Ионизирующие излучения и защита от них. Нормы радиационной безопасности в мирное время (НРБ-99), в военное время и при чрезвычайных ситуациях
Понятие и основные методы обнаружения ионизирующего излучения. Определение зависимости эффектов от дозы кратковременного облучения человека. Рассмотрение критериев для принятия решений в различных ситуациях, требования к контролю за выполнением норм.
Рубрика | Безопасность жизнедеятельности и охрана труда |
Вид | реферат |
Язык | русский |
Дата добавления | 14.10.2017 |
Размер файла | 46,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Министерство Российской Федерации по налогам и сборам
Всероссийская государственная налоговая академия
Кафедра «Гуманитарных и социальных дисциплин»
Дисциплина «Безопасность жизнедеятельности»
Реферат Тема:
Ионизирующие излучения и защита от них. Нормы радиационной безопасности в мирное время (НРБ-99), в военное время и при ЧС
Выполнила: студентка гр. БО-201
Бредихина Е.Ю.
Проверил: Пушкарёв М.И.
Москва 2003
Содержание
ВВЕДЕНИЕ
ПОНЯТИЕ ИОНИЗИРУЮЩЕГО ИЗЛУЧЕНИЯ. ОСНОВНЫЕ МЕТОДЫ ОБНАРУЖЕНИЯ ИИ
ОСНОВЫ РАДИОАКТИВНОЙ БЕЗОПАСНОСТИ. НОРМЫ РАДИАЦИОННОЙ БЕЗОПАСНОСТИ (НРБ-99)
КРИТЕРИИ ДЛЯ ПРИНЯТИЯ РЕШЕНИЙ В РАЗЛИЧНЫХ СИТУАЦИЯХ. ТРЕБОВАНИЯ К КОНТРОЛЮ ЗА ВЫПОЛНЕНИЕМ НОРМ
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ
Введение
С ионизирующим излучением и его особенностями человечество познакомилось совсем недавно: в 1895 году немецкий физик В.К. Рентген обнаружил лучи высокой проникающей способности, возникающие при бомбардировке металлов энергетическими электронами (Нобелевская премия, 1901 г.), а в 1896 г. А.А. Беккерель обнаружил естественную радиоактивность солей урана.
Нет необходимости говорить о том положительном, что внесло в нашу жизнь проникновение в структуру ядра, высвобождение таившихся там сил. Но как всякое сильнодействующее средство, особенно такого масштаба, радиоактивность внесла в среду обитания человека вклад, который к благотворным никак не отнесёшь.
Появилось также число пострадавших от ионизирующей радиации, а сама она начала осознаваться как опасность, способная привести среду обитания человека в состояние, не пригодное для дальнейшего существования.
Причина не только в тех разрушениях, которые производит ионизирующее излучение. Хуже то, что оно не воспринимается нами органолептически: ни один из органов чувств человека не предупредит его о приближении или сближением с источником радиации. Человек может находиться в поле смертельно опасного для него излучения и не иметь об этом ни малейшего представления.
Такими опасными элементами, в которых соотношение числа протонов и нейтронов превышает 1…1,6, т.е. Р > 1…1,6. В настоящее время из всех элементов таблицы Д.И. Менделеева известно более 1500 изотопов. Из этого количества изотопов лишь около 300 стабильных и около 90 являются естественными радиоактивными элементами.
Продукты ядерного взрыва содержат более 100 нестабильных первичных изотопов. Большое количество радиоактивных изотопов содержится в продуктах деления ядерного горючего в ядерных реакторах АЭС.
Таким образом, источниками ионизирующего излучения являются искусственные радиоактивные вещества, изготовленные на их основе медицинские и научные препараты, продукты ядерных взрывов при применении ядерного оружия, отходы атомных электростанций при авариях на них.
Понятие ионизирующего излучения. Основные методы обнаружения ИИ
Радиационная опасность для населения и всей окружающей среды связана с появлением ионизирующих излучений (ИИ), источником которых являются искусственные радиоактивные химические элементы (радионуклиды), которые образуются в ядерных реакторах или при ЯВ. Радионуклиды могут попадать в окружающую среду в результате аварий на радиационно-опасных объектах (АЭС и др. объектах ядерного топливного цикла - ЯТЦ), усиливая радиационный фон земли.
Ионизирующими излучениями называют излучения, которые прямо или косвенно способны ионизировать среду (создавать раздельные электрические заряды). Вообще к ИИ относят: рентгеновское и -излучения; излучения, состоящие из потока заряженных (+, , протонов р+, тяжёлые ядра отдачи) и незаряженных частиц - , , - мезонов, мюонов и др. частиц.
При авариях реакторов образуются + частицы и -излучение. При ЯВ дополнительно образуются нейтроны n.
Рентгеновское и -излучение обладают высокой проникающей и достаточно ионизирующей способностью (в воздухе может распространяться до 100м и косвенно создать 2-3 пары ионов за счёт фотоэффекта на 1 см пути в воздухе). Они представляют собой основную опасность как источники внешнего облучения. Для ослабления -излучения требуются значительные толщи материалов.
Бета- частицы (электроны и позитроны ) краткобежны в воздухе (до 3,8м/МэВ), а в биоткани - до несколько миллиметров. Их ионизирующая способность в воздухе 100-300 пар ионов на 1 см пути. Эти частицы могут действовать на кожу дистанционно и контактным путём (при загрязнении одежды и тела), вызывая «лучевые ожоги». Опасны при попадании внутрь организма.
Альфа - частицы (ядра гелия) краткобежны в воздухе (до 11 см), в биоткани до 0,1 мм. Они обладают большой ионизирующей способностью (до 65000 пар ионов на 1 см пути в воздухе) и особо опасны при попадании внутрь организма с воздухом и пищей. Облучение внутренних органов значительно опаснее наружного облучения.
Заметим, что ионизирующая способность альфа и бета - частиц будет во многом зависеть от энергии, с которой они покидают «материнское» («дочернее») ядро. Проходя через среду (биологическую ткань) ИИ ионизируют ее, что приводит к физико-химическим или биологическим изменениям свойств среды(ткани). При ионизации организма нарушаются обменные процессы, нормальное функционирование нервной, эндокринной, имунной, дыхательной, сердечно-сосудистой и др. систем, в результате чего люди (животные) заболевают. Элементы технических устройств, особенно радиоэлектронной аппаратуры, при ионизации теряют или изменяют свои свойства и параметры, а при сильном облучении могут выйти из строя. Короче говоря, все живое и «неживое» не терпит излишнего облучения.
Последствия облучения для людей могут быть самыми различными. Они во многом определяются величиной дозы облучения и временем её накопления. Возможные последствия облучения людей при длительном хроническом облучении, зависимость эффектов от дозы однократного облучения приведены на рис. 1.
Таблица 1
Последствия облучения людей
Телесные (соматические). Воздействуют на облучаемого. Имеют дозовый порог. |
Вероятностные телесные (соматические-стохастические). Условно не имеют дозового порога. |
Гинетические. Условно не имеют дозового порога. |
|
Острая лучевая болезнь |
Сокращение продолжительности жизни. |
Доминантные генные мутации. |
|
Хроническая лучевая болезнь. |
Лейкозы (скрытый период 7-12 лет). |
Рецессивные генные мутации. |
|
Локальные лучевые повреждения. |
Опухоли разных органов (скрытый период до 25 лет и более). |
Хромосомные абберации. |
Чтобы избежать ужасных последствий ИИ, необходимо производить строгий контроль служб радиационной безопасности с применением приборов и различных методик. Для принятия мер защиты от воздействия ИИ их необходимо своевременно обнаружить и количественно оценить. Воздействуя на различные среды ИИ вызывают в них определенные физико-химические изменения, которые можно зарегистрировать. На этом основаны различные методы обнаружения ИИ.
К основным относятся:
-ионизационный, в котором используется эффект ионизации газовой среды, вызываемой воздействием на неё ИИ, и как следствме - изменение ее электропроводности;
-сцинтилляционный, заключающийся в том, что в некоторых веществах под воздействием ИИ образуются вспышки света, регистрируемые непосредственным наблюдением или с помощью фотоумножителей;
-химический, в котором ИИ обнаруживаются с помощью химических реакций, изменения кислотности и проводимости, происходящих при облучении жидкостных химических систем;
-фотографический, заключающийся в том, что при воздействии ИИ на фотопленку на ней в фотослое происходит выделение зерен серебра вдоль траектории частиц.
-метод, основанный на проводимости кристаллов, т.е. когда под воздействием ИИ возникает ток в кристаллах, изготовленных из диэлектрических материалов и изменяется проводимость кристаллов из полупроводников и др.
Основы радиоактивной безопасности. Нормы радиационной безопасности (НРБ-99)
Под радиационной безопасностью понимается состояние защищённости настоящего и будущего поколения людей, материальных средств и окружающей среды от вредного воздействия ИИ.
Радиационная безопасность регламентируется помимо Закона «О радиационной Безопасности» - НРБ-99.
ионизирующий излучение доза облучение
Таблица 2
Зависимость эффектов от дозы однократного Радиоактивное облучение, полученное в течение первых четырёх суток, принято называть однократными, а за большое время - многократными. Доза радиации, не приводящая к снижению работоспособности (боеспособности) личного состава формирований (личного состава армии во время войны): однократная (в течение первых четырёх суток) - 50 рад; многократная: в течение первых 10-30 суток - 100 рад; в течение трёх месяцев - 200 рад; в течение года - 300 рад. Не путать, речь идёт о потере работоспособности, хотя последствия облучения сохраняются. (кратковременного) облучения человека
Доза |
Эффект |
||
Грей |
Рад |
||
50 |
5000 |
Пороговая доза поражения центральной нервной системы («электронная смерть») |
|
6,0 |
600 |
Минимальная абсолютно-смертельная доза |
|
4,0 |
400 |
Средне-смертельная доза (доза 50% выживания) |
|
1,5 |
150 |
Доза возникновения первичной лучевой реакции (в зависимости от дозы облучения различают четыре степени острой лучевой болезни: 100-200 рад - 1ст., 200-400 рад - 2 ст., 400-600 рад - 3 ст., свыше 600 рад - 4ст.) |
|
1,0 |
100 |
Порог клинических эффектов |
|
0,1 |
10 |
Уровень удвоения генных мутаций |
Основные положения НРБ-99 сводятся к следующим.
1. Требования НРБ-99 распространяются на следующие виды воздействия ИИ на человека:
а) облучение персонала и населения в условиях радиационной аварии;
б) облучение персонала и населения в условиях нормальной эксплуатации техногенных источников ИИ;
в) облучение работников предприятий и населения природными источниками ИИ;
г) медицинское облучение населения.
Требования НРБ сформулированы для каждого вида облучения.
2. Требования НРБ не распространяются на источники ИИ, создающие годовую эффективную дозу не более 10 мкЗв (1 мбэр) и коллективную годовую дозу не более 1 чел - Зв при любых условиях их использования, а также на космическое излучение на поверхности земли и облучение, создаваемое содержащимися в организме человека калием-40, на которые практически невозможно влиять. Освобождаются автоматически от регламентации следующие источники: генераторы излучений, разрешённые органами Госсанэпиднадзора без радиационного контроля; генераторы, мощность которых в условиях нормальной эксплуатации создаёт мощность эквивалентной дозы в любой точке на расстоянии 0,1 м от любой доступной поверхности аппаратуры не превышает 1,0мкЗв/ч (0,1 мбэр/ч); генераторы излучения, максимальная энергия которых не превышает 5 кэВ; радиоактивные вещества, удельная или суммарная активность которых меньше установленных норм ( приводятся в специальном приложении НРБ).
3. Устанавливаются ряд терминов и определений. Основные дозиметрические величины и еденицы их измерения приведены в таблице
4. Установлен нижний предел радиоактивного загрязнения.
Под ним понимается присутствие РВ техногенного происхождения на поверхности или внутри материала или тела человека, в воздухе или в др. месте, которые может привести к облучению в индивидуальной дозе более 10 мкЗв/год (1 мбэр/год).
5. Установлены следующие категории облучаемых лиц:
а) персонал (лица, работающие с техногенными источниками - группа А, или находящиеся по условиям работы в сфере их воздействия - группа Б);
б) всё население, включая лиц из персонала вне сферы и условий их производственной деятельности.
Для всех категорий облучаемых лиц устанавливаются три класса нормативов:
а) основные дозовые пределы (таблица 2);
б) допустимые уровни монофакторного (для одного радионуклида или одного вида внешнего излучения, пути поступления) воздействия, являющиеся производными от основных дозовых пределов: пределы годового поступления, допустимые среднегодовые объёмные активности ДОА) и удельные активности ДУА) и т.д.
Причём в практике дозиметрических измерений могут также широко использоваться:
-Эффективная - коллективная, полувековая и другие дозы;
- Десятичные кратные и дольные части указанных единиц - дека, гекто, кило, мега, деци, санти, милли, микро и другие;
-Активность - удельная (Бк/кг), объёмная (мкКи/литр), поверхностная (мкКи/см2) или Ки/км2 и другие.
Таблица 3
Основные дозиметрические величины и единицы их измерения
Величины и их символы |
в СИ |
Внесистемные |
Соотношения между единицами |
|
Активность, А - мера радиоактивности. Характеризует скорость ядерных превращений (распада)радионуклидов |
Бк-беккерель |
Ки- кюри |
1Бк=1расп/с=2,7*10-11Ки; 1Ки=3,7*1010Бк |
|
Экспозиционная доза, Х-ионизации воздуха. Характеризует потенциальную возможность поля ИИ к облучению тел (вещества) |
Кл/кг- Кулон на килограмм |
Р - рентген |
1Кл/кг=3,88*103; 1Р=2,58*10-4 Кл/кг=2,08*109пар ионов в 1см3 воздуха; 1Р=0,88рад-в воздухе; 1Р=0,93 рад - в ткани |
|
Поглощенная доза, Д - Мера радиационного эффекта облучения. Характеризует энергию излучения, переданную телу определенной массы. Фундаментальная дозиметрическая величина |
Гр - грей |
Рад-рад (радиационная адсорбированная доза) |
1Гр=1Дж/кг=100рад; 1Рад=100эрг/г=10-2Гр |
|
Эквивалентная доза, Н - мера биологического эффекта облучения в зависимости от вида ИИ. Произведение поглощенной дозы данного вида излучения на соответствующий взвешивающий коэффициент. WR - (взвешивающий коэффициент вида излучения) Нi=WRi*Di |
Зв - зиверт |
Бэр-бэр (биологический эквивалент рада) |
1Зв=1Гр*W 1Бэр=1рад*WWк(Q,K) |
|
Эффективная доза, Е - мера риска возникновения отдалённых последствий облучения с учетом радиочувствительности различных органов. Сумма произведений эквивалентной дозы НT в органе на соответствующий взвешивающий коэффициент WT,E=WTHT |
Зв - зиверт |
Бэр-бэр |
Если WT=0,20- гонады0,12- костный мозг, кишечник, лёгкие, желудок0,05- щит. Железа, печень, пищевод0,01- кожаWT=1 |
|
Мощность дозы - приращение дозы (поглощенной, эквивалентной, эффективной) за интервал времени к этому интервалу: Р=dД/dt |
За единицу времени могут принимать секунду, час, сутки, год: Гр/ч, Зв/ч, рад/с. |
в) контрольные уровни (дозы и уровни) - устанавливаются администрацией учреждения (органа) по согласованию с органами Госсанэпиднадзора.
Таблица 4
Основные дозовые пределы облучения
Нормируемые величины |
Дозовые пределы |
||
Лица из персонала (группа А) |
Лица из населения |
||
Эффективная доза |
20мЗв(2бэр) в год в среднем за любые последовательные 5 лет, но не более 50мЗв (5бэр) в год |
1мЗв (0,1 бэр) в год в среднем за любые последовательные 5 лет, но не более 5млЗв (0,5 бэр) в год |
|
Эквивалентная доза за годВ хрусталикеВ кожеВ кистях и стопах |
150мЗв(15бэр)500мЗв (50бэр)500мЗв |
15мЗв(1,5бэр)50мЗв(5бэр)50мЗв |
Основные дозовые пределы не включают в себя дозы от природных, аварийных и медицинских источников ИИ.
6. Ограничение облучения для населения:
-от техногенных источников- не должно превышать основных дозовых пределов- 1мЗв/год;
-при проектировании новых зданий жилищного и общественного назначения должно быть предусмотрено, чтобы среднегодовая эквивалентная объёмная активность изотопов радона и торона в воздухе помещений А Rnэкв +Tnэкв не превышала 100 Бк/м3, а мощность дозы -изл.не превышала мощности дозы на открытой местности более чем на 0,3мкЗв/ч.При больших значениях должны проводиться различные защитные мероприятия. Если же показатели превышают нормативы, то ставится вопрос о переселении жильцов (с их согласия) и перепрофилировании помещений или их сносе;
- удельная эффективная активность (Аэфф) естественных р/н в строительных материалах (щебень, гравий, песок) не должна превышать:370 Бк/кг - для жилых и общественных зданий 1 класса; 740 Бк/кг - для материалов, используемых в дорожном строительстве в пределах населённых пунктов и сооружений 2класса; 2,8 КБк/кг- для материалов, используемых в дорожном строительстве вне населённых пунктов - 3 класса;
- эффектная доза за счет естественных р/н в питьевой воде не должна превышать 0,2 мЗв;
- при радиационных авариях доза облучения на все тело не должна превышать 1 Гр (100 рад) за 2-е суток. При превышении этой дозы необходимы срочное вмешательство и меры защиты.
Критерии для принятия решений в различных ситуациях. Требования к контролю за выполнением норм
Таблица 5
Критерии для принятия неотложных решений в начальном периоде радиационной аварии
Меры защиты |
Предотвращаемая доза за первые 10 суток, мГр |
||||
На всё тело |
Щитовидная железа, лёгкие, кожа |
||||
Уровень А |
Уровень Б |
Уровень А |
Уровень Б |
||
Укрытие |
5 |
50 |
50 |
500 |
|
Йодная профилактика: взрослые дети |
- - |
- - |
250 100 |
2500 1000 |
|
Эвакуация |
50 |
500 |
500 |
5000 |
*- Только для щитовидной железы
Таблица 6
Критерии для принятия решений об отселении и ограничении потребления загрязненных пищевых продуктов
Меры защиты |
Предотвращаемая эффективная доза, мЗв |
||
Уровень А |
Уровень Б |
||
Ограничение потребления загрязненных продуктов питания и питьевой воды |
5 за первый год 1/год в последующие годы |
50 за первый год 10 /год в последующие годы |
|
Отселение |
50 за первый год |
500 за первый год |
|
1000 за все время отселения |
Таблица 7
Критерии для принятия решений об ограничении потребления загрязненных продуктов питания в первый год после возникновения аварии
Радионуклиды |
Удельная активность радионуклида в пищевых продуктах, кБк/кг |
||
Уровень А |
Уровень Б |
||
131I,134Cs,137Cs |
1 |
10 |
|
90Sr |
0,1 |
1,0 |
|
238Pu, 239Pu, 241Am |
0,01 |
0,1 |
Радиационный контроль является важнейшей частью обеспечения радиационной безопасности, начиная со стадии проектирования радиационно-опасных объектов. Он имеет целью определение степени соблюдения принципов радиационной безопасности и требований нормативов, включая непревышение установленных основных пределов доз и допустимых уровней при нормальной работе, получение необходимой информации для оптимизации защиты и принятия решений о вмешательстве в случае радиационных аварий, загрязнения местности и зданий радионуклидами, а также на территориях и в зданиях с повышенным уровнем природного облучения. Радиационный контроль осуществляется за всеми источниками излучения.
Радиационному контролю подлежат:
-радиационные характеристики источников излучения, выбросов в атмосферу, жидких и твердых радиоактивных отходов;
-радиационные факторы, создаваемые технологическим процессом на рабочих местах и в окружающей среде;
-радиационные факторы на загрязненных территориях и в зданиях с повышенным уровнем природного облучения;
-уровни облучения персонала и населения от всех источников излучения, на которые распространяется действие настоящих Норм.
Основными контролируемыми параметрами являются:
-годовая эффективная и эквивалентная дозы;
-поступление радионуклидов в организм и их содержание в организме для оценки годового поступления;
-объёмная или удельная активность радионуклидов в воздухе, воде, продуктах питания, строительных материалов;
-радиоактивное загрязнение кожных покровов, одежды, обуви, рабочих поверхностей.
Поэтому, администрация организации может вводить дополнительные, более жесткие числовые значения контролируемых параметров - административные уровни.
Причём государственный надзор за выполнением Норм радиационной безопасности осуществляют органы госсанэпиднадзора и другие органы, уполномоченные Правительством Российской Федерации в соответствии с действующими нормативными актами.
Контроль за соблюдением Норм в организациях, независимо от форм собственности, возлагается на администрацию этой организации. Контроль за облучением населения возлагается на органы исполнительной власти субъектов Российской Федерации.
Контроль за медицинским облучением пациентов возлагается на администрацию органов и учреждений здравохранения.
Список использованной литературы
1) Анофриков В.Е., Бобок С.А., Дудко М.Н., Елистратов Г.Д. Безопасность жизнедеятельности: Учебное пособие. М., 1999.
2) Гражданская оборона / Под ред. Е.П. Шубина. М., 1991.
3) Нормы радиационной безопасности (НРБ-99). Минздрав России, 1999.
4) Основы защиты населения и территории в чрезвычайных ситуациях / Под ред. В.В. Тарасова - М.:МГУ, 1998.
5) Пряхин В.М., Попов В.Я. Защиты населения и территорий в чрезвычайных ситуациях. М., 1997.
6) Сборник основных нормативных и правовых актов по вопросам ГО и РСЧС. М., 2003.
7) Юртушкин В.И., Дудко М.Н. Безопасность в ЧС. М., 2000.
Размещено на Allbest.ru
...Подобные документы
Природа, источники и основные виды ионизирующего излучения. Лучевая болезнь и ее периоды развития. Последствия влияния ионизирующего излучения на здоровье человека. Нормы радиационной безопасности. Предельно допустимая доза облучения для людей.
презентация [85,5 K], добавлен 22.12.2013Радиация и её разновидности. Ионизирующие излучения. Источники радиационной опасности. Устройство ионизирующих источников излучения, пути проникновения в организм человека. Меры ионизирующего воздействия, механизм действия. Последствия облучения.
реферат [2,1 M], добавлен 25.10.2010Радиация и её разновидности. Источники радиационной опасности. Основные пути проникновения излучения в организм человека. Характеристика проникающей способности различных видов ионизирующего излучения. Механизм действия ионизирующего излучения.
реферат [1,2 M], добавлен 07.01.2017Единая государственная система предупреждения и ликвидации чрезвычайных ситуаций РФ. Задачи и структура РСЧС. Организация защиты населения от ЧС природного и техногенного характера в мирное и военное время. Особенности и организация эвакуации из зон ЧС.
лекция [38,2 K], добавлен 23.01.2012Ионизирующие излучения, процесс передачи их веществу; биологический эффект и критерии опасности в случае внутреннего облучения. Экспозиционная, поглощенная и эквивалентная дозы; закон ослабления интенсивности излучения. Биологическая защита реактора.
презентация [261,0 K], добавлен 17.05.2014Источники ионизирующего излучения лучевых досмотровых установок: рентгеновские и инспекционно-досмотровые ускорительные комплексы. Требования к организации по обеспечению радиационной безопасности. Контроль индивидуальных доз внешнего облучения персонала.
реферат [20,6 K], добавлен 19.10.2014Понятие ионизирующих излучений, их взаимодействие с веществом. Природа и виды рентгеновского излучения. Два основных типа распада. Излучения, образующиеся при радиоактивном распаде. Закон ослабления ионизирующего излучения при взаимодействии с веществом.
презентация [131,2 K], добавлен 16.01.2017Источники ионизирующих излучений. Предельно допустимые дозы облучения. Классификация биологических защит. Представление спектрального состава гамма-излучения в ядерном реакторе. Основные стадии проектирования радиационной защиты от гамма-излучения.
презентация [812,1 K], добавлен 17.05.2014Радиоактивность и ионизирующие излучения. Источники и пути поступления радионуклидов в организм человека. Действие ионизирующих излучений на человека. Дозы радиационного облучения. Средства защиты от радиоактивных излучений, профилактические мероприятия.
курсовая работа [40,8 K], добавлен 14.05.2012Основные характеристики ионизирующих излучений. Принципы и нормы радиационной безопасности. Защита от действия ионизирующих излучений. Основные значения дозовых пределов внешнего и внутреннего облучений. Отечественные приборы дозиметрического контроля.
реферат [24,6 K], добавлен 13.09.2009Виды воздействия ионизирующего излучения на человека. Требования к размещению, организации работы и оборудованию рентгеновского кабинета. Обеспечение радиационной безопасности персонала, пациентов и населения. Защита от нерадиационных факторов.
методичка [30,4 K], добавлен 30.04.2009Источники ионизирующего излучения и их физическая природа. Требования по эксплуатации радиационно-опасных объектов и меры защиты населения. Критерии и методы оценки опасных ситуаций, определение величины риска. Понятие очага химического поражения.
контрольная работа [25,3 K], добавлен 14.04.2014Государственный надзор и контроль за соблюдением законодательства об охране труда. Ионизирующие излучения и способы защиты. Государственная экспертиза условий труда. Источники и область применения ионизирующих излучений. Радиоактивность, дозы облучения.
контрольная работа [39,7 K], добавлен 20.11.2008Электростатические поля и загрязнение биосферы. Опасность возникновения статического электричества, возможные неблагоприятные физиологические изменения в организме, приводящие к профзаболеваниям. Защита от биологического действия ионизирующего излучения.
курсовая работа [2,0 M], добавлен 07.08.2009Задачи единой государственной системы предупреждения и ликвидации чрезвычайных ситуаций, оповещение населения. Мероприятия, обеспечивающие защиту рабочих и служащих объектов экономики, осуществляемые при приведении ГО в готовность на военное время.
курсовая работа [62,0 K], добавлен 26.05.2019Ознакомление с принципами, методами эвакуации и особенностями ее проведения в мирное время при стихийных бедствиях, авариях, катастрофах. Разработка плана действий по предупреждению и ликвидации чрезвычайных ситуаций природного и техногенного характера.
курсовая работа [44,5 K], добавлен 09.06.2010Классификация аварий на радиационно опасных объектах и особенности загрязнения окружающей среды при поломках. Воздействие ионизирующего излучения на организм человека. Мероприятия по предотвращению радиационных аварий, снижению потерь и ущерба от них.
реферат [155,2 K], добавлен 19.09.2012Изучение структуры, целей и задач Единой государственной системы предупреждения и ликвидации чрезвычайных ситуаций. Описание клинических особенностей психогенных расстройств, наблюдаемых при жизнеопасных ситуациях во время и после стихийных бедствий.
контрольная работа [798,0 K], добавлен 15.03.2011Основные виды излучения. Соматические и стохастические эффекты, проявляющиеся через длительное время после одноразового или в результате хронического облучения. Использование обеднённого урана войсками США. Приборы для измерения радиации, защита от нее.
реферат [48,6 K], добавлен 23.12.2014Виды и характеристики стихийных бедствий. Защита человека от стихийных бедствий. Мероприятия по защите населения при стихийных бедствиях. Как улучшить защиту населения и территорий при чрезвычайных ситуациях? Культура безопасности.
контрольная работа [31,2 K], добавлен 27.01.2007