Синтез аспирационного и термомагнитного методов выделения и подавления пожарно-энергетического вреда в автоматизированную систему обеспечения безопасности жилого сектора
Общая характеристика систем противопожарной защиты жилых высотных зданий. Анализ синтеза аспирационного и термомагнитного методов выделения и подавления пожарно-энергетического вреда в автоматизированную систему обеспечения безопасности жилого сектора.
Рубрика | Безопасность жизнедеятельности и охрана труда |
Вид | статья |
Язык | русский |
Дата добавления | 08.04.2019 |
Размер файла | 2,7 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Синтез аспирационного и термомагнитного методов выделения и подавления пожарно-энергетического вреда в автоматизированную систему обеспечения безопасности жилого сектора
Предметом исследования являются существующие системы противопожарной защиты жилых высотных зданий, которые, как свидетельствует статистика пожаров, не адекватны их пожарной опасности. Показано, что пожарная безопасность населения, проживающего в «высотках», обусловленная временем эвакуации людей при пожарах, обратно пропорциональна этажности здания и, несмотря на наличие незадымляемых лестничных клеток в высотных зданиях, вероятность гибели в них в 4,16 раз выше, чем в квартирах одно и двух этажных домов.
В результате системного синтеза предложена модель, которая реализует самоорганизацию трех процессов: раннего обнаружения загорания с соответствующим оповещением, наличия и доступности «незадымляемого пути эвакуации» и подавления/замедления распространения огня азотом, сепарируемым из воздуха. Новизна исследования заключается в комбинировании аспирационного и термомагнитного методов обнаружения и подавления загорания в защищаемых помещениях, сепарируемым из воздуха азотом. При этом обеспечивается оповещение жильцов об необходимости эвакуации, и автоматическая сигнализация о загорании передает сигнал тревоги в ближайшую пожарную часть.
1. Состояние проблемы
В настоящее время пожары, особенно в высотных жилых зданиях, становятся достаточно частыми явлениями, которые, помимо огромных прямых материальных потерь уносят жизни людей, что обусловлено, как отсутствием специальной пожарной техники, способной выполнять оперативно-тактические задачи в таких сооружениях, так и эффективных средств противопожарной защиты высотных зданий.
В зданиях выше десяти этажей, согласно «Строительным нормам и правилам», в обязательном порядке предусматриваются незадымляемые эвакуационные лестницы класса Н1. Конструктивная особенность таких сооружений в том, что они не связаны напрямую с этажами здания. Обычно клетки Н1 располагаются в углах зданий и сооружений с наветренной стороны и имеют переходы балконного вида, огражденные защитными экранами (рис.1).
Рис.1
противопожарный жилой защита
Тем не менее, статистические данные МЧС России свидетельствуют о том, что более 70% пожаров происходит в жилом секторе страны [1]:
в 1-2 этажных зданиях - до 125 тыс. пожаров и до 10 тыс. погибших,
в 3-5 этажных зданиях - около 20 тыс. пожаров и около 2 тыс. погибших,
в 6-9 этажных зданиях - около 16 тыс. пожаров и до 1 тыс. погибших,
в 10-25 этажных зданиях - около 10 тыс. пожаров и около 500 погибших,
в зданиях более 25 этажей - около 30 пожаров и до 10 погибших.
Если ввести понятие «вероятности гибели от этажности здания», т.е. отношения числа погибших к этажности, то в высотных зданиях она в 4,16 раза выше, чем 1-2 этажных. И это несмотря на то, что в зданиях выше 10 этажей предусмотрены капитальные противопожарные меры (незадымляемые лестничные клетки и т.д.).
Следовательно, даже без системного анализа причин, можно сделать вывод, что существующие системы противопожарной защиты высотных зданий не адекватны их пожарной опасности, а пожарная безопасность проживающих в «высотках», обусловленная временем их эвакуации, обратно пропорциональна этажности здания.
Системный синтез решения проблемы безопасности в жилом секторе требует самоорганизации трех процессов:
- раннего обнаружения загорания с соответствующим оповещением,
- наличия и доступности «незадымляемого пути эвакуации»,
- подавления/замедления распространения огня (до прибытия пожарных подразделений).
2. Способ решения проблемы
Известно, что самой «быстрой и надежной» системой пожарной сигнализации является аспирационная система, в которой, для достоверного обнаружения используются три разных датчика (тепловой, дымовой и газовый), а её трубопровод охватывает все помещения квартиры, в отверстия которого всасывается воздух, проходящий через камеру с указанными датчиками, чем и обусловлено раннее обнаружение пожара [2].
Также хорошо известно, что наименьший ущерб электроприборам, книгам, вещам, мебели и другим приборам и предметам быта наносит газообразный азот, который давно применяется для объемного тушения пожаров в библиотеках и на других объектах, где сохранность радиоэлектронного оборудования и вычислительной техники является определяющим [3,4].
Так как наличие и доступность «незадымляемого пути эвакуации» в высотках имеется, то естественно возникает идея использовать трубопровод аспирационной системы, для закачивания через неё в каждую комнату газообразного азота и, подавления, таким образом, возникшего загорания.
Для реализации такой схемы необходимо и достаточно (рис.2):
во-первых, организовать «реверс» вентилятора аспирационной системы и увеличить его обороты, чтобы, по меньшей мере, на порядок выше (10-50 л/с), обеспечить подачу азота в защищаемые помещения через те же отверстия трубопровода,
во-вторых, скомплексировать с блоком датчиков аспирационной системы генератор азота, чтобы обеспечить флегматизацию воздуха во всем объеме квартиры (в среднем 200 куб. м.) до концентрации кислорода в нем не выше 10%,
в-третьих, оповестить жильцов о включении газовой системы пожаротушения и необходимости эвакуации,
в-четвертых, осуществить передачу сигнала «загорание» в ближайшую пожарную часть (например, по радиоканалу).
Рис.2 Блок схема аспирационной системы с генератором азота
В качестве генератора азота можно использовать разные установки [4-6], например,
- 40-литровые баллоны, с соответствующими элементами коммутации с аспирационной системой (рис.3),
Рис. 3. Газобаллонная установка автоматического пожаротушения
- малогабаритные мембранные установки сепарации азота из воздуха (рис.4),
Рис. 4. Мембранная азотная установка
- термомагнитные сепараторы воздуха (рис.5).
Рис. 5. Винтовая конструкция сепаратора и распределение магнитного поля
Однако, с точки зрения безопасности, надежности, долговечности и экономичности, термомагнитные сепараторы воздуха находятся вне конкуренции по следующим причинам:
во-первых, совершенно очевидно, что помимо габаритов и необходимости специального контроля и перезаправки, баллоны с азотом в квартире (даже если предусмотреть для них специальный отсек в коридоре) - дополнительная опасность и не такая высокая эффективность, как у остальных установок, т.к. при вводе азота не происходит удаления кислорода из помещений, а происходит только физическое разбавление [4];
во-вторых, малогабаритная мембранная азотная установка, сепарируя азот из окружающего воздуха и, направляя его в трубы аспирационной системы, «высасывает» и удаляет все остальные атмосферные газы (О2, СО2 и т.д.), например, в систему вентиляции жилого дома, резко снижая концентрации кислорода в помещениях, и «работает» до тех пор, пока не достигнуто требуемое понижение концентрации кислорода, не требуя при этом никаких перезарядок и обслуживаний.
Однако существенным недостатком малогабаритных мембранных азотных установок является то, что для «выхода на рабочий режим» необходимы десятки минут, и давление, при котором половолоконные мембраны работают эффективно, составляет 35 атмосфер, в связи с чем, требуется дросселирование, чтобы снизить давление и не разорвать трубы (полимерные) аспирационной системы, к тому же компрессор установки потребляет много электроэнергии [5].
Принцип ТМСВ базируется на уравнении движения газа (уравнение Эйлера) в магнитном поле, через н - поле вектора скоростей газа, p - давление газа, - магнитную поляризуемость отдельной молекулы и Н - напряженность магнитного поля [6]:
(1)
Рис.6. Схема расположения магнитов, вихревых воздухоохладителей и наноперегородки
Подставляя в формулу (1) уравнение состояния идеального газа pV = NkT , и выражая плотность газа через его давление p = nkT = с kT / m , получим выражение для плотности молекул газа в виде распределения Больцмана
(2)
где U=-alfaH2/2 - потенциальная энергия отдельной молекулы газа, обладающей пара- или диамагнитными свойствами, находящейся во внешнем неоднородном магнитном поле
Для кислорода, обладающего парамагнитными свойствами, средняя магнитная поляризуемость отдельной молекулы alfa- положительна (+3396•10-6), а для азота (N2 = -12•10-6) и остальных газов, обладающих диамагнитными свойствами, магнитная поляризуемость отдельной молекулы - отрицательна. Поэтому плотность кислорода увеличивается в области сильного магнитного поля в соответствии с уравнением (2), а плотность азотной компоненты - уменьшается, в зависимости от квадрата напряженности магнитного поля внутри канала сепаратора (рис.5). Для уменьшения процесса диффузионного восстановления разности концентраций диамагнетиков и кислорода, посредине канала ТМСВ установлена наноперегородка из пористого алюминия (рис.6), разделяющая его на «парамагнитный» - кислородный подканал и «диамагнитный» подканал с инертными газами. Разность температур между стенкой с магнитами и противоположной - устанавливается и поддерживается с помощью вихревых воздухоохладителей Азарова [6-8].
Таким образом, присоединяя «диамагнитный подканал» ТМСВ к вентилятору аспирационной системы, и, реверсируя его на приток (рис.2), получим подавление загорания охлажденными диамагнитными компонентами воздуха (N2, CO2, Ar и пары воды). Парамагнитный подканал при этом заводится в вентиляционную систему дома, для сброса кислорода в атмосферу.
Выводы
противопожарный жилой защита
В результате системного синтеза предложена «комбинация» аспирационного и термомагнитного методов обнаружения и подавления загорания в защищаемых помещениях, сепарируемым из воздуха азотом, которая обеспечивает оповещение жильцов о необходимости эвакуации, и автоматически передает сигнал тревоги о загорании в ближайшую пожарную часть по радиоканалу, осуществляя подавление загорания до прибытия боевых расчетов.
Библиография
1.Мешалкин Е.А. Пожарная безопасность жилых зданий // Системы безопасности. 2013. № 1. С. 106-109.
2.Системы и технические средства раннего обнаружения пожара // Федоров А.В., Членов А.Н., Лукьянченко А.А., Буцынская Т.А., Демехин Ф.В. М: АГПС МЧС России. 2009. 158 с.
3.Назаров В.П., Теляшов Р.М. Применение инертных газов для противопожарной защиты нефтяных резервуаров при аварийных ситуациях // «Совершенствование средств и способов ликвидации пожаров, аварий и катастроф»: в сб. науч. трудов. М.: ВИПТШ МВД РФ, 1993. С. 47-58.
4.Вертков С.И, Никольский М.Н. Установки объемного пожаротушения // Алгоритм безопасности. 2003. № 2. С. 18-21.
5.Ворошилов И.В., Мальцев Г.И., Кошаков А.Ю. Генератор азота - Патент РФ № 02450857 от 24.08.2010.
6.Белозеров В.В., Босый С.И., Новакович А.А., Толмачев Г.Н., Видецких Ю.А., Пирогов М.Г. Способ термомагнитной сепарации воздуха и устройство для его осуществления» - Патент РФ № 2428242 от 10.09.2011.
7.Белозеров В.В., Ворошилов И.В., Кальченко И.Е., Мальцев Г.И., Плахотников Ю.Г., Прус Ю.В., Олейников С.Н. Способ предотвращения или обнаружения и тушения торфяных пожаров и установка для реализации способа - Патент РФ на изобретение № 2530397 от 10.10.2014.
8.Азаров А.И. Конструктивно-технологическое совершенствование вихревых воздухоохладителей // Технология машиностроения. 2004. № 3. С. 56-60.
Размещено на Allbest.ru
...Подобные документы
Разработка авторской методики оценки ущерба от пожара на объектах топливно-энергетического комплекса и проектных решений по совершенствованию противопожарной защиты ТЭЦ-27. Совершенствование противопожарной защиты производственных предприятий и объектов.
диссертация [1,3 M], добавлен 26.06.2017Методы и средства защиты информации в сетях. Анализ системы обеспечения информационной безопасности ОАО "Альфапроект". Модернизация программной защиты для разграничения доступа. Разработка алгоритма программы, ее внедрение в систему ИБ предприятия.
дипломная работа [1,8 M], добавлен 14.08.2015Заземляющее устройство системы электроснабжения насосной станции. Проверка соответствия конструктивного исполнения силового, осветительного электрооборудования и электропроводников. Проектирование молниезащиты и пожарно-технической безопасности.
курсовая работа [283,9 K], добавлен 15.11.2012Краткая характеристика радиобашни с комплексом радиопередающего оборудования, предназначенной для приема и передачи сигналов сетей сотовой связи. Требование пожарной безопасности при размещении объекта, система обеспечения его противопожарной защиты.
курсовая работа [25,6 K], добавлен 01.12.2010Радиоактивность и воздействие ионизирующих излучений источников на организм человека. Нормативно-правовая база обеспечения радиационной безопасности объектов строительства в Украине. Социально-экономические показатели оценки уровня качества жилья.
учебное пособие [10,3 M], добавлен 23.02.2016Основные принципы и методы обеспечения безопасности: классификация, характеристика. Построенные заблаговременно и быстровозводимые защитные сооружения. Средства индивидуальной защиты органов дыхания: фильтрующие и изолирующие противогазы, респираторы.
контрольная работа [27,9 K], добавлен 20.09.2010Основные психологические причины создания опасных ситуаций. Виды инструктажа по безопасности труда. Управление и правовое регулирование БЖ. Критерии экономической безопасности, способы обеспечения. Международное сотрудничество по проблемам безопасности.
контрольная работа [24,9 K], добавлен 03.12.2009Проектирование инженерно-технических мероприятий по обеспечению пожарной безопасности зданий производственной зоны сельхозпредприятия в населенном пункте: разработка систем конструктивной, планировочной, противовзрывной и противодымной защиты объектов.
курсовая работа [70,6 K], добавлен 21.02.2013Анализ процессов и условий самоорганизации политических, правовых, экономических и технических норм. Синтез средств и систем обеспечения безопасной жизнедеятельности населения (экологической и пожарной безопасности, безопасности дорожного движения).
статья [1,1 M], добавлен 16.10.2013Характеристика охраняемых объектов и территориального гарнизона. Организация и проведение занятий, пожарно-тактическая подготовка, психологическая подготовка и проверка гидрантов. Агитационно-массовая работа, проводимая пожарно-профилактическим составом.
дипломная работа [2,4 M], добавлен 24.08.2014Схема электроснабжения на складе. Проверка на соответствие конструктивного исполнения силового и осветительного оборудования нормам взрывопожарной безопасности. Экспертиза электрических характеристик проводов и аппаратов защиты, заземляющего устройства.
курсовая работа [157,2 K], добавлен 15.11.2012Проблема обеспечения безопасности средств и систем, связанных с обработкой информации. Экономическая целесообразность защиты информации. Оценки эффективности защиты информации. Виды защиты: физическая, электромагнитная, криптографическая и активная.
контрольная работа [40,6 K], добавлен 14.11.2008Понятие безопасности производственной деятельности и принципы её обеспечения. Идентификация опасностей и оценка риска. Классификация и характеристика средств индивидуальной защиты. Организация обеспечения работников средствами индивидуальной защиты.
реферат [173,5 K], добавлен 13.02.2015Анализ работы аэродромных пожарно-спасательных комплексов путем расчета статических и динамических критериев АПСК. Подготовка сил и средств для ликвидации последствий аварийных ситуаций. Показатели эксплуатационной эффективности воздушного транспорта.
реферат [400,9 K], добавлен 14.11.2010Основные понятия, сущность и определения безопасности труда. Принципы, методы и средства обеспечения безопасности деятельности. Зарубежный опыт безопасности управленческого труда. Анализ формирования системы безопасности труда на примере Сургутского УФМС.
курсовая работа [588,3 K], добавлен 02.11.2014Экономические последствия и материальные затраты обеспечения безопасности жизнедеятельности. Международное сотрудничество в области безопасности жизнедеятельности. Международные финансовые организации по оказанию экономической взаимопомощи странам.
реферат [26,7 K], добавлен 09.11.2012Опасное воздействие техносферы и ее отдельных элементов, разработка систем и методов защиты. Обучение населения основам безопасности жизнедеятельности и подготовка специалистов. Оказание первой медицинской помощи. Нормативная база как правовая основа.
реферат [15,5 K], добавлен 18.08.2009Система автоматического управления торможением. Факторный анализ состояния безопасности движения. Ранжирование причин, вызвавших нарушение безопасности движения. Оценка рисков возникновения нарушения безопасности. Разработка корректирующих мероприятий.
курсовая работа [1,8 M], добавлен 20.11.2021Причины возникновения пожаров. Система обеспечения пожарной безопасности объекта капитального строительства. Проверка соответствия путей эвакуации требованиям норм. Расчёт сил и средств при тушении пожара и проведении аварийно-спасательных работ.
дипломная работа [1,8 M], добавлен 27.07.2012Основные причины возникновения пожаров. Основы обеспечения и правила противопожарного режима в Российской Федерации. Понятие и задачи пожарной охраны. Основные элементы системы обеспечения пожарной безопасности. Виды систем оповещения. План эвакуации.
презентация [661,1 K], добавлен 09.12.2015