Ионизирующее излучение
Особенности формирования положительно заряженных альфа-частиц. Основные источники возникновения нейтронного излучения. Физические, химические и биологические процессы, происходящие в результате воздействия ионизирующих излучений на организм человека.
Рубрика | Безопасность жизнедеятельности и охрана труда |
Вид | реферат |
Язык | русский |
Дата добавления | 22.05.2018 |
Размер файла | 20,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Ионизирующее излучение -- это совокупность различных видов микрочастиц и физических полей, обладающих способностью ионизировать вещество, то есть образовывать в нем электрически заряженные частицы -- ионы. Различают несколько видов ионизирующих излучений: альфа-, бета-, гамма-излучение, а также нейтронное излучение.
В формировании положительно заряженных альфа-частиц принимают участие 2 протона и 2 нейтрона, входящих в состав ядер гелия. Альфа-частицы образуются при распаде ядра атома и могут иметь начальную кинетическую энергию от 1,8 до 15 МэВ. Характерными особенностями альфа-излучения являются высокая ионизирующая и малая проникающая способности. При движении альфа-частицы очень быстро теряют свою энергию, и это обуславливает тот факт, что ее не хватает даже для преодоления тонких пластмассовых поверхностей. В целом, внешнее облучение альфа-частицами, если не брать в расчет высокоэнергичные альфа-частицы, полученные с помощью ускорителя, не несет в себе никакого вреда для человека, а вот проникновение частиц внутрь организма может быть опасно для здоровья, поскольку альфа-радионуклиды отличаются большим периодом полураспада и обладают сильной ионизацией. В случае попадания внутрь организма альфа-частицы часто могут быть даже опаснее, чем бета- и гамма-излучение.
Заряженные бета-частицы, скорость которых близка к скорости света, образуются в результате бета-распада. Бета-частицы обладают большей проникающей способностью, чем альфа-частицы -- они могут вызывать химические реакции, люминесценцию, ионизировать газы, оказывать эффект на фотопластинки. В качестве защиты от потока заряженных бета-частиц (энергией не более 1МэВ) достаточно будет использовать обычную алюминиевую пластину толщиной 3--5 мм.
Фотонное излучение включает в себя два вида излучений: рентгеновское и гамма-излучение.
Наиболее распространенным видом фотонного излучения являются обладающие очень высокой энергией при ультракороткой длине волны гамма-частицы, которые представляют собой поток высокоэнергичных, не обладающих зарядом фотонов. В отличие от альфа- и бета-лучей гамма-частицы не отклоняются магнитными и электрическими полями и обладают значительно большей проникающей способностью. В определенных количествах и при определенной продолжительности воздействия гамма-излучение может вызвать лучевую болезнь, привести к возникновению различных онкологических заболеваний. Препятствовать распространению потока гамма-частиц могут только такие тяжелые химические элементы, как, например, свинец, обедненный уран и вольфрам.
Источником возникновения нейтронного излучения могут быть ядерные взрывы, ядерные реакторы, лабораторные и промышленные установки. Сами нейтроны представляют собой электрически нейтральные, нестабильные (период полураспада свободного нейтрона составляет около 10 минут) частицы, которые благодаря тому, что у них отсутствует заряд, отличаются большой проникающей способностью при слабой степени взаимодействия с веществом. Нейтронное излучение очень опасно, поэтому для защиты от него используют ряд специальных, в основном водородосодержащих, материалов. Лучше всего нейтронное излучение поглощается обычной водой, полиэтиленом, парафином, а также растворами гидроксидов тяжелых металлов.
Все виды ионизирующих излучений в той или иной степени оказывают воздействие на различные вещества, но сильнее всего оно выражено у гамма-частиц и у нейтронов. Так, при длительном воздействии они могут существенно изменить свойства различных материалов, изменить химический состав веществ, ионизировать диэлектрики и оказывать разрушительный эффект на биологические ткани. Естественный радиационный фон не принесет человеку особого вреда, однако при обращении с искусственными источниками ионизирующих излучений стоит быть очень осторожными и предпринимать все необходимые меры, чтобы до минимума снизить уровень воздействия излучения на организм.
В результате воздействия ионизирующих излучений на организм человека в тканях могут происходить сложные физические, химические и биологические процессы. Ионизирующие излучения вызывают ионизацию атомов и молекул вещества, в результате чего молекулы и клетки тканей разрушаются. Также в результате воздействия нарушается нормальное течение биохимических процессов и обмен веществ в организме. В зависимости от величины поглощенной дозы излучения и от индивидуальных особенностей организма вызванные изменения могут быть обратимыми или необратимыми. При небольших дозах поражения ткань восстанавливает свою функциональную деятельность. Большие дозы при длительном воздействии могут вызывать необратимое поражение отдельных органов или всего организма (лучевое заболевание).
Различают два вида повреждений, вызываемых действием ионизирующих излучений: соматическое и генетическое. В первом случае речь идет о воздействии излучений на данное лицо или поколение; во втором имеется в виду передача наследственных изменений, возникающих под влиянием излучений, потомству.
Любой вид ионизирующих излучений вызывает биологические изменения в организме как при внешнем облучении, когда источник облучения находится вне организма, так и при внутреннем облучении, когда радиоактивные вещества попадают внутрь организма, например, ингаляционным путем -- при вдыхании или при заглатывании с пищей или водой.
Биологическое действие ионизирующего излучения зависит от величины дозы и времени воздействия излучения, от вида радиации, размеров облучаемой поверхности и индивидуальных особенностей организма.
При однократном облучении всего тела человека возможны следующие биологические нарушения в зависимости от дозы излучения:
· 0--25 рад -- видимых нарушений нет;
· 25--50 рад -- возможны изменения в крови;
· 50--100 рад -- изменения в крови, нормальное состояние трудоспособности нарушается;
· 100--200 рад -- нарушение нормального состояния, возможна потеря трудоспособности;
· 200--400 рад -- потеря трудоспособности, возможен смертельный исход;
· 400--500 рад -- смертельные случаи составляют 50% общего числа пострадавших;
· 600 рад -- смертельный исход почти во всех случаях облучения.
При облучении дозами, в 100--1000 раз превышающими смертельную дозу, человек может погибнуть во время излучения.
Степень опасности поражения зависит также от скорости выведения радиоактивного вещества из организма. Не задерживаются на длительное время быстро обращающиеся в организме вещества (вода, натрий, хлор) и вещества, не усваиваемые организмом, а также не образующие соединений, входящих в состав тканей (аргон, ксенон, криптон, и др.). Некоторые радиоактивные вещества почти не выводятся из организма и накапливаются в нем.
При этом одни из них равномерно распределяются в организме, а другие сосредоточиваются в определенных органах, приводя к их быстрому повреждению.
При оценке действия радиоактивных веществ следует также учитывать период их полураспада и вид излучения. Вещества с коротким периодом полураспада быстро теряют активность, б-излучатели, являясь почти безвредными для внутренних органов при наружном облучении, попадая внутрь, оказывают сильное биологическое действие вследствие создаваемой ими большой плотности ионизации; б- и в-излучатели, имея весьма малые пробеги испускаемых частиц, в процессе распада облучают лишь тот орган, где преимущественно накапливаются изотопы.
В федеральном законе «О радиационной безопасности населения» сказано следующее: радиационная безопасность населения -- состояние защищенности настоящего и будущего поколений людей от вредного для их здоровья воздействия ионизирующего излучения.
Граждане Российской Федерации, иностранные граждане и лица без гражданства, проживающие на территории Российской Федерации, имеют право на радиационную безопасность. Это право обеспечивается за счет проведения комплекса мероприятий по предотвращению радиационного воздействия на организм человека ионизирующего излучения выше установленных норм, правил и нормативов, выполнения гражданами и организациями, осуществляющими деятельность с использованием источников ионизирующего излучения, требований к обеспечению радиационной безопасности (статья 22).
В настоящее время предельно допустимые уровни ионизирующего облучения определяется «Нормами радиационной безопасности (НРБ-99/2009)» и «Основными санитарными правилами обеспечения радиационной безопасности (ОСПОРБ-99/2010)». (НРБ-99/2009), в частности, определяет цель радиационной безопасности как охрану здоровья людей от вредного воздействия ионизирующего излучения путем соблюдения основных принципов и норм радиационной безопасности без необоснованных ограничений полезной деятельности при использовании излучения в различных областях хозяйства, в науке и медицине.
В соответствии с этими документами установлены следующие категории лиц: ионизирующий нейтронный излучение человек
· Персонал -- лица, работающие с техногенными источниками ИИ (группа А) или находящиеся по условиям работы в сфере их воздействия (группа Б). Представители группы Б не работают непосредственно с ИИ, но по условиям размещения рабочих мест могут подвергаться воздействию радиоактивных веществ и других источников излучения, применяемых в учреждениях и удаляемых во внешнюю среду с отходами.
· В -- все население, включая лиц из персонала, вне сферы их производственной деятельности.
Основные дозовые приделы внешнего и внутреннего облучения от техногенных источников в неаварийных условиях (см. таблицу 1).
Таблица 1
Нормируемые величины |
Дозовые пределы |
||
Лица из персонала (группа А) |
Лица из населения |
||
Эффективная доза |
20 мЗв в год в среднем за любые последовательные 5лет, но не более 50 мЗв в год |
1 мЗв в год в среднем за любые последовательные 5 лет, но не более 5 мЗв в год |
Дозы облучения персонала группы Б не должны превышать ј значения для персонала группы А.
Для оперативного контроля, а также учитывая, что при работе с радиоактивными веществами возможно загрязнение ими рабочих поверхностей, попадание их в воздух и организм человека, используется также нормирование по другим параметрам, являющимся производными от основных дозовых пределов:
· Пределы годового поступления;
· Допустимые среднегодовые объемные активности;
· Удельные активности.
Документ (НРБ-99/2009) формулирует и требования к ограничению облучения населения. Дело в том, что, несмотря на то, что пороговые эффекты облучения возникают лишь при дозах 10 бэр в год, МКРЗ придерживается предельно возможной в интересах защиты индивидуума концепции о вредности радиации в самых малых дозах, начинается с нуля и объявляет вредные даже природный вековой фон. Считается, что каждый 1 бэр (10 мЗв) у человека, полученный в течении жизни на все тело, может привести к потере 5 суток жизни.
Свойства основных источников и возможности регулирования облучения населения их излучением различны. В связи с этим облучение населения излучением природных, техногенных и медицинских источников регламентируется раздельно с применением разных методологических подходов и технических способов. При этом следует принимать меры как по снижению дозы излучения у отдельных лиц, так и по уменьшению числа лиц подвергающихся облучению.
Список использованных источников
1) СанПиН 2.6.1.2523-09 «Нормы радиационной безопасности (НРБ-99/2009)»
2) СП 2.6.1.2612-10 «Основными санитарными правилами обеспечения радиационной безопасности (ОСПОРБ-99/2010)»
3) Виды излучения и взаимодействие ионизирующего излучения с веществом [Электронный ресурс] MCHS -- URL: http://rb.mchs.gov.ru/ (дата обращения: 9.04.2018).
4) Нормирование ионизирующих излучений [Электронный ресурс] BGDSTUD -- URL: http://bgdstud.ru/podborka-lekczij-po-bzhd (дата обращения: 9.04.2018).
Размещено на Allbest.ru
...Подобные документы
Открытие нейтрона - поворотный пункт в исследовании ядерных реакций. Способность радионуклидов спонтанно превращаться в атомы других элементов. Основные виды радиоактивных излучений при распаде ядер. Воздействие на организм человека нейтронного излучения.
контрольная работа [198,7 K], добавлен 18.11.2010Ионизирующее излучение как выделение энергии, вызывающее ионизацию среды. Источники естественной и искусственной (антропогенной) радиации. Механизм биологического воздействия излучения на организм человека. Радиоактивное загрязнение окружающей среды.
реферат [1,8 M], добавлен 18.03.2009Основные характеристики ионизирующих излучений. Принципы и нормы радиационной безопасности. Защита от действия ионизирующих излучений. Основные значения дозовых пределов внешнего и внутреннего облучений. Отечественные приборы дозиметрического контроля.
реферат [24,6 K], добавлен 13.09.2009Ионизирующее излучение как излучение, воздействие которого со средой приводит к образованию ионов разных знаков. Знакомство с основными радиобиологическими свойствами радионуклидов. Особенности воздействия ионизирующих излучений на организм человека.
курсовая работа [276,7 K], добавлен 28.01.2014Природа ионизирующего излучения. Генерация ионизирующего излучения в природе обычно происходит в результате спонтанного радиоактивного распада радионуклидов. Биологическое действие ионизирующих излучений. Гигиеническое нормирование ионизирующих излучений.
реферат [4,6 M], добавлен 19.11.2010Источники внешнего облучения. Воздействие ионизирующих излучений. Генетические последствия радиации. Методы и средства защиты от ионизирующих излучений. Особенности внутреннего облучения населения. Формулы эквивалентной и поглощенной доз излучения.
презентация [981,6 K], добавлен 18.02.2015Особенности воздействия радиации на живой организм. Внешнее и внутреннее облучение человека. Воздействие ионизирующего излучения на отдельные органы и организм в целом. Классификация эффектов радиации. Влияние ИИ на иммунобиологическую реактивность.
презентация [252,4 K], добавлен 14.06.2016Радиация и её разновидности. Ионизирующие излучения. Источники радиационной опасности. Устройство ионизирующих источников излучения, пути проникновения в организм человека. Меры ионизирующего воздействия, механизм действия. Последствия облучения.
реферат [2,1 M], добавлен 25.10.2010Физические основы процесса радиоактивности, особенности гамма-излучения. Исторические факты об открытии радиоактивности, ее сфера применения и опасность воздействия на все живое. Симптомы и стадии заболевания, которое вызвано радиоактивным излучением.
контрольная работа [71,2 K], добавлен 22.11.2010Прямое и косвенное действие ионизирующего излучения. Действие больших доз ионизирующих излучений на биологические объекты. Генетические последствия радиации. Внутреннее облучение населения. Основные методы и средства защиты от ионизирующих излучений.
презентация [1,1 M], добавлен 25.12.2014Основные виды ионизирующих излучений. Основные правовые нормативы в области радиационной безопасности. Обеспечение радиационной безопасности. Радиационное воздействие и биологические эффекты. Последствия облучения людей ионизирующим излучением.
реферат [28,0 K], добавлен 10.04.2016Основные типы радиоактивных излучений, их негативное воздействие на человека. Радионуклиды как потенциальные источники внутреннего облучения. Способы защиты от источников ионизирующих излучений. Пути поступления радитоксичных веществ в организм.
реферат [516,1 K], добавлен 24.09.2013Источники радиации разделяют на естественные и искусственные (техногенные), созданные человеком. Основные источники ионизирующего излучения. Воздействие радиации на человека - биологические аспекты радиационной безопасности. Радиационный мониторинг.
реферат [315,9 K], добавлен 22.05.2008Основные источники электромагнитного поля и физические причины его существования. Отрицательное воздействие электромагнитных излучений на организм человека. Основные виды средств коллективной и индивидуальной защиты. Безопасность лазерного излучения.
курсовая работа [754,9 K], добавлен 07.08.2009Понятие инфракрасного излучения, его количественные характеристики, проникающая способность, механизм теплового воздействия на организм человека. Производственные источники лучистой теплоты. Способы защиты от вредного воздействия данного вида излучения.
реферат [16,6 K], добавлен 30.11.2015Электромагнитное поле и его характеристики. Источники электромагнитного излучения, механизм его воздействия и основные последствия. Влияние современных электронных устройств и электромагнитных лучей, исходящих от сотовых телефонов, на организм человека.
реферат [244,8 K], добавлен 02.02.2010Основные виды световых излучений и их негативное воздействие на организм человека и его работоспособность. Основные источники лазерного излучения. Вредные факторы при эксплуатации лазеров. Системы искусственного освещения. Освещение рабочего места.
доклад [22,1 K], добавлен 03.04.2011Радиоактивность и ионизирующие излучения. Источники и пути поступления радионуклидов в организм человека. Действие ионизирующих излучений на человека. Дозы радиационного облучения. Средства защиты от радиоактивных излучений, профилактические мероприятия.
курсовая работа [40,8 K], добавлен 14.05.2012Основные факторы производственной среды, особенности их воздействия на человека. Физические, биологические и химические факторы. Борьба с шумом на производстве. Электромагнитные и ионизирующие излучения. Действие на организм человека звуковых колебаний.
презентация [1,4 M], добавлен 24.05.2014Воздействие ионизирующих излучений на неживое и живое вещество, необходимость метрологического контроля радиации. Экспозиционная и поглощенная дозы, единицы размерности дозиметрических величин. Физико-технические основы контроля ионизирующих излучений.
контрольная работа [54,3 K], добавлен 14.12.2012