Системный анализ акустической безопасности профессиональной деятельности авиационных специалистов

Особенности эксплуатации речевого канала управления авиационной системы, функциональной надежности оператора авиационной системы, источников авиационного шума. Моделирование воздействия шума на надежность деятельности экипажей современных воздушных судов.

Рубрика Безопасность жизнедеятельности и охрана труда
Вид статья
Язык русский
Дата добавления 24.03.2019
Размер файла 98,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Системный анализ акустической безопасности профессиональной деятельности авиационных специалистов

Пенчученко Виктор Владимирович

Харитонов Владимир Васильевич, кандидат технических наук

Шешегов Павел Михайлович, кандидат медицинских наук

Зинкин Валерий Николаевич, доктор медицинских наук

Абашев Валентин Юрьевич, кандидат технических наук

г. Москва

Аннотация

Предметом исследования является акустическая безопасность профессиональной деятельности авиационных специалистов, включающее анализ: особенностей эксплуатации речевого канала управления авиационной эргатической системы, функциональной надежности оператора авиационной эргатической системы, источников авиационного шума, способов моделирования воздействия шума на надежность деятельности оператора, надежности деятельности экипажей современных воздушных судов и физиологических механизмов воздействия авиационного шума на оператора авиационной эргатической системы. Новизна исследования обусловлена его системностью и направленностью на выявление проблем безопасности профессиональной деятельности авиационных специалистов, обусловленных воздействием авиационного шума. Методология исследований объединяет методы теории надежности, гигиенических исследований, медицины труда, доказательной медицины, математической статистики и инженерной акустики. Основными выводами проведенного исследования являются конкретизированные проблемы безопасности профессиональной деятельности авиационных специалистов, обусловленных воздействием авиационного шума. Показано, что авиационный шум является источником потенциальной опасности, обусловливающим повышенный риск ошибочных действий авиационных специалистов и развитие у них профессиональных и профессионально обусловленных заболеваний, приводящих к ранней профессиональной дисквалификации. Результаты исследования показывают насущную необходимость разработки и реализации специальных средств и методов обеспечения акустической безопасности профессиональной деятельности авиационных специалистов как неотъемлемой части системы обеспечения безопасной эксплуатации воздушного транспорта.

Ключевые слова: безопасность авиационной системы, акустическая безопасность летчика, акустическая защита, надежность деятельности, авиационный специалист, потенциальная ненадежность деятельности, авиационная эргатическая система, безопасность полетов, функциональная надежность летчика, эксплуатация воздушного транспорта

The research subject is acoustic safety of aviation specialists' activities, including the analysis of the peculiarities of use of the audio channel of the aviation ergatic system management, the functional reliability of the operator of the aviation ergatic system, the sources of aviation noise, the ways of modeling of the noise impact on the reliability of the operator, the crews of modern aircrafts and the physiological mechanisms of impact of aviation noise on the operator of the aviation ergatic system. The novelty of the study is determined by its system character and orientation on the detection of the problems of safety of professional activities of aviation specialists, conditioned by the impact of aviation noise. The research methodology combines the methods of the reliability theory, hygienic studies, occupational medicine, evidentiary medicine, mathematical statistics and engineering acoustics. The authors formulate the particular problems of safety of professional activities of aviation specialists, determined by the impact of aviation noise. The study shows that aviation noise is the source of potential danger, causing the higher risk of misactions of aviation specialists and the danger of occupation diseases, causing the early professional disqualification. The research results show the urgent necessity to develop and implement special means and methods of improvement of acoustic safety of aviation specialists' professional activities as an integral element of the safe operation of air transport.

Keywords: potential unreliability of activity, aviation specialist, reliability of activities, acoustic protection, acoustic safety of a pilot, safety of the aviation system, ergatic aviation system, flight safety, functional reliability of a pilot, operation of air transport

Содержание

  • Введение
  • 1. Особенности эксплуатации речевого канала управления авиационной эргатической системой
  • 2. Надежность оператора авиационной эргатической системы
  • 3. Источники шума в авиационных эргатических системах
  • 4. Моделирование воздействия шума на оператора авиационной эргатической системы
  • 5. Надежность действий экипажей современных воздушных судов
  • 6. Физиологические механизмы воздействия авиационного шума на оператора авиационной эргатической системы
  • Заключение
  • Библиография

Введение

Анализ функционирования авиационных эргатических систем показывает, что подавляющее большинство авиационных происшествий, инцидентов и предпосылок к ним по-прежнему связаны с "человеческим фактором" - ошибочными действиями, допущенными вследствие низкой функциональной надежности профессиональной деятельности оператора [1]. Под функциональной надежностью профессиональной деятельности оператора понимается свойство функциональных систем оператора обеспечивать его динамическую устойчивость в выполнении профессиональной задачи в течение определенного времени с заданным качеством [2, 3]. Низкая функциональная надежность человека в нормальных и - особенно - в экстремальных условиях обусловлена неадекватным учетом характеристик человека при проектировании систем управления летательными аппаратами, систем обеспечения жизнедеятельности и защитного снаряжения их экипажей [2, 4].

Обеспечение надежности и работоспособности летного состава в экстремальных условиях деятельности, связанных с воздействием факторов полета (пилотажные перегрузки, температура, измененная газовая среда, шумы, вибрации и т.п.) являются актуальной задачей, существенно влияющей на безопасность полетов [5].

Используемые в настоящее время алгоритмы оценивания воздействия факторов полета на надежность действий и состояние летчика на этапах проектирования и эксплуатации авиационных технических систем синтезированы 30-40 лет назад, для предыдущего поколения летательных аппаратов [6]. Вследствие этого такие алгоритмы не корректны или вообще не применимы для интенсивностных и временных характеристик факторов полета, возникающих в процессе эксплуатации летательных аппаратов новых поколений. Кроме того, за это время произошел прорыв в области информационно-коммуникационных технологий, обеспечивший возможность использования при синтезе алгоритмов прогностического оценивания функциональной надежности летчика новых математических методов, средств регистрации показателей состояния летчика, вычислительных комплексов [7].

Технический прогресс в двигателестроении, обусловивший существенное повышение энерговооруженности, привел к настолько существенному повышению мощности неблагоприятного (для человека) акустического воздействия в инфразвуковом и звуковом диапазонах частот, что экстраполировать ранее полученные результаты на такие воздействия невозможно [8-11]. Комплексные исследования акустической обстановки в кабинах летательных аппаратов вообще не проводились в течение более 25 лет. Поэтому необходимы теоретико-экспериментальные исследования, результаты которых важны не только для авиации, но и для любых образцов технических средств - поскольку уровни авиационного шума существенно выше, а его частные диапазоны шире, чем для шума любых других технических систем, полученные результаты будут включать все частные результаты для любых образцов технических систем, оборудованных мощным двигателем [12-15].

1. Особенности эксплуатации речевого канала управления авиационной эргатической системой

Одним из актуальных направлений совершенствования технологий управления человеко-машинными системами является создание систем, позволяющих осуществлять управление и контроль над бортовым оборудованием с помощью естественного языка - речевых команд [16]. Для разработки таких систем важно получить объективные характеристики акустической обстановки на рабочих местах летного состава непосредственно в полете (шумы двигателя, ветра, системы воздухообеспечения и т.д.). Имеющиеся к настоящему времени оценки характеристик акустической обстановки на рабочих местах летного состава получены косвенными методами (экстраполяцией данных, полученных в салонах самолетов и на авиационных тренажерах на рабочие места летного состава) [17-19]. Получение характеристик акустической обстановки непосредственно в полете затруднялось как "некомпактностью" шумоизмерительного оборудования, создающего помехи профессиональной деятельности летного состава, так и тем, что характеристики шумоизмерительного оборудования не удовлетворяли требованиям к измерительному оборудованию, разрешенному к применению непосредственно в полете по соображениям безопасности полетов.

Неблагоприятное влияние шума на функциональную надежность человека хорошо изучено, актуальность и практическая значимость подобных исследований для получения объективной оценки снижения функциональной надежности летного состава, обусловленной шумовым фактором, и для обоснования требуемых шумозащитных характеристик защитного снаряжения летного состава очевидна.

2. Надежность оператора авиационной эргатической системы

В системах управления сложными динамическими объектами человек является одновременно самым сильным и самым слабым звеном. Способность человека оперативно решать задачи, не поддающиеся автоматизации, делают его самым сильным звеном, но присущие человеку эмоциональность, утомляемость, ограничения по восприятию и переработке информации делают его самым слабым звеном системы управления динамическим объектом [1, 3].

Установлено, в частности, что ошибочные и несвоевременные действия персонала при управлении сложными техническими объектами вызывают до 40% неблагоприятных исходов при испытаниях ракет, более 60% тяжелых происшествий на транспорте, до 80% аварий а катастроф в авиации [1-3].

Эффективность профессиональной деятельности оператора по качеству его функционирования в производственном процессе, точности и своевременности действий, по достижению поставленных задач, т.е. по конечному результату деятельности, характеризуются профессиональной надежностью [2, 3, 20].

Одной из причин снижения профессиональной надежности оператора является превышение на рабочем месте допустимых уровней физико-химических факторов (ФХВ) условий деятельности, обоснованных результатами физиолого-гигиенических исследований. В структуре профессиональных заболеваний в Российской Федерации заболевания, связанные с воздействием физико-химических факторов составили в 2013 году более 53% [21]. авиационный надежность экипаж шум

В работе [2] разработана концепция потенциальной ненадежности действий (ПНД) как вероятностной меры степени влияния на оператора ФХФ. Показано, что влияние ФХФ на эффективность действия оператора осуществляется через составляющие человеческого фактора и проявляется в снижении физических и психофизиологических возможностей, общих для абсолютного большинства людей. Степень влияния зависит от интенсивности и продолжительности неблагоприятного действия ФХФ, а также от характеристик используемых средств обеспечения жизнедеятельности и защитного снаряжения оператора, которые выполняя основную роль - защиту организма оператора, в ряде случаев накладывают дополнительные ограничения на характеристики составляющих человеческого фактора.

Интенсивность и время действия ФХФ в большинстве современных и перспективных динамических системах могут достигать значений, при которых возникает эффект рассогласования между наличными физическими, психофизиологическими возможностями оператора и потребными для выполнения работы определенного уровня сложности и напряженности имеющимися средствами деятельности. Проявление этого эффекта оказывает негативное влияние на эффективность функционирования оператора в системе "оператор - динамический объект - внешняя среда" и создает потенциальную возможность срыва предписанных ему действий [1-3].

Вследствие различных операторов по профессиональным способностям, уровню профессиональной подготовки, индивидуальным физическим и психофизиологическим непостоянства характеристик этих составляющих личного фактора времени, срыв деятельности является событием, имеющим определенную вероятность. Эта вероятность в работе определена как ПНД и используется в качестве меры степени влияния ФХФ [2, 21].

Количественной основой этой меры является риск возникновения неблагоприятного эффекта (срыв деятельности, ошибочные действия).

Одним из ФХФ неблагоприятного действия на человека, обслуживающего авиационную технику, является шумовое воздействие.

3. Источники шума в авиационных эргатических системах

Шум на борту современного воздушного судна (ВС) обусловлен наличием большого количества разных источников, основными из которых являются [22-26]:

· силовая установка;

· турбулентный пограничный слой на поверхности летательного аппарата;

· системы оборудования.

Шумовое воздействие силовой установки обусловлено шумом струи и компрессора (вентилятора) для реактивного самолета и винта для винтового. При этом шум струи имеет в основном равномерный широкополосный спектр, а шум компрессора (вентилятора) характеризуется дискретными составляющими в области высоких частот.

Шум турбулентного пограничного слоя характеризуется сплошным спектром. При увеличении толщины пограничного слоя растет интенсивность низкочастотных составляющих за счет снижения высокочастотных и наоборот. По мере увеличения расстояния от носа самолета вдоль фюзеляжа увеличивается толщина пограничного слоя, при этом в спектре шума возрастает доля низкочастотных составляющих.

Основными источниками шума систем оборудования воздушного судна (ВС) является система кондиционирования, т.е. она сама по себе является источником шума и передает шум по своим каналам от других источников. К источникам шума системы кондиционирования относятся выпускные клапаны, турбохолодильники, вентиляторы, эжекторы, участки воздуховодов и др.

Шум в кабине самолета изменяется в процессе полета в достаточно широких пределах. При взлете и наборе высоты основной вклад в акустическую обстановку в кабине вносит силовая установка. Резкое снижение шума наблюдается сразу после отрыва вследствие уменьшения отражения от земли и после уборки шасси за счет снижения шума обтекания и звукоизолирующей способности в районе ниш шасси при закрытии створок. При наборе высоты происходит перераспределение вклада в общую шумовую обстановку между шумом, создаваемым силовой установкой, и шумом обтекания в пользу последнего. На режимах крейсерского полета вследствие уменьшения тяги двигателей и увеличения скорости полета, определяющим становится шум пограничного слоя [22].

В целом, в настоящее время шум в кабинах современных самолетов (вертолетов) может изменяться в пределах 95-120 дБ в зависимости от типа ВС и режима полета.

4. Моделирование воздействия шума на оператора авиационной эргатической системы

Известно, что под воздействием шума надежность действий человека, выполняющего операторскую деятельность снижается. Согласно [6], надежность человека-оператора - это его свойство сохранять способность осуществлять определенную деятельность с требуемым качеством в течение требуемого интервала времени, сохраняя требуемый уровень производительности. Нарушение деятельности является событием, имеющим определенную вероятность. В работе [2, 21] эта вероятность определена как потенциальная ненадежность действия. В результате обработки данных экспериментальных исследований с использованием методов математической статистики получена математическая модель, описывающая зависимость ПНД от уровня звука, воздействующего на ИТС в течение летной смены, при подготовке ВС к полетам, при опробовании двигателей после выполнения на АТ регламентных работ.

Структура этой модели представлена композицией двух усеченных нормальных функций распределения:

ПНД = 0,5 - Ф[|(L -134,02)/ 42,00|], еслиL ? 111,33;

ПНД = 0,5 + Ф[(L -116,03)/ 8,67], еслиL > 111,33.

где Ф - функция Лапласа, L - эквивалентный уровень звука.

Вид зависимости "ПНД-уровень шума" показан на рис.1

Рисунок 1. Зависимость ПНД- вероятности непревышения нижнего значения 95%- доверительного интервала количества правильных ответов при выполнении теста "сложение и вычитание" в фоне (уровень звука 66,3 дБА) от кратковременного действия (25-30мин.) авиационного шума (ряд 1 - значение, предсказанные моделью, ряд 2 - экспериментальные данные).

5. Надежность действий экипажей современных воздушных судов

В таблице 1 представлена характеристика акустической обстановки на рабочих местах летно-подъемного состава (ЛПС) во время полета ВС.

Таблица 1. Характеристика шума в кабинах и салонах ВС

Тип летательного аппарата

Уровни звукового давления (дБ) в октавных полосах со среднегеометрическими частотами, Гц

Уровень звука, дБА

31,5

63

125

250

500

1000

2000

4000

8000

Ан-12

80

94

86

86

85

85

82

78

75

84

Ан-24

82

102

99

96

88

80

82

74

74

92

Ми-4

112

110

105

102

90

88

78

76

66

103

Ми-8

96

102

96

88

86

84

78

72

72

89

Ту-95

85

91

85

88

91

81

77

80

70

97

Ан-22

60

60

110

102

96

88

86

92

91

104

Ил-76

79

80

90

96

86

82

76

67

59

89

Истребители

86

88

88

88

89

98

94

96

98

103

Из таблицы видно, что эквивалентный уровень звука находится в диапазоне 84 - 104 дБА, что превышает ПДУ на 4 - 24 дБА, в зависимости от типа ВС.

Проведенные в этом году измерения авиационного шума в кабине одного из летательных аппаратов дальней авиации показали, что уровни авиационного шума в кабине в полете не соответствуют требованиям ОТТ ВВС-86 по уровню общего шума (получено от 111 до 120 дБА при продолжительности воздействия от 12 часов и более). Причем эти данные зарегистрированы в диапазоне частот от 31,5 Гц до 8000 Гц. Это свидетельствует о том, что имеющиеся уровни акустического шума превышают предельно допустимые значения акустического шума на рабочих местах членов экипажа, что может привести к отрицательным последствиям для их здоровья и требует применения противошумов [27-32].

По приведенной выше методике рассчитана потенциальная ненадежность действия членов экипажа и она составила от 0,28 до 0,62. Это говорит о том, что возникает опасность возникновения ошибочных действий летным экипажем, что, в свою очередь, может привести к очень негативным последствиям в полете.

Наиболее подвержены шумовому воздействию авиационные специалисты-операторы (АС), которые при повседневной профессиональной деятельности при приеме, переработке информации, поступающей от технических средств, принятии необходимых решений и выполнении необходимых управляющих действий в процессе обеспечения полетов систематически подвергаются воздействию высокоинтенсивного широкополосного шума [24, 33, 34].

6. Физиологические механизмы воздействия авиационного шума на оператора авиационной эргатической системы

Авиационный шум изменяет функциональное состояние центральной нервной системы (ЦНС), под его влиянием могут возникнуть сосудисто-вегетативные дисфункции, астенические и невротические реакции, снижаться общая резистентность организма, нарушаться терморегуляция, деятельность надпочечников, желудка, кишечника [35, 36]. Действие шума зависит от его интенсивности и продолжительности, но до сих пор не учитывались индивидуальные психофизиологические особенности организма, подвергающегося шумовому воздействию.

Проблемой зависимости успешности деятельности в экстремальных ситуациях от выраженности у субъекта силы нервной системы занимался Е.П. Ильин [37]. Он отмечал, что при небольшой средней степени психоэмоционального напряжения эффективность деятельности возрастает у всех людей, независимо от того какие типологические особенности проявления свойств нервной системы им присущи. Но при большом напряжении раньше ухудшается эффективность деятельности у лиц со слабой нервной системой. Представители с высокой выраженностью силы нервных процессов проявляют большую устойчивость к значительному психоэмоциональному напряжению.

В экспериментальных видах деятельности с повышенным риском и часто неожиданно возникающими проблемными ситуациями наибольшую профессиональную пригодность имеют лица с сильной нервной системой [38]. Анализируя инертность - подвижность нервных процессов, М.Н. Борисова [39] доказала, что субъекты с высокой подвижностью нервной системы отличаются высокой работоспособностью в напряженных условиях. Лица с низкой подвижностью нервной системы характеризуются пониженной активностью, срывами в деятельности, что является индикатором низкой стрессоустойчивости.

Однако, статистический анализ состояния здоровья летно-подъемного состава (ЛПС) показал, что заболевания нервной системы не превышают заболеваемость по данному классу у лиц контрольной группы. У всех категорий ЛПС по сравнению с контрольной группой повышено число заболеваний органа слуха (2,2% и 0,3%), опорно-двигательного аппарата (20,2% и 4,2%), органа зрения (8,3% и 2%), сердечно-сосудистой системы (13,1% и 6%) [15, 19, 28]. Удельный вес заболеваний среди различных категорий ЛПС (летчики, штурманы, другие члены летных экипажей) практически не отличался.

По итогам анализа показателей, дающих количественную оценку степени связи заболеваний авиационных специалистов (АС) с их профессиональной деятельностью, установлено, что у всех АС ВВС, систематически подвергающихся воздействию авиационного шума, независимо от специальности (ИТС, ЛПС) к профессиональной патологии относится нейросенсорная тугоухость (КС=1) [28].

При изучении заболеваемости АС установлено, что нейросенсорная тугоухость (НСТ) в структуре заболеваемости составляет 1,2% у ИТС и 2,2% у ЛПС, тогда как, в структуре ЛОР-заболеваемости летного состава гражданской авиации (ГА) нейросенсорная тугоухость занимает ведущее место. По данным Федерального центра гигиены и эпидемиологии Роспотребнадзора, за период 2002-2006 гг. показатель заболеваемости профессиональной тугоухостью у летного состава ГА увеличился практически в 2 раза с 11,73 случаев в 2002 г. до 21,52 случаев в 2006 г. (на 10 000 работающих) [15]. Число первичных случаев профессиональной тугоухости среди лиц летного состава ГА увеличилось в 4 раза. Частота медицинской дисквалификации пилотов за 5-летний период возросла практически в 2 раза [40]. По данным сводных отчетов ВЛЭК ГА и ЦВЛЭК ГА за 2014 год хроническая сенсоневральная тугоухость явилась причиной дисквалификации летного состава в 83% случаев в структуре всех заболеваний, приведших к профессиональной негодности [26].

Существует ряд причин низкой диагностики нейросенсорной тугоухости у АС: углубленные медосмотры проводятся поверхностно, без необходимых инструментальных исследований, некачественно выполняется аудиологическое исследование, поверхностное чтение аудиограммы, отсутствие классификации нейросенсорной тугоухости в авиации [18, 28].

В связи с этим нами проведено целенаправленное исследование органа слуха у АС. По результатам клинико-аудиологического исследования органа слуха, согласно существующей гармонизированной классификации тугоухости, диагноз нейросенсорная тугоухость различной степени установлен у 47% обследованных представителей инженерно-технического состава (ИТС) и у 27,8% ЛПС [26].

Признаки воздействия шума на орган слуха диагностированы у 20,0% ИТС, у 13,8% летчиков, у 10,4% штурманов и у 13,6% других членов летных экипажей. НСТ I степени (легкое снижение слуха) была выявлена у 24,0% обследованных ИТС, у 13,0% летчиков, 18,7% штурманов и 13,5% других членов летных экипажей. НСТ II степени (умеренное снижение слуха) диагностирована у 3,0% ИТС, у 0,8% летчиков [15, 28]. Больных с НСТ III степени (значительное снижение слуха) выявлено не было.

Анализ распространенности НСТ у авиационных специалистов в зависимости от возраста свидетельствует о том, что наибольшее количество случаев НСТ отмечено у ИТС в возрасте старше 30 лет, у ЛПС - в возрасте старше 40 лет. В возрасте 31-40 лет НСТ выявлена у 76,0% ИТС, у 20,0% летчиков, 28,6% штурманов и 21,3% других членов летных экипажей. Среди обследованных возрастной группы свыше 40 лет НСТ наблюдалась у 76,0% ИТС, у 37,0% летчиков, 32,0% штурманов и 47,0% других членов летных экипажей [8, 30, 34, 41].

Анализ распространенности НСТ у авиационных специалистов в зависимости от стажа показывает, что у авиационных специалистов ИТС НСТ отмечается уже при стаже работы более 6 лет (44,0% обследованных), достигая максимальных значений при стаже работы более 16 лет (76,0% обследованных) [20]. У авиационных специалистов ЛПС НСТ диагностируется уже при стаже работы до 5 лет (в пределах 20-25% всех категорий ЛПС), достигая наибольших величин при стаже работы более 20 лет (40% у летного состава и 60% у других членов летных экипажей) [41].

Корреляционный анализ позволил установить, что среди исследуемых параметров возраст и стаж работы с шумом более сильную связь (в 1,5-2 раза) с показателями аудиограммы имел последний. Корреляционные зависимости между стажем и критериями тугоухости (данные аудиограммы на частоте 4000 Гц и показатель - СПС 500-2000 Гц) были наиболее высокими у всех АС (r =0,83-0,99) и во всех случаях имели достоверное значение (p <0,05).

По результатам статистической обработки результатов обследования были построены математические модели, позволившие дать прогностическую оценку [15, 42-44]. Через 5,5 лет у ИТС и 7-10 лет у ЛПС воздействие авиационного шума вызывает постоянное повышение порогов слуха до верхней границы нормы. Развитие кохлеарной патологии у ИТС с вероятностью 0,1 наступит через 0,7 года, с вероятностью 0,5 - через 8,7 лет, с вероятностью 1,0 - через 23 года. У ЛПС развитие нейросенсорной тугоухости с вероятностью 0,1 можно ожидать через 4,3 года, с вероятностью 0,5 - через 10,6 лет, с вероятностью 1,0 - через 22 года.

То есть АС при повседневной профессиональной деятельности систематически подвергаются воздействию высокоинтенсивного широкополосного шума, действие которого на орган слуха проявляется в развитии у них профессиональной патологии - хронической нейросенсорной тугоухости, степень выраженности которой зависит от стажа работы.

Заключение

Проведенное исследование свидетельствует о том, что, что авиационный шум является источником потенциальной опасности, обусловливающим повышенный риск ошибочных действий авиационных специалистов и развитие у них профессиональных и профессионально обусловленных заболеваний, приводящих к ранней профессиональной дисквалификации. Результаты исследования показывают насущную необходимость разработки и реализации специальных средств и методов обеспечения акустической безопасности профессиональной деятельности авиационных специалистов как неотъемлемой части системы обеспечения безопасной эксплуатации воздушного транспорта.

Библиография

1. Бодров В.А., Орлов В.Я. Психология и надежность: человек в системах управления техникой. М.: ИП РАН, 1998. 288с.

2. Ушаков И.Б., Богомолов А.В., Кукушкин Ю.А. Физиология труда и надежность деятельности человека. М.: Наука, 2008. 318 с.

3. Ушаков И.Б., Богомолов А.В., Кукушкин Ю.А. Паттерны функциональных состояний оператора. М.: Наука, 2010. 390с.

4. Жданько И.М., Исаенков В.Е., Ворона А.А., Филатов В.Н., Никифоров Д.А. Профессиональная надежность военного летчика: медицинские и социально-психологические аспекты // Военно-медицинский журнал. 2016. Т. 337. № 6. С. 30-36.

5. Серёгин С.Ф., Харитонов В.В. Актуальные вопросы совершенствования системы безопасности полетов // Проблемы безопасности полетов. 2016. № 10. С. 30-48.

6. Энциклопедический справочник по авиационной эргономике и экологии. М.: Изд-во ИП РАН, 1997. 508 с.

7. Алёхин М.Д., Корчагина Д.А., Демендеев А.А., Темляков А.Ю. Методика бесконтактного контроля состояния оператора эргатической системы // Инженерный вестник. 2013. № 11. С. 15.

8. Зинкин В.Н., Солдатов С.К., Шешегов П.М., Чуманов Ю.А., Харитонов В.В. Шум как фактор риска снижения работоспособности и профессиональной надежности авиационных специалистов // Проблемы безопасности полетов. 2014. № 8. С. 3-28.

9. Солдатов С.К., Богомолов А.В., Драган С.П., Кукушкин Ю.А. Средства и методы персонифицированного акустического мониторинга // Газовая промышленность. 2015. № 7 (725). С. 79-81.

10. Картышев О.А. Исследование влияния конструктивных особенностей эжекторного аэродромного шумоглушителя на его газодинамические и акустические характеристики // Научный вестник Московского государственного технического университета гражданской авиации. 2011. № 173. С. 146-153.

11. Щербаков С.А., Кукушкин Ю.А., Солдатов С.К., Богомолов А.В., Зинкин B.Н., Шишов А.А., Кирий С.В. Методическое обеспечение и результаты исследования акустической обстановки на рабочих местах специалистов, подвергающихся воздействию авиационного шума // Биомедицинская радиоэлектроника. 2007. №

12. С. 21-27. 12. Богомолов А.В., Зинкин В.Н., Драган С.П., Солдатов С.К. Антропоэкологические аспекты безопасной эксплуатации аэродромов, аэропортов и авиационных предприятий // Национальная безопасность / nota bene. 2016. № 1. С. 56-62.

13. Жданько И.М., Зинкин В.Н., Богомолов А.В., Шешегов П.М. Организация контроля и мониторинга инфразвука на различных видах транспорта // Проблемы безопасности полетов. 2015. № 7. С. 43-59.

14. Зинкин В.Н., Богомолов А.В., Ахметзянов И.М., Шешегов П.М. Экологические аспекты безопасности жизнедеятельности населения, подвергающегося действию авиационного шума // Теоретическая и прикладная экология. 2011. № 3. С. 97-101.

15. Солдатов С.К., Зинкин В.Н., Богомолов А.В., Кукушкин Ю.А. Человек и авиационный шум // Безопасность жизнедеятельности. 2012. № 9 (приложение). 24 с.

16. Корсун О.Н., Лаврова Г.А. Современные методы реализации технологии 3d-аудио и оценка ее возможностей для улучшения звукового интерфейса кабины летательного аппарата // Наука и образование: научное издание МГТУ им. Н.Э. Баумана. 2014. № 2. С. 173-188.

17. Солдатов С.К., Зинкин В.Н., Драган С.П. Биобезопасность человека в условиях воздействия интенсивного низкочастотного шума и способы ее обеспечения // Вопросы безопасности. 2016. № 1. С. 39-47.

18. Зинкин В.Н., Солдатов С.К., Богомолов А.В., Драган С.П. Актуальные проблемы защиты населения от низкочастотного шума и инфразвука // Технологии гражданской безопасности. 2015. Т. 12. № 1. С. 90-96.

19. Зинкин В.Н., Богомолов А.В., Ахметзянов И.М., Шешегов П.М. Авиационный шум: специфические особенности биологического действия и защиты // Авиакосмическая и экологическая медицина. 2012. Т. 46. № 2. С. 9-16.

20. Зинкин В.Н., Солдатов С.К., Богомолов А.В., Кукушкин Ю.А., Ахметзянов И.М., Шешегов П.М. Авиационный шум как фактор эколого-социального неблагополучия // Проблемы безопасности полетов. 2010. № 10. С. 3-13.

21. Ушаков И.Б., Кукушкин Ю.А., Богомолов А.В., Карпов В.Н. Потенциальная ненадежность действий оператора как характеристика степени влияния физико-химических факторов условий деятельности // Безопасность жизнедеятельности. 2001. № 1. С. 24.

22. Авиационная акустика. В 2-х ч. Ч. 2. Шум в салонах пассажирских самолетов / Под ред. А.Г. Мунина. М.: Машиностроение, 1986. 264 с.

23. Богомолов А.В., Драган С.П. Автоматизированный мониторинг и технологии обеспечения акустической безопасности персонала // Автоматизация. Современные технологии. 2015. № 4. С. 25-30.

24. Крылов Ю.В. Шум и вибрация как экологические факторы среды обитания / // Человек в измерениях XXвека. Прогресс человечества в двадцатом столетии. Россия-Украина, 2002. Т. 4 С. 263-314.

25. Щербаков С.А., Кирий С.В., Кукушкин Ю.А., Солдатов С.К., Богомолов А.В., Зинкин В.Н., Шишов А.А., Переборов А.А. Результаты исследований акустической обстановки на рабочих местах инженерно-технического состава авиации // Проблемы безопасности полетов. 2007. № 3. С. 27.

26. Аденинская Е.Е., Панкова В.Б. Критерии оценки потери слуха, вызванной шумом // Материалы XIII Всероссийского Конгресса с международным участием "Профессия и здоровье", Иркутск-Новосибирск, 2015.

27. Солдатов С.К., Богомолов А.В., Зинкин В.Н., Аверьянов А.А., Россельс А.В., Пацкин Г.А., Соколов Б.А. Средства и методы защиты от авиационного шума: состояние и перспективы развития // Авиакосмическая и экологическая медицина. 2011. Т. 45. № 5. С. 3-11.

28. Зинкин В.Н., Богомолов А.В., Драган С.П., Ахметзянов И.М. Анализ рисков здоровью, обусловленных сочетанным действием шума и инфразвука // Проблемы анализа риска. 2011. Т. 8. № 4. С. 82-92.

29. Богомолов А.В., Скуратовский Н.И., Драган С.П., Сомов М.В. Методика эргономической экспертизы противошумных наушников // Инженерный вестник. 2013. № 9. С. 8.

30. Зинкин В.Н., Солдатов С.К., Богомолов А.В., Шведов А.П. Обоснование использования специалистами средств индивидуальной защиты при воздействии авиационного шума // Информатика и системы управления. 2009. № 4 (22). С. 139-141.

31. Солдатов С.К., Харитонов В.В., Чуманов Ю.А. Методическое обеспечение и результаты эргономической экспертизы шумозащитного шлема для инженерно-технического состава Военно-воздушных сил // Оборонный комплекс-научно-техническому прогрессу России. 2012. № 3. С. 23-26.

32. Жданько И.М., Зинкин В.Н., Солдатов С.К., Богомолов А.В., Шешегов П.М. Фундаментальные и прикладные аспекты профилактики неблагоприятного действия авиационного шума // Авиакосмическая и экологическая медицина. 2014. Т. 48. № 4. С. 5-16.

33. Орловская Э.П. Влияние шума на организм и работоспособность человека. Киев, 1970. 168 с.

34. Зинкин В.Н., Ахметзянов И.М., Солдатов С.К., Богомолов А.В. Медико-биологическая оценка эффективности средств индивидуальной защиты от шума // Медицина труда и промышленная экология. 2011. № 4. С. 33-34.

35. Алексеев С.В. Производственный шум. Л.: Медицина, 1991. 136 с.

36. Кирий С.В., Кукушкин Ю.А., Богомолов А.В., Солдатов С.К., Щербаков С.А., Зинкин В.Н., Шишов А.А. Методика оценивания умственной работоспособности и надежности профессиональной деятельности специалистов, подвергающихся воздействию авиационного шума // Биомедицинская радиоэлектроника. 2008. № 1-2. С. 50-56.

37. Ильин Е.П. Дифференциальная психофизиология (возможности человека и свойства нервной системы). Челябинск, 1999. 168 с

38. Реан А.А. Психология адаптации личности / А.А. Реан, А.Р. Кудашев, А.А. Баранов. - СПБ.: Прайм-ЕВРОЗНАК, 2008. - 479 с

39. Борисова М.Н. Материалы к сравнительному изучению различных показателей подвижности нервной системы человека // Типологические особенности высшей нервной деятельности человека. М., 1963. Т. III. 462 с.

40. Козин О.В. Особенности дифференциальной диагностики профессиональной нейросенсорной тугоухости у лиц летного состава гражданской // Вестник оториноларингологии. 2009. № 6. С.26-29.

41. Драган С.П., Зинкин В.Н., Богомолов А.В., Солдатов С.К., Дроздов С.В. Акустическая эффективность средств защиты от шума // Медицинская техника. 2013. № 3. С. 34-36.

42. Скуратовский Н.И., Зинкин В.Н., Богомолов А.В. Автоматизированная поддержка эргономической экспертизы средств индивидуальной защиты от авиационного шума // Человеческий фактор: проблемы психологии и эргономики. 2014. № 1 (68). С. 54-57.

43. Свидовый В.И., Зинкин В.Н., Ахметзянов И.М., Палишкина Е.Е., Газизова И.Р. Оценка риска развития производственно обусловленных и профессиональных заболеваний у авиационных специалистов // Профилактическая и клиническая медицина. 2008. № 1. С. 49-51.

44. Зинкин В.Н., Солдатов С.К., Шешегов П.М. Особенности патологического действия авиационного шума на орган слуха инженерно-технического состава авиации // Вестник оториноларингологии. 2007. № 6. С. 25-29

Размещено на Allbest.ru

...

Подобные документы

  • Физическая характеристика шума. Основные свойства шума, его классификация по частоте колебаний. Особенности воздействия шума на организм человека. Профессионально–обусловленные заболевания от воздействий шума. Характеристика средств уменьшения шума.

    презентация [1,8 M], добавлен 10.11.2016

  • Определение санитарных норм и правил рабочего места. Изучение требований к микроклимату, освещенности рабочего места, режиму труда и отдыха. Рассмотрение специфики работы оператора службы авиационной безопасности. Анализ влияния интроскопа на человека.

    реферат [986,7 K], добавлен 08.02.2015

  • Звук и его характеристики. Характеристики шума и его нормирование. Допустимые уровни шума. Средства коллективной защиты и средства индивидуальной защиты для людей от воздействия шума. Структурная схема шумомера и электронный имитатор источника шума.

    контрольная работа [53,5 K], добавлен 28.10.2011

  • Разработка системы регулирования мощности шума, построенной на принципах адаптивной фильтрации. Анализ программно-аппаратного модуля работы системы шумовой автоматической регулировки усиления, проверка надежности системы. Расчет общей, местной вентиляции.

    дипломная работа [3,5 M], добавлен 07.07.2012

  • Особенности и виды воздействия шума и вибрации, обоснование нормирования их показателей и величины. Средства измерения уровня шума и вибрации, их специфическое и неспецифическое действие. Разработка мероприятий по защите в производственных условиях.

    магистерская работа [2,5 M], добавлен 16.09.2017

  • Рассмотрение понятия и сущности шума, его воздействия на трудоспособность и организм человека в целом. Определение октавных уровней звукового давления в расчетной точке. Расчет параметров кабины наблюдения в качестве меры защиты персонала от шума.

    курсовая работа [162,1 K], добавлен 18.04.2014

  • Анализ причин заболеваемости и материальные последствия. Мероприятия по снижению заболеваемости и улучшению медицинского обслуживания. Воздействие шума на здоровье человека. Мероприятия по борьбе с шумом. Снижение шума на пути его распространения.

    курсовая работа [34,6 K], добавлен 14.04.2015

  • Шум как беспорядочное сочетание различных по силе и частоте звуков; способен оказывать неблагоприятное воздействие на организм, его основные характеристики. Допустимые значения шума. Основные меры по предупреждению воздействия шума на организм человека.

    курсовая работа [48,2 K], добавлен 11.04.2012

  • Звук и акустика. Классификация и физические характеристики шума. Влияние шума на организм человека. Методы защиты от шума. Полная система уравнений теории упругости. Метод решения задачи для нахождения резонансной частоты колебаний и потенциала скоростей.

    дипломная работа [1,5 M], добавлен 17.04.2015

  • Особенности негативного воздействия шума на организм человека, его работоспособность. Принципы защиты от вибрации и шума, используемые устройства и приспособления. Устройство и работа защитного заземления. Отопление помещений и кабин мобильных машин.

    курсовая работа [569,4 K], добавлен 03.01.2014

  • Физические параметры шума - скорость, частота, давление. Особенности влияния на человеческий организм транспортного шума. Шум автомобильного, железнодорожного и воздушного транспорта. Специфические изменения в организме. Гигиеническое нормирование шума.

    презентация [3,3 M], добавлен 13.03.2016

  • Изучение мероприятий по предупреждению оползней, селей и обвалов, акустических и архитектурных методов коллективной защиты от воздействия шума. Анализ действий при оказании помощи пострадавшему, определение токсодозы, полученной в зараженном воздухе.

    контрольная работа [23,7 K], добавлен 24.07.2011

  • Основное определение шума с физической точки зрения - беспорядочного сочетания звуков различной частоты и интенсивности (силы), возникающих при механических колебаниях в твердых, жидких и газообразных средах. Специфическое и неспецифическое действие шума.

    контрольная работа [25,9 K], добавлен 17.03.2011

  • Общие сведения о вибрации и шуме, их источники, влияние на эмоциональное и физическое состояние человека. Допустимый уровень общей и локальной вибраций, показатели их воздействия на организм. Методы обеспечения вибрационной безопасности труда оператора.

    реферат [492,5 K], добавлен 27.11.2011

  • Причины совершения ошибок, их виды и методология прогнозирования. Анализ надежности реальных систем. Факторы, воздействующие на человека, управляющего потенциально опасной техникой. Принципы формирования баз об ошибках и возможностях человека-оператора.

    курсовая работа [335,8 K], добавлен 12.11.2009

  • Человеческий фактор и надежность реальных технических систем. Характеристики человека-оператора, его функциональные, антропометрические и энергетические возможности. Причины совершения ошибок, методология их прогнозирования и принципы формирования баз.

    презентация [148,8 K], добавлен 03.01.2014

  • Классификация основных методов и средств коллективной защиты от шума. Акустические методы защиты. Виды звукоизоляции и ее эффективность. Звукопоглощение. Изоляция рабочих мест. Организационно-технические меры снижения шума. Индивидуальная защита.

    реферат [895,5 K], добавлен 25.03.2009

  • Факторы, влияющие на организацию условий труда. Травмы и профессиональные заболевания. Создание оптимальных условий труда. Организация рабочего места оператора ЭВМ. Микроклимат помещения и защита от излучений. Производственное освещение и защита от шума.

    реферат [24,6 K], добавлен 16.05.2011

  • Ответственность за нарушения положений правил по охране труда и трудового законодательства. Действие шума на организм человека, нормирование шума. Условия безопасной эксплуатации газового оборудования, паровых котлов и компрессионных установок.

    контрольная работа [1,4 M], добавлен 02.10.2011

  • Механические колебания внешней среды, которые воспринимаются слуховым аппаратом человека. Звуки и шумы большой мощности. Правила ограничения шума. Воздействие сильного шума. Функциональное расстройство центральной нервной системы.

    доклад [7,1 K], добавлен 10.01.2007

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.