Методы оценки риска объектов повышенной опасности

Сравнительная оценка вероятностного и системного методов определения риска от деятельности объектов повышенной опасности. Распространение отравляющих веществ на фоне топографической карты местности при аварии на объекте уничтожения химического оружия.

Рубрика Безопасность жизнедеятельности и охрана труда
Вид статья
Язык русский
Дата добавления 01.11.2018
Размер файла 17,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

УДК 504:519.23 Технические науки

Пензенский государственный университет архитектуры и строительства fmatem@pguas.ru

Методы оценки риска объектов повышенной опасности

Гарькина Ирина Александровна, д.т.н.

Данилов Александр Максимович, д.т.н.

Пылайкин Сергей Александрович

Аннотация

опасность топографический авария химический

На основе опыта решения ряда практических задач приводится сравнительная оценка феноменологического, вероятностного и системного методов определения риска от деятельности объектов повышенной опасности. С использованием этих подходов моделируется распространение отравляющих веществ на фоне топографической карты местности при аварии на объекте уничтожения химического оружия.

Ключевые слова и фразы: объекты повышенной опасности; уничтожение химического оружия; распространение отравляющих веществ; методы оценки риска; сравнительный анализ.

Annotation

On the base of the experience of practical tasks solution the comparative evaluation of phenomenological, probabilistic and systematic methods of risk determination from the activity of high risk objects is given. By means of these approaches spreading of toxic agents against the background of the topographic map at the crash of the object of chemical weapons elimination is modeled.

Key words phrases: high risk objects; elimination of chemical weapons; spreading of toxic agents; risk evaluation methods; comparative analysis.

Одним из критериев качества системы (объекта) со сложной иерархической структурой [2; 4] является ее безопасность. Абсолютная безопасность не достижима, однако при проектировании возникновение тяжелых аварий в ходе эксплуатации следует исключить. К основным задачам теории безопасности объектов относятся задачи разработки методов расчета на безопасность и обоснования количественных требований к безопасности. При оценке безопасности рассматриваемых объектов используются как феноменологический (детерминированный), так и вероятностный и системный подходы.

При феноменологическом (причинно-следственном) подходе дается описание отказа и аварийной ситуации как детерминированного процесса; осуществляется анализ последовательности этапов развития отказа и аварии от исходного состояния до конечного установившегося состояния; делается прогноз хода аварийного процесса методами математического моделирования.

При вероятностном подходе анализируются разветвленные цепочки событий и отказов оборудования, а также действия персонала при развитии аварийных процессов. Количественный анализ надежности и безопасности на базе вероятностно-статистических исследований делает возможным: обоснованный выбор вариантов между конкурирующими техническими решениями; оценку вклада различных факторов и систем в показатели надежности и безопасности, учет этих вкладов при выборе путей повышения безопасности систем; выделение сценариев отказов, аварий и событий, в наибольшей степени влияющих на последствия отказов и аварий; обоснование границ приемлемого риска с оценкой конкретных вариантов проектных решений объекта. Преимущества такого подхода: получение количественных значений надежности и безопасности; возможность анализа практически неограниченного числа аварийных последовательностей. Недостатки: высокая неопределенность исходных данных по отказам оборудования; упрощенные расчетные модели отказов и аварийных процессов ограничивают необходимую достоверность получаемых оценок риска; сложности количественной оценки параметров надежности персонала; трудности интерпретации вероятностных оценок в диапазоне 10-7…10-8 и менее. Дело в том, что при нормальном распределении в соответствии с правилом трех сигм P X a( ? < 3у)= Ц =2 ( )3 0,9973 вероятность того, что абсолютная величина отклонения превысит утроенное средне-квадратическое отклонение, равна 0,0027. Другими словами, лишь в 0,27% случаев так может произойти (исходя из принципа невозможности маловероятных событий, их можно считать практически невозможными); 10-7…10-8 значительно меньше 0,0027 (применение теории вероятностей при таких малых значениях вероятностей становится проблематичным). Несмотря на указанные недостатки, вероятностное направление теории надежности и безопасности все же пока остается одним из основных инструментов проектирования сложных систем.

Системный подход фактически является сочетанием феноменологического и вероятностного направлений. Его преимущества: возможность выявления путей развития отказов и аварийных ситуаций с учетом закономерностей протекания процессов в оборудовании, взаимодействия отказов в подсистемах и возможных действий персонала; возможность детального рассмотрения различных цепочек развития отказов и аварийных процессов с отбрасыванием тех из них, вероятность которых признается пренебрежимо малой.

При проектировании многих объектов повышенной опасности, как правило, аналоги отсутствуют. Поэтому подавляющее большинство требований к безопасности объекта можно назначить лишь исходя из качественного анализа пределов безопасности, так как количественные требования к ним невозможно определить эволюционно по мере накопления опыта проектирования и эксплуатации [1; 3; 7]. Назначение количественных требований к безопасности позволяет наряду с экспертными методами оценок использовать известную концепцию риска от тяжелых аварий Фармера-Расмуссена. С точки зрения составления вероятностной модели риска задача обеспечения безопасности объекта, таким образом, сводится к определению значения приемлемого (допустимого) риска (с учетом медико-биологических, экономико-экологических и глобально-социальных факторов). Во многих случаях основным последствием аварий считается количество пораженного населения.

Приводимая методика оценки риска предполагает оценку индивидуального риска, а также учитывает вероятность совместной реализации факторов, приводящих к поражению населения. Так, для объектов хранения и уничтожения химического оружия в качестве основных факторов принимались направление и скорость ветра в месте нахождения объекта, количество пролитого отравляющего вещества (ОВ); ими, а также некоторыми другими характеристиками атмосферы и определялась зона заражения. Масштабом последствий для населения от возможных аварий при уничтожении химического оружия определялся коллективный риск.

Применение вероятностного подхода может привести к неоправданному занижению размеров зоны поражения, что может поставить под угрозу безопасность гражданского населения, проживающего вблизи нее. Поэтому в качестве альтернативного подхода для оценки риска использовался и другой подход, предлагаемый в [5]. При определении параметров зон заражения в соответствии с указанным документом можно существенно уменьшить риск при выбросе отравляющего вещества. Однако и указанный подход к определению зоны заражения в связи с малой вероятностью такой тяжелой аварии в полной мере не отвечает требованиям (полный учет возможных тяжелых аварий практически невозможен; фактически исключается возможность строительства атомных электростанций или других объектов повышенного риска).

Иногда отсутствие статистических данных не позволяет определить вероятности тяжелых аварий с требуемой точностью. Поэтому должен быть выбран такой технологический процесс, который может обеспечить принятые значения вероятностей указанных аварий. Так как уровень допустимого риска при выбросе ОВ в атмосферу фактически задается, то не исключается возможность получения и различных зон заражения (уровень допустимого риска при выбросе ОВ следует выбрать равным нулю).

Изложенное приводит к необходимости использования вероятностного подхода, позволяющего оценить коллективный риск с учетом сезонного распределения вероятностей направления и скорости ветра, заданного количества пролитого ОВ и распространения облака с учетом вероятностных характеристик метеоусловий.

В рамках Федеральной целевой программы «Уничтожение запасов химического оружия в РФ» [6] с учетом изложенного выше осуществлена разработка программно-алгоритмического обеспечения для оценки риска от деятельности объекта по уничтожению химического оружия. Оно позволило определить изменение вероятностей возникновения аварийных ситуаций для одного и заданного количества боеприпасов с отражением критической вероятности возникновения аварии; допустимые момент начала и продолжительность уничтожения химических боеприпасов с заданными характеристиками. Программа включала в себя методику оценки риска при заданных радиусах зон заражения, интервале скорости ветра на высоте флюгера и с учетом распределения вероятностей направления ветра (по месяцам [5]); дала возможность визуального представления результатов распространения отравляющих веществ при аварии на фоне топографической карты местности.

Разработанная программа математического и имитационного моделирования процессов хранения и уничтожения химического оружия может использоваться как оболочка вычислительного комплекса тренажера для подготовки персонала объектов с повышенной опасностью.

Список литературы

1. Будылина Е. А., Гарькина И. А., Данилов А. М. Моделирование с позиций управления в технических системах // Региональная архитектура и строительство. 2012. № 2. С. 138-142.

2. Гарькина И. А., Данилов А. М. Управление в сложных технических системах: методологические принципы управления // Региональная архитектура и строительство. 2012. № 1 (12). С. 39-43.

3. Гарькина И. А., Данилов А. М., Лапшин Э. В., Юрков Н. К. Системные методологии, идентификация систем и теории управления: промышленные и аэрокосмические приложения // Известия вузов. Поволжский регион. Технические науки. 2009. № 1. С. 3-11.

4. Гарькина И. А., Данилов А. М., Петренко В. О. Оценка качества систем с иерархической структурой // Альманах современной науки и образования. Тамбов: Грамота, 2013. № 6 (73). С. 46-48.

5. Методика прогнозирования масштабов заражения сильнодействующими ядовитыми веществами при авариях (разрушениях) на химически опасных объектах и транспорте: руководящий документ РД 52.04.253-90. Л.: Гидрометеоиздат, 1991.

6. О внесении изменений и дополнений в Постановление Правительства РФ от 21 марта 1996 г. № 305 «Об утверждении федеральной целевой программы “Уничтожение запасов химического оружия в Российской Федерации”» [Электронный ресурс]: Постановление Правительства РФ № 510 от 05 июля 2001 г. Доступ из СПС «КонсультантПлюс».

7. Плющ А. А., Голованов О. А., Данилов А. М., Гарькина И. А. Обобщенная математическая модель управления безопасностью арсеналов и баз хранения боеприпасов // Вісник Хмельницького національного університету. Технiчнi науки. 2007. № 1. С. 241-246.

Размещено на Allbest.ru

...

Подобные документы

  • Источники повышенной опасности. Основания и условия ответственности за вред, причиненный источником повышенной опасности. Определение объема и размера возмещения вреда. Причины освобождения владельца источника повышенной опасности от ответственности.

    курсовая работа [37,0 K], добавлен 16.04.2012

  • Численность населения в зонах потенциально опасных объектов. Предприятия, использующие химические вещества, их классификация по степени опасности. Действия населения при оповещении о химической аварии и после выхода из зоны химического заражения.

    презентация [6,9 M], добавлен 21.11.2011

  • Методика определения расчетных величин пожарного риска в зданиях, сооружениях и строениях и строениях различных классов функциональной пожарной опасности. Порядок проведения расчета индивидуального пожарного риска. Анализ пожарной опасности здания.

    курсовая работа [76,3 K], добавлен 01.12.2014

  • Требования к организации работ повышенной опасности, требования к персоналу, ответственному за их организацию и производство. Оформление работ повышенной опасности нарядом-допуском на примере "ООО ЛУКОЙЛ ЭПУ Сервис". Анализ производственного травматизма.

    дипломная работа [181,0 K], добавлен 04.06.2015

  • Источники ионизирующего излучения и их физическая природа. Требования по эксплуатации радиационно-опасных объектов и меры защиты населения. Критерии и методы оценки опасных ситуаций, определение величины риска. Понятие очага химического поражения.

    контрольная работа [25,3 K], добавлен 14.04.2014

  • Основные показатели степени потенциальной опасности радиационно-опасных объектов. Приборы радиационной разведки и дозиметрического контроля. Мероприятия по ограничению облучения населения и его защите в условиях радиационной аварии, алгоритм действий.

    контрольная работа [54,3 K], добавлен 26.02.2011

  • Основные правила хранения сыпучих веществ и материалов. Устройства транспортировки твердых веществ, проблема их повышенной пожарной опасности. Обоснование причин пожарной опасности транспортера, пневмотранспортера, элеватора. Меры пожарной безопасности.

    презентация [378,8 K], добавлен 12.03.2017

  • Оценка риска аварийных разливов на магистральных нефтепроводах. Сведения о резервуарах с нефтью на УПН "Северокамск". Построение множества сценариев возникновения и развития аварии. Идентификация опасностей и разработка рекомендаций по уменьшению риска.

    дипломная работа [790,8 K], добавлен 13.05.2015

  • Понятие риска элементов техносферы. Развитие риска на технических объектах. Основы методологии анализа, оценки и управления риском. Идентификация опасностей и оценки риска для отдельных лиц, групп населения, объектов. Количественные показатели риска.

    презентация [106,1 K], добавлен 03.01.2014

  • Количественная оценка полного риска эксплуатации опасных производственных объектов с помощью математического ожидания ущерба. Формулы расчёта риска аварии, вероятности события, связанного с причинением вреда человеку и окружающей природной среде.

    статья [16,7 K], добавлен 01.09.2013

  • Технология современного производства. Оценка возможности использования продуктов питания, выращенных на данной местности. Защита населения и хозяйственных объектов в чрезвычайных ситуациях. Классификация чрезвычайных ситуаций экологического характера.

    контрольная работа [562,2 K], добавлен 07.01.2009

  • Предмет, содержание и задачи производственной безопасности. Опасность как фактор производственной среды, основные положения теории риска. Категорирование и классификация производственных объектов как мера оценки опасности, производственный травматизм.

    лекция [1,2 M], добавлен 03.11.2009

  • Определение характера разрушения элементов объекта при землетрясении. Анализ возможности возникновения завалов и их высоты. Оценка опасности возможного очага химического заражения на случай аварии на химическом объекте, расположенном в южной части города.

    контрольная работа [69,8 K], добавлен 24.03.2013

  • Методы определения категорий помещений и зданий по взрывопожарной опасности. Требования норм противопожарной безопасности зданий при их категорировании. Организационные решения, минимизирующие риск пожара при эксплуатации производственных объектов.

    реферат [31,4 K], добавлен 22.09.2015

  • Влияние на жизнь, здоровье человека: квартира как источник опасности – кухня как источник опасности. Психофизиологические опасные факторы, их характеристика. Определение с помощью ВПХР отравляющих веществ кожно-нарывного действия на различных предметах.

    реферат [84,6 K], добавлен 31.10.2008

  • Обоснование потенциальной опасности объекта, его характеристика. Возможные аварии и чрезвычайные ситуации на объекте, его экологическая экспертиза и исследование опасности строительной и технологической частей. Составление паспорта безопасности объекта.

    курсовая работа [73,9 K], добавлен 11.10.2013

  • Человек и среда его обитания. Антропогенные и техногенные опасности, принципы, методы и средства их минимизации. Защита населения и устойчивость функционирования хозяйственных объектов в чрезвычайных ситуациях. Правовые вопросы обеспечения безопасности.

    курс лекций [83,2 K], добавлен 14.06.2009

  • Химически опасные объекты. Причины аварий на производстве. Статистика аварий на химических производствах мира. Примеры. Четыре степени опасности химических предприятий. По токсичности и опасности выделяют три класса химических веществ.

    доклад [13,1 K], добавлен 31.05.2007

  • Техническое расследование причин аварии на опасном производственном объекте. Антидоты и порядок их применения. Биохимический и физиологический антагонизм. Минимальные расстояния от объектов, расположенных на территории электростанции, до газопроводов.

    контрольная работа [84,1 K], добавлен 14.02.2012

  • Опасность - центральное понятие сферы безопасности жизнедеятельности и промышленной безопасности, их виды и сферы проявления. Основные положения теории риска, его классификация и типы. Анализ и управление риском. Устойчивость промышленных объектов.

    дипломная работа [634,0 K], добавлен 03.02.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.