатки. Преобразование электрической энергии в световую в газоразрядных лампах. Неудовлетворительное освещение как причина производственного травматизма.

    курсовая работа [1,0 M], добавлен 03.05.2014

  • Необходимость удовлетворения потребностей в содержательном труде в опасных условиях. Факторы трудовой и производственной среды, в которой осуществляется деятельность человека. Государственная регуляция условий труда, классификация и оценивание условий.

    реферат [27,7 K], добавлен 04.10.2009

  • Факторы, влияющие на организацию условий труда. Травмы и профессиональные заболевания. Создание оптимальных условий труда. Организация рабочего места оператора ЭВМ. Микроклимат помещения и защита от излучений. Производственное освещение и защита от шума.

    реферат [24,6 K], добавлен 16.05.2011

  • Определение условий труда как совокупности фактов производственной среды, оказывающих влияние на здоровье и работоспособность человека в процессе труда. Создание оптимальных условий. Требования к производственному освещению, его параметры и источники.

    реферат [74,2 K], добавлен 10.04.2015

  • Системы, виды и характеристики производственного освещения. Источники искусственного освещения, их преимущества и недостатки. Определение числа светильников для обеспечения нормированного значения освещенности методом использования светового потока.

    курсовая работа [62,4 K], добавлен 19.12.2014

  • Климат рабочей зоны. Теплоотдача организмом тепла во внешнюю среду. Зависимость количества вырабатываемого организмом тепла от характера и условий деятельности. Метод обобщенного факторного коэффициента микроклимата и учета самочувствия человека.

    лабораторная работа [307,7 K], добавлен 10.11.2013

  • Основные световые величины и параметры, определяющие зрительные условия труда. Классификация и нормы освещения железнодорожных объектов. Расчет осветительной установки точечным методом. Санитарно-гигиенические требования к освещению на рабочем месте.

    курсовая работа [487,3 K], добавлен 16.09.2017

  • Влияние освещенности на безопасность трудовой деятельности. Основные светотехнические характеристики. Особенности искусственного освещения, его нормирование и расчет в компьютерном классе на 10 рабочих мест. Сравнительные параметры источников света.

    курсовая работа [304,3 K], добавлен 14.06.2011

  • Комплекс метеорологических условий в помещении. Основные параметры микроклимата. Химический состав воздуха. Температура воздуха и освещение. Прямой, рассеянный и отраженный солнечный свет. Коэффициент естественной освещенности. Влияние шума на человека.

    презентация [239,7 K], добавлен 03.04.2017

  • Основные светотехнические понятия и величины. Особенности субъективного восприятия света. Характеристика видов и источников искусственного освещения, основные гигиенические требования, предъявляемые к ним. Нормирование освещённости рабочих поверхностей.

    контрольная работа [97,9 K], добавлен 30.10.2011

  • Мероприятия по охране труда, защите жизни и здоровья рабочего при производстве хозяйственного мыла; правила безопасной эксплуатации пароварочных котлов. Роль освещения в создании нормальных условий работы и снижении производственного травматизма.

    контрольная работа [261,7 K], добавлен 27.12.2011

  • Оценка и оптимизация условий труда и их оздоровление. Обеспечение освещения производственных помещений, определение категории пожарной опасности здания. Расчет уровня шума на рабочем месте. Защита от электрического тока и средства электробезопасности.

    контрольная работа [146,3 K], добавлен 06.09.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.