Взаимодействие жизнедеятельности человека с окружающей средой обитания
Физиологические характеристики человека. Функциональная схема и основные параметры анализаторов. Производственная, городская, бытовая, природная среда. Влияние микроклимата на производительность труда и состояние здоровья, профессиональные заболевания.
Рубрика | Безопасность жизнедеятельности и охрана труда |
Вид | реферат |
Язык | русский |
Дата добавления | 29.11.2015 |
Размер файла | 156,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Содержание
1. Физиологические характеристики человека
2. Производственная, городская, бытовая, природная среда
3. Влияние микроклимата на производительность труда и состояние здоровья, профессиональные заболевания
Список использованной литературы
1. Физиологические характеристики человека
Целесообразная и безопасная деятельность человека основывается на постоянном приеме и анализе информации о характеристиках внешней среды и внутренних системах организма. Этот процесс осуществляется с помощью анализаторов -- подсистем центральной нервной системы (ЦНС), обеспечивающих прием и первичный анализ информационных сигналов. Информация, поступающая через анализаторы, называется сенсорной (от лат. sensus -- чувство, ощущение), а процесс ее приема и первичной переработки -- сенсорным восприятием.
Рис. 1. Функциональная схема анализатора
Центральной частью анализатора является некоторая зона в коре головного мозга. Периферическая часть -- рецепторы -- находится на поверхности тела для приема внешней информации либо размещена во внутренних системах и органах для восприятия информации об их состоянии (внешние рецепторы в обычной речи называют органами чувств). Проводящие нервные пути соединяют рецепторы с соответствующими зонами мозга.
В зависимости от специфики принимаемых сигналов различают следующие анализаторы:
Внешние -- зрительный (рецептор -- глаз); слуховой (рецептор -- ухо); тактильный, болевой, температурный (рецепторы кожи); обонятельный (рецептор в носовой полости); вкусовой (рецепторы на поверхности языка и неба).
Внутренние -- анализатор давления; кинестетический (рецепторы в мышцах и сухожилиях); вестибулярный (рецептор в полости уха); специальные, расположенные во внутренних органах и полостях тела.
Рассмотрим основные параметры анализаторов.
1. Абсолютная чувствительность к интенсивности сигнала (абсолютный порог ощущения по интенсивности) -- характеризуется минимальным значением воздействующего раздражителя, при котором возникает ощущение. В зависимости от вида раздражителя абсолютный порог измеряется в единицах энергии, давления, температуры, количества или концентрации вещества и т.п. Минимальную адекватно ощущаемую интенсивность сигнала принято называть нижним порогом чувствительности.
Психофизическими опытами установлено, что величина ощущений изменяется медленнее, чем сила раздражителя. Интенсивность ощущений Е выражается логарифмической зависимостью (закон Вебера-Фехнера)
Е= R*lgJ + C
где J -- интенсивность раздражителя; K и С -- константы, определяемые данной сенсорной системой.
2. Предельно допустимая интенсивность сигнала (обычно близка к болевому порогу). Максимальную адекватно ощущаемую величину сигнала принято называть верхним порогом чувствительности.
3. Диапазон чувствительности к интенсивности -- включает все переходные значения раздражителя от абсолютного порога чувствительности до болевого порога.
4. Дифференциальная (различительная) чувствительность к изменению интенсивности сигнала -- это минимальное изменение интенсивности сигнала, ощущаемое человеком. Различают абсолютные дифференциальные пороги, характеризуемые значением ?J, и относительные, выражаемые в процентах: ?J ? J *100%, где J -- исходная интенсивность.
5. Дифференциальная (различительная) чувствительность к изменению частоты сигнала -- это минимальное изменение частоты F сигнала, ощущаемое человеком. Измеряется аналогично дифференциальному порогу по интенсивности, либо в абсолютных единицах ?F , либо в относительных -- ?F ? F *100%.
6. Границы (диапазон) спектральной чувствительности (абсолютные пороги ощущений по частоте, длине волны) определяются для анализаторов, чувствительных к изменению частотных характеристик сигнала (зрительного, слухового, вибрационного), отдельно нижний и верхний пороги.
7. Пространственные характеристики чувствительности специфичны для каждого анализатора.
8. Для каждого анализатора характерна минимальная длительность сигнала, необходимая для возникновения ощущений. Время, проходящее от начала воздействия раздражителя до появления ответного действия на сигнал (сенсомоторная реакция), называют латентным периодом.
Величина латентного периода (с) для различных анализаторов следующая:
тактильный (прикосновение)...………………………. 0,09-0,22
слуховой (звук)..........…………………………………. 0,12-0,18
зрительный (свет).........……………………………….. 0,15-0,22
обонятельный (запах).......…………………………….. 0,31-0,39
температурный (тепло-холод)...……………………… 0,28-1,6
вестибулярный аппарат (при вращении)…………….. 0,4
болевой (рана)…………………………………………. 0,13-0,89
9. Адаптация (привыкание) и сенсибилизация (повышение чувствительности) -- характеризуются временем и присущи каждому типу анализаторов.
Функционирование разных анализаторов существенно изменяется под влиянием неблагоприятных для человека условий. Низке и высокие температуры, вибрации, перегрузки, невесомость, слишком интенсивные потоки информации, ведущие к дефициту времени, и ее недостаток, утомление, вызванное длительной работой или неблагоприятными условиями, состояние стресса -- все эти факторы вызывают различные изменения характеристик анализаторов.
Чтобы обеспечить достаточную надежность деятельности человека при приеме и анализе сигналов в любых условиях, для практических расчетов рекомендуется использовать не абсолютные и дифференциальные пороги чувствительности анализаторов к различным характеристикам сигналов, а оперативные пороги, характеризующие не минимальную, а некоторую оптимальную различимость сигналов. Обычно оперативный порог в 10-15 раз выше соответствующего абсолютного и дифференциального.
Характеристика зрительного анализатора. В процессе деятельности человек до 90 % всей информации получает через зрительный анализатор. Прием и анализ информации происходит в световом диапазоне (380--760 нм) электромагнитных волн. Цветовые ощущения вызываются действием световых волн, имеющих различную длину. Приблизительные границы длин и соответствующие им ощущения показаны на рис. 2.
Рис. 2. Спектральная чувствительность глаза
Глаз различает семь основных цветов и более сотни их оттенков. Наибольшая чувствительность в условиях обычного дневного освещения (В = 9,56 кд/м2) достигается при длине волн 554 нм (в желто-зеленой части спектра) и убывает в обе стороны от этого значения.Полный диапазон световой чувствительности 3Ч10-8... 2,25Ч105 кд/м2. Абсолютная слепящая яркость наступает при 225 000 кд/м2. Эффект ослепления может наступить и при меньших яркостях, если скорость нового объекта, попавшего в поле зрения, превысит яркость того объекта, на которую адаптирован глаз.
Минимальная интенсивность светового воздействия, вызывающая ощущение света, называется порогом световой чувствительности. В качестве меры интенсивности принимается яркость воспринимаемого объекта в канделах на квадратный метр (кд/м2). В случае восприятия объектов, светящихся отраженным светом, яркость рассчитывают по формуле В= rЕ, где r -- коэффициент отражения поверхности; Е -- освещенность, лк.
Порог световой чувствительности изменяется в широких пределах в процессе адаптации зрительного анализатора к внешнему световому воздействию.
Наиболее высокая чувствительность, достигаемая в ходе темновой адаптации в течение нескольких (до 3--4) часов, представляет собой абсолютный порог световой чувствительности.
Различие предмета на фоне других определяется контрастом его с фоном. Для практических целей используется показатель, именуемый порогом контрастной чувствительности. Величина контраста оценивается количественно, как отношение разности яркости (кд/м2) предмета и фона к большей яркости:
темный объект на светлом фоне (прямой контраст):
Rпр = (Вф - Воб )/Вф*100%,
светлый объект на темном фоне (обратный контраст):
Rоб = ( Воб-Вф) /Воб *100%,
где Воб и Вф -- яркости объекта и фона. Оптимальная величина контраста считается 0,6-0,9.
Временные характеристики восприятия сигналов:
-латентный период (скрытый период) -- время от подачи сигнала до момента возникновения ощущения (0, 15-0,22 с);
-порог обнаружения сигнала при большей яркости -- 0,00 1 с, при длительности вспышки 0,1 с. Яркость сигнала практического значения не имеет;
-привыкание к темноте (неполная темновая адаптация) длится от нескольких секунд до нескольких минут;
-восприятие мелькающего света (критическая частота слияния мельканий) изменяется от 14 до 70 Гц в зависимости от яркости импульсов, их формы, угловых размеров объекта, уровня зрительной адаптации, функционального состояния человека и т.п. Для исключения слияния мельканий рекомендуется проецирование сигналов с частотой 3-8 Гц.
При оценке восприятия пространственных характеристик основным понятием является острота зрения, которая характеризуется минимальным углом, под которым две точки видны как раздельные. Острота зрения зависит от освещенности, контрастности, формы объекта и других факторов. При оптимальной освещенности (100-700 лк) порог разрешения составляет от Г до 5 мин. При уменьшении контрастности острота зрения снижается.
Информация об удалении предметов достигается за счет конвергенции -- сведений зрительных осей на объекте восприятия, благодаря чему возникают мышечные двигательные ощущения, которые и дают информацию.
Характеристика слухового анализатора. С помощью звуковых сигналов человек получает до 10 % информации.
Характерными особенностями слухового анализатора являются:
-способность быть готовым к приему информации в любой момент времени;
-способность воспринимать звуки в широком диапазоне частот и выделять необходимые;
-способность устанавливать со значительной точностью месторасположение источника звука.
В связи с этим слуховое представление информации осуществляется в тех случаях, когда оказывается возможным использовать указанные свойства слухового канализатора. Наиболее часто слуховые сигналы применяются для сосредоточенного внимания человека -- оператора (предупредительные сигналы и сигналы опасности), для передачи информации человеку-оператору, находящемуся в положении, не обеспечивающим ему достаточной для работы видимости объекта управления, приборной панели и т.п., а также для разгрузки зрительной системы.
Для эффективного использования слуховой формы представления информации необходимо знание характеристик слухового анализатора. Свойства слухового анализатора оператора проявляются в восприятии звуковых сигналов. С физической точки зрения звуки представляют собой распространяющиеся механические колебательные движения в слышимом диапазоне частот.
Механические колебания характеризуются амплитудой и частотой. Амплитуда -- наибольшая величина измерения давления при сгущениях и разрежениях. Частота -- число полных колебаний в одну секунду. Единицей ее измерения является герц (Гц) -- одно колебание в секунду. Амплитуда колебаний определяет величину звукового давления и интенсивность звука (или силу звучания). Звуковое давление принято измерять в Паскалях (Па).
Основные параметры (характеристики) звуковых сигналов (колебаний):
-интенсивность (амплитуда),
-частота и форма, которые отражаются в таких звуковых ощущениях как громкость, высота и тембр.
Воздействие звуковых сигналов на звуковой анализатор определяется уровнем звукового давления (Па). Интенсивность (сила) звука (Вт/м2) определяется плотностью потока звуковой энергии (плотностью мощности).
Для характеристики величин, определяющих восприятие звука, существенными являются не только абсолютные значения интенсивности звука и звукового давления, сколько их отношение к пороговым значениям (J0=10-12 Вт/м2 или Р0=2Ч10-5 Па). В качестве таких относительных единиц измерения используют децибелы (дБ)
Интенсивность звука уменьшается обратно пропорционально квадрату расстояния; при удвоении расстояния снижается на 6 дБ. Абсолютный порог слышимости звука составляет (принят) 2Ч10-5 Па (10-12 Вт/м2) и соответствует уровню 0 дБ.
Пользование шкалой децибел удобно, так как почти весь диапазон слышимых звуков укладывается менее чем в 140 дБ (рис. 3).
Громкость -- характеристика слухового ощущения, наиболее тесно связанная с интенсивностью звука. Уровень громкости выражается в фонах; фон численно равен уровню звукового давления в дБ для чистого тона частотой 1000 Гц. Дифференциальная чувствительность к изменению громкости -- К=(?J/ J) наблюдается в диапазоне частот 500-1000 Гц. С характеристикой громкости тесно связана характеристика раздражающего действия звука. Ощущение неприятности звуков возрастает с увеличением их громкости и частоты.
Минимальный уровень определенного звука, который требуется для того, чтобы вызвать слуховое ощущение в отсутствие шума, называют абсолютным порогом слышимости. Значение его зависит от тона звука (частота, длительность, форма сигнала), метода его предъявления и субъективных особенностей слухового анализатора оператора. Абсолютный порог слышимости имеет тенденцию с возрастом уменьшаться (рис. 4).
Рис. 3. Диаграмма области слухового восприятия
Рис. 4. Зависимость потери слуха с возрастом для различных частот звукового сигнала.
Высота звука, как и его громкость, характеризует звуковое ощущение оператора. Частотный спектр слуховых ощущений простирается от 16-20 Гц до 20000-22 000 Гц. В реальных условиях человек воспринимает звуковые сигналы на определенном акустическом фоне. При этом фон может маскировать полезный сигнал. Эффект маскировки имеет двоякое значение. В ряде случаев фон может маскировать полезный (нужный) сигнал, в некоторых случаях может улучшать акустическую обстановку. Так, известно, имеется тенденция маскировки высокочастотного тона низкочастотным, который менее вреден для человека.
Оптимальными считаются сигналы, повторяющиеся с частотой 2-3 Гц. Слышимость, а следовательно, и обнаруживаемость звукового сигнала зависят от длительности его звучания. Так для обнаружения звуковой сигнал должен длиться не менее 0,1 с.
Наряду с рассмотренными звуковыми сигналами в управлении используются речевые сигналы для передачи информации или команд управления от оператора к оператору. Важным условием восприятия речи является различение длительности и интенсивности отдельных звуков и их комбинаций. Среднее время длительности произнесения гласного звука равно примерно 0,36 с, согласного 0,02-0,03 с. Восприятие и понимание речевых сообщений существенно зависят от темпа их передачи, наличия интервалов между словами и фразами. Оптимальным считается темп 120 слов/мин, интенсивность речевых сигналов должна превышать интенсивность шумов на 6,5 дБ. При одновременном увеличении уровня речевых сигналов и шумов при постоянном их отношении разборчивость речи сохраняется и даже несколько увеличивается. При значительном увеличении уровня речи и шума до 120 и 115 дБ и соответственно разборчивость речи ухудшается на 20 %. Опознание речевых сигналов зависит от длины слова. Так, односложные слова распознаются в 13 % случаев, шестисложные -- в 41 %. Это объясняется наличием в сложных словах большого числа опознавательных признаков. Имеет место повышение до 10 % точности распознавания слов, начинающихся с гласного звука. При переходе к фразам оператор воспринимает не отдельные слова или их сочетания, а смысловые грамматические конструкции, длина которых (до уровня 11 слов) не имеет особого значения.
Полезно знать, что используемые стереотипные словосочетания, фразеологизмы, распознаются значительно хуже, чем это можно было ожидать. Увеличение альтернативных слов возможных словосочетаний, фраз, повышает правильность опознания. Однако включение фраз, допускающих неоднозначность толкования их смыслового содержания, приводит к замедлению процесса восприятия.
Характеристика кожного анализатора. Обеспечивает восприятие прикосновения (слабого давления), боли, тепла, холода и вибрации. Для каждого из этих ощущений (кроме вибрации) в коже имеются специфические рецепторы, либо их роль выполняют свободные нервные окончания. Каждый микроучасток кожи обладает наибольшей чувствительностью к тем раздражителям (сигналам), для которых на этом участке имеется наибольшая концентрация соответствующих рецепторов -- болевых, температурных и тактильных. Так, плотность размещения составляет: на тыльной части кисти --188 болевых, 14 осязательных, 7 Холодовых и 0,5 тепловых на квадратный сантиметр поверхности; на грудной клетке соответственно --196, 29,9 и 0,3. Воздействие в этих точках даже не специфическим, но достаточно сильным раздражителем независимо от его характера вызывает специфическое ощущение, обусловленное типом рецептора. Например, интенсивный тепловой луч, попадая в точку боли, вызывает ощущение боли.
Чувствительность к прикосновению. Это -- ощущение, возникающее при действии на кожную поверхность различных механических стимулов (прикосновение, давление), вызывающих деформацию кожи. Ощущение возникает только в момент деформации. Абсолютный порог тактильной чувствительности определяется по тому минимальному давлению предмета на кожную поверхность, которое производит едва заметное ощущение прикосновения. Наиболее высоко развита чувствительность на дистальных частях тела. Примерные пороги ощущений: для кончиков пальцев руки -- 3 г/мм2; на тыльной стороне пальца -- 5 г/мм2, на тыльной стороне кисти --12 г/мм2; на животе -- 26 г/мм2; на пятке -- 250 г/мм2. Порог различения в среднем равен примерно 0,07 исходной величины давления.
Тактильный анализатор обладает высокой способностью к пространственной локализации. При последовательном воздействии одиночных раздражителей ошибка в локализации колеблется в пределах 2-8 мм. Характерной особенностью тактильного анализатора является быстрое развитие адаптации, т.е. исчезновение чувства прикосновения или давления. Время адаптации зависит от силы раздражителя и для различных участков тела может изменяться в пределах 2-20 с.
Вибрационная чувствительность обусловлена теми же рецепторами, что и тактильная, поэтому топография распределения вибрационной чувствительности по поверхности тела аналогична тактильной.
Диапазон ощущения вибрации высок: 5-12 000 Гц. Наиболее высока чувствительность к частотам 200-250 Гц. При их увеличении и уменьшении вибрационная чувствительность снижается. В этом случае пороговая амплитуда вибрации минимальна и равна 1 мкм. Пороги вибрационной чувствительности различны для разных участков тела. Наибольшей чувствительностью обладают дистальные участки тела человека, т.е. которые наиболее удалены от его медиальной плоскости (например, кисти рук).
Кожная чувствительность к боли. Этот вид чувствительности обусловлен воздействием на поверхность кожи механических, тепловых, химических, электрических и других раздражителей. В эпителиальном слое кожи имеются свободные нервные окончания, которые являются специализированными нервными рецепторами. Между тактильными и болевыми рецепторами существуют противоречивые отношения. Противоречие обусловлено различием функций рецепторов в жизни организма. Болевые ощущения вызывают оборонительные рефлексы, в частности, рефлекс удаления от раздражителя. Тактильная чувствительность связана с ориентировочными рефлексами, в частности, это вызывает рефлекс сближения с раздражителем.
Биологический смысл боли состоит в том, что она, являясь сигналом опасности, мобилизует организм на борьбу за самосохранение. Под влиянием болевого сигнала перестраивается работа всех систем организма и повышается его реактивность.
Болевой порог при механическом давлении на кожу измеряется в единицах давления и зависит от места измерений. Например, порог болевой чувствительности кожи живота составляет 15-20 г/мм2, кончиков пальцев -- 300 г/мм2. Латентный период около 370 мс. Критическая частота слияния дискретных болевых раздражителей -- 3 Гц.
Пороговая плотность потока тепла, вызывающего болевое ощущение, составляет 88 Дж/(мЧс).
Температурная чувствительность. Свойственна организмам, обладающим постоянной температурой тела, обеспечиваемой терморегуляцией. Температура кожи несколько ниже температуры тела и различна, для отдельных участков: на лбу -- 34-35 °С, на лице --20-25 °С, на животе -- 34 °С, стопах ног -- 25-27 °С. Средняя температура свободных от одежды участков кожи 30-32 °С. Коже присущи два вида рецепторов. Одни реагируют только на холод, другие только на тепло.
Кинестетический анализатор обеспечивает ощущение положения и движений тела и его частей. Имеется три вида рецепторов, воспринимающих:
1. Растяжение мышц при их расслаблении -- «мускульные веретена»;
2. Сокращение мышц -- сухожильные органы Гольджи;
3.Положение суставов (обусловливающее так называемое «суставное чувство»). Предполагается, что их функции выполняют глубинные рецепторы давления.
Возможности двигательного аппарата представляют определенную значимость при конструировании защитных устройств, органов управления. Сила сокращения мышц человека колеблется в широких пределах. Например, номинальная сила кисти в 450-650 Н при соответствующей тренировке может быть доведена до 900 Н. Сила сжатия, в среднем равная 500 Н для правой и 450 Н для левой руки, может увеличиваться в два раза и более.
Обонятельный анализатор предназначен для восприятия человеком различных запахов (их диапазон охватывает до 400 наименований). Рецепторы расположены на участке площадью около 2,5 см2 слизистой оболочки в носовой полости.
Условиями восприятия запахов являются летучесть пахучего вещества (выделение его молекул в свободном виде); растворимость веществ в жирах; движение воздуха, содержащего молекулы пахучего вещества в области обонятельного анализатора.
Абсолютный порог обоняния измеряется долями миллиграмма вещества на литр воздуха (мг/л). Запахи могут сигнализировать человеку о нарушениях в ходе технологических процессов и об опасностях.
Вкусовой анализатор. В физиологии и психологии распространена четырехкомпонентная теория вкуса, согласно которой существуют четыре вида элементарных вкусовых ощущений: сладкого, кислого, горького и соленого. Все остальные ощущения представляют их комбинации. Абсолютные пороги вкусового анализатора выражаются в величинах концентраций раствора и они примерно в 10 000 раз выше, чем обонятельного. Различная чувствительность вкусового анализатора довольно груба, в среднем она составляет 20 %. Восстановление вкусовой чувствительности после воздействия различных раздражителей заканчивается через 10-15 мин.
2. Производственная, городская, бытовая, природная среда
Жизнедеятельность человека неразрывно связана с окружающей его средой обитания. В процессе жизнедеятельности человек и среда постоянно взаимодействуют друг с другом, образуя систему «человек - среда обитания».
Жизнедеятельность - это повседневная деятельность и отдых, способ существования человека.
Среда обитания - окружающая человека среда, обусловленная в данный момент совокупностью факторов (физических, химических, биологических, социальных), способных оказывать прямое или косвенное немедленное или отдаленное воздействие на деятельность человека, его здоровье и потомство.
Основная мотивация человека в его взаимодействии со средой обитания направлена на решение, как минимум, двух основных задач:
- обеспечение своих потребностей в пище, воде и воздухе;
- создание и использование защиты от негативных воздействий среды обитания.
В системе «человек - среда обитания» происходит непрерывный обмен потоками вещества, энергии и информации.
Производственная среда наиболее опасна, так как для реализации любого производственного процесса необходимо использование мощных источников энергии и разнообразных химических веществ, что несет в себе угрозу потенциального негативного воздействия. Прогресс в сфере промышленного производства и создание новой техники в период технического прогресса научно-технической революции сопровождался и сопровождается в настоящее время ростом энерговооруженности рабочих мест и синтезом новых химических соединений, что расширило список и усилило действие травмирующих и вредных факторов производственной среды.
Городская среда, понимаемая как совокупность пространства между зданиями, в большинстве свободна от многих негативных факторов производственной среды. Однако создание двигателей внутреннего сгорания и развитие транспорта привело к повышению травматизма на улицах и дорогах, породило проблемы загрязнения городов, защиты человека в городской среде от токсичных выбросов автомобилей (отработавших газов, масел, продуктов износа шин и др.).
Бытовая среда. Наличие в современных квартирах многочисленных бытовых приборов и устройств существенно облегчает быт, делает его удобным и эстетичным, но одновременно привносит целый комплекс травмирующих и вредных факторов: электрический ток, электромагнитное поле, повышенный уровень радиации, шум, вибрацию, опасность механического травмирования, токсичные вещества и т.п. С развитием бытовой техники жилая среда все более и более приближается к производственной.
3. Влияние микроклимата на производительность труда и состояние здоровья, профессиональные заболевания
Микроклимат представляет собой комплекс физических факторов, обуславливающих теплообмен человека с окружающей средой, его тепловое состояние и влияющих на самочувствие, здоровье, работоспособность. Тепловое состояние человека по степени напряжения, реакции, терморегуляции, влияние на показатели работоспособности и здоровье подразделяется на оптимальное, допустимое, предельно-допустимое. Показателями микроклимата являются температура, относительная влажность, скорость движения воздуха и тепловое излучение.
Роль микроклимата в жизнедеятельности человека предопределяется тем, что последняя может нормально протекать лишь при условии сохранения температурного гомеостаза организма, который достигается за счет системы терморегуляции и усиления деятельности других функциональных систем: сердечно-сосудистой, выделительной, эндокринной, а также систем обеспечивающих энергетический, водносолевой и белковый обмены. Напряжение в функционировании перечисленных систем обусловлено воздействием неблагоприятного микроклимата, может сопровождаться ухудшение здоровья, которое усугубляется воздействием на организм других вредных производственных факторов (вибрация, шум, химические вещества и др.).
Термостабильность - состояние организма, обеспечиваемое равенством теплопродукции и суммарной теплоотдачей, не является единственным условием теплового комфорта человека. Должны быть соблюдены и другие условия, касающиеся регламентации доли теплоотдачи за счет испарения влаги с поверхности кожи (не более 30%), а также средневзвешенной температуры кожи и температуры кожи на отдельных участках поверхности тела.
Микроклимат по степени его влияния на тепловой баланс человека подразделяется на нейтральный, нагревающий, охлаждающий.
Нейтральный микроклимат - это такое сочетание его составляющих, которое при воздействии на человека в течение рабочей смены обеспечивает тепловой баланс организма, разность между величиной теплопродукции и суммарной теплоотдачей находится в пределах ± 2 Вт, доля теплоотдачи испарением влаги не превышает 30%.
Охлаждающий микроклимат - сочетание параметров, при котором имеет место превышение суммарной теплоотдачи в окружающую среду над величиной теплопродукции организма, приводящее к образованию общего и/или локального дефицита тепла в теле человека (> 2 Вт).
Нагревающий микроклимат - сочетание его параметров, при котором имеет место изменение теплообмена человека с окружающей средой, проявляющееся в накоплении тепла в организме (> 2 Вт) и/или в увеличении доли потерь тепла испарением влаги (> 30 Вт).
Влияние охлажденного микроклимата определяется тем, что в ходе эволюционного развития человек не выработал устойчивого приспособления к холоду. Его биологические возможности в сохранении температурного гомеостаза весьма ограничены. Охлаждающий микроклимат способствует возникновению сердечно-сосудистой патологии, приводит к обострению язвенной болезни, радикулита, обуславливает возникновение заболеваний органов дыхания. Охлаждение человека, как общее, так и локальное (особенно кистей) способствует изменению его двигательной реакции, нарушает координацию и способность выполнения точных операций, вызывает тормозные процессы в коре головного мозга, что может быть причиной возникновения различных форм травматизма. При локальном охлаждении кистей снижается точность выполнения рабочих операций. Работоспособность уменьшается на 1,5% на каждый градус снижения температуры пальцев. При выраженном охлаждении организма растет число тромбоцитов и эритроцитов в крови, увеличивается содержание холестерина, вязкость крови, что повышает возможность тромбообразования. Даже при кратковременном влиянии холода в организме происходит перестройка регуляторных и гомеостатических систем, изменяется иммунный статус организма.
Влияние хронического охлаждения усугубляется воздействием локальной вибрации, поскольку она вызывает сужение сосудов в соседних к месту ее приложения областях. Переносимость человеком охлаждения несколько увеличивается при адаптации к холодовому фактору, но для обеспечения температурного гомеостаза существенного значения не имеет.
Влияние нагревающего микроклимата связано с напряжением различных функциональных систем организма человека, что приводит к нарушению состояния здоровья, работоспособности и производительности труда. При определенном значении составляющих нагревающий микроклимат может привести к заболеванию общего характера, которое проявляется чаще всего в виде теплового коллапса. Особенно подвержены тепловым ударам лица, имеющие массу тела выше нормы. Среди рабочих, труд которых связан со значительной тепловой и физической нагрузкой, наблюдается интенсивное биологическое старение, особенно в возрастных группах 20-30 и 40-50 лет. Наблюдаются головные боли, повышенная потливость и утомляемость, увеличивается риск смерти от сердечно - сосудистой патологии (гипертоническая и ишемическая болезни, болезни артерий и капилляров).
Микроклимат - это искусственно создаваемые климатические условия в закрытых помещениях для защиты от неблагоприятных внешних воздействий и создания зоны комфорта.
Показателями, характеризующими микроклимат в производственных помещениях, являются:
- температура воздуха;
- температура поверхностей;
- относительная влажность воздуха;
- скорость движения воздуха;
- интенсивность теплового облучения.
Роль микроклимата в жизнедеятельности человека предопределяется тем, что последняя может нормально протекать лишь при условии сохранения температурного гомеостаза организма, который достигается за счет системы терморегуляции и усиления деятельности других функциональных систем: сердечно - сосудистой, выделительной, эндокринной, а также систем, обеспечивающих энергетический, водно-солевой и белковый обмены.
Воздействие неблагоприятного микроклимата, как охлаждающего, так и нагревающего, оказывает вредное влияние на организм, способствуя ухудшению самочувствия, понижению работоспособности и нарушению здоровья. Неблагоприятный микроклимат усугубляет также действие других неблагоприятных производственных факторов и физического перенапряжения.
Общие требования к микроклимату на рабочих местах:
При нормировании микроклимата различают оптимальные и допустимые условия.
Оптимальные условия - это такое сочетание параметров микроклимата, которое обеспечивает полный тепловой комфорт и высокую производительность труда.
Допустимые условия - это такие условия, которые могут приводить к некоторому тепловому дискомфорту, но не выходят за рамки адаптивных возможностей человека.
Показатели микроклимата должны обеспечивать сохранение теплового баланса человека с окружающей средой и поддержание оптимального или допустимого теплового состояния организма.
Оптимальные и допустимые величины показателей микроклимата представлены в СанПиНе 2.2.4.548-96 «Гигиенические требования к микроклимату производственных помещений.
Снижение неблагоприятного воздействия микроклимата достигается использованием технологических, санитарно-технических и медико-профилактических мероприятий.
В профилактике вредного влияния высоких температур инфракрасного излучения ведущая роль принадлежит техническим и технологическим мероприятиям: замена старого оборудования; внедрение новых технологий, автоматизация и механизация процессов.
К группе санитарно-технических мероприятий относятся средства локализации тепловыделений и теплоизоляции, направленные на снижение интенсивности теплового излучения и тепловыделений от оборудования, покрытие нагревающихся поверхностей, устройство вентиляционных систем. К медико-профилактическим мероприятиям относятся: организация рационального режима труда и отдыха, обеспечение питьевого режима и др.
Мероприятия по профилактике неблагоприятного воздействия холода должны предусматривать задержку тепла из производственных помещений, подбор рациональных режимов труда и отдыха, установление дополнительных перерывов для обогрева работников, мероприятия по повышению защитных сил организма человека, индивидуальные средства защиты.
анализатор микроклимат заболевание
Список использованной литературы
1. Арустамова Э.А. Безопасность жизнедеятельности: Учебник.,10-е изд., перераб. и доп. - М.: «Дашков и Ко», 2006. - 476с.
2. Бажанова Е.С. Основы безопасности жизнедеятельности: Учебное пособие. - Самара: Самарский гос. техн. университет, 2008. - 170с.
3. Зотов Б.И. Безопасность жизнедеятельности: Учебник., 2-е изд., перераб. и доп. - М.:КолосС, 2003. - 432с.
4. Лобачёв А.И. Безопасность жизнедеятельности: Учебное пособие, 2-е изд., исправ. и доп. - М.: ЮРАЙТ, 2009. - 367с.
Размещено на Allbest.ru
...Подобные документы
Воздействие человека на среду вызывает ответные противодействия всех ее компонентов. Понятие среды обитания, ее эволюция и взаимодействие с человеком. Теплообмен человека с окружающей средой и влияние на него микроклимата. Тепловое самочувствие.
реферат [24,7 K], добавлен 26.05.2008Среда обитания и жизнедеятельности человека. Факторы, воздействующие на человека в процессе его жизнедеятельности. Техногенные опасности в зоне действия технических систем. Классификация основных форм деятельности человека. Допустимые условия труда.
реферат [18,3 K], добавлен 23.02.2009Взаимодействие человека со средой обитания и ее составляющими. Понятие опасности, ее виды, источники и способы защиты. Возникновение и развитие научно-практической деятельности в сфере безопасности жизнедеятельности человека, ее сущность, цели и задачи.
реферат [27,8 K], добавлен 09.11.2009Анализ проблем безопасности жизнедеятельности как науки, его основание на раскрытии особенностей безопасного взаимодействия человека (группы людей) со средой обитания. Характеристика компонентов среды обитания (социальный, техногенный, природный).
реферат [128,0 K], добавлен 17.12.2013Предмет и объект изучения медико-биологических основ безопасности жизнедеятельности. Сущность и структурно-функциональная организация анализаторов. Характеристика трех основных отделов анализаторов: периферический, проводниковый и центральный (корковый).
презентация [215,5 K], добавлен 27.06.2013Влияние среды обитания и окружающей природной среды на жизнедеятельность человека. Основы физиологии труда. Воздействие на человека опасных и вредных факторов среды. Основы техники безопасности. Правовое обеспечение безопасности жизнедеятельности.
методичка [160,0 K], добавлен 17.05.2012Взаимодействие организма человека с окружающей средой. Санитарно-технические требования к территории предприятий, к их зданиям и сооружениям. Влияние шума на организм человека. Виды радиоактивного облучения.
контрольная работа [44,3 K], добавлен 09.06.2002Современный мир и его влияние на окружающую среду. Состояние биосферы или техносферы. Воздействие инженерной деятельности человека на природную среду. Экологический кризис и его последствия. Защита среды обитания от естественных негативных воздействий.
презентация [2,0 M], добавлен 11.02.2014Бытовая среда как совокупность факторов, воздействующих на человека в быту. Предельно допустимые значения напряженности электрического и магнитного полей. Концентрация загрязняющих веществ в воздухе помещений. Безопасность человека как потребителя.
презентация [810,3 K], добавлен 22.12.2013Параметры микроклимата и их измерение. Терморегуляция организма человека. Влияние параметров микроклимата на самочувствие человека. Гигиеническое нормирование параметров микроклимата. Обеспечение в помещениях нормальных метеорологических условий.
контрольная работа [24,9 K], добавлен 23.06.2013Влияние окружающей среды на трудоспособность человека. Вредные производственные факторы. Виды опасных факторов производственной среды и параметры, определяющие ее влияние на организм человека. Предложения по улучшению окружающей среды на предприятии.
реферат [53,3 K], добавлен 23.09.2011Влияние жизнедеятельности человека на окружающую среду. Основы физиологии, гигиены труда и производственной санитарии. Основы техники безопасности. Охрана труда в отрасли. Запыленность атмосферы и профессиональные заболевания.
реферат [176,8 K], добавлен 10.11.2003Влияние отклонений параметров производственного микроклимата от нормативных значений на производительность труда и состояние здоровья. БЖД при устройстве и эксплуатации электрических сетей и электроустановок. Организация рабочего места оператора ПЭВМ.
реферат [34,8 K], добавлен 11.01.2008Человек как элемент среды обитания. Основные принципы существования и развития всего живого. Понятие среды обитания. Изучение состояния среды обитания и процессов взаимодействия живых существ с ней. Экология. Среда обитания человека. Техносфера.
реферат [26,8 K], добавлен 20.10.2008Взаимосвязь состояния здоровья человека и среды его обитания. Влияние запахов растений на некоторые функции организма, связанные с поддержанием работоспособности. Виды загрязнений. Результаты оценки освещённости и показатели микроклимата квартиры.
лабораторная работа [30,1 K], добавлен 24.01.2009Взаимодействие человека со средой обитания. Требования к технике и производству. Монотонность труда, его нормирование, воздействие на здоровье, мероприятие профилактики неблагоприятного воздействия. Эргономическая оценка системы "человек-техника-среда".
контрольная работа [25,4 K], добавлен 08.09.2012Комплекс факторов, которые напрямую влияют на нормальное самочувствие человека и обусловливают его физиологические реакции. Понятие и основные параметры микроклимата помещения. Специфика систем отопления, кондиционирования и вентиляции воздуха.
реферат [15,5 K], добавлен 08.12.2014Характеристика анализаторов человека: слух и зрение. Оптимальные и допустимые параметры микроклимата. Индивидуальные средства защиты от воздействия вредных веществ. Типы пожарных извещателей и принципы их работы. Способы защиты от ионизирующих излучений.
контрольная работа [309,1 K], добавлен 17.11.2015Анализ условий труда в лаборатории, где проводилась разработка манипулятора мобильного робота (параметры освещенности, уровня шума). Правила электробезопасности. Производственная санитария и гигиена труда. Меры по обеспечению пожарной безопасности.
контрольная работа [102,7 K], добавлен 06.01.2011Концепция обеспечения безопасности жизнедеятельности. Человек и среда обитания. Физические, химические, биологические, социальные факторы, способные оказывать прямое или косвенное, немедленное или отдаленное воздействие на деятельность человека.
контрольная работа [55,8 K], добавлен 18.12.2014