Безопасность жизнедеятельности и охрана труда на предприятии

Классификации опасностей на примере своей отрасли. Общественный надзор и контроль за состоянием условий и охраны труда. Индекс тепловой нагрузки (среды ТНС-индекс). Режим работы нейтральной точки источника питания. Технические средства для тушения пожаров

Рубрика Безопасность жизнедеятельности и охрана труда
Вид контрольная работа
Язык русский
Дата добавления 17.01.2020
Размер файла 1,5 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ФГБОУ ВО

«ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ СЕВЕРНОГО ЗАУРАЛЬЯ»

Механико- технологический институт

Кафедра «Техносферная безопасность»

КОНТРОЛЬНАЯ РАБОТА

по дисциплине:

Безопасность жизнедеятельности

Тюмень-2020

Содержание

Введение

1. Классификации опасностей на примере своей отрасли

2. Общественный надзор и контроль за состоянием условий и охраны труда

3. Индекс тепловой нагрузки (среды ТНС-индекс)

4. Режим работы нейтральной точки источника питания

5. Технические средства для тушения пожаров в элекроустановках

Введение

Безопасность жизнедеятельности (БЖД) - наука, которая изучает проблемы безопасного пребывания человека в окружающей среде в процессе разных видов ее деятельности. Она более универсальная дисциплина, чем охрана труда или гражданская оборона отдельно взятые. Если взять отдельно, то охрана труда интересуется человеком, который находится в условиях производства, а гражданская оборона - человеком в чрезвычайных ситуациях, Безопасность жизнедеятельности изучает проблемы человека в более широком смысле, т.е. во всех жизненных обстоятельствах.

Объектом изучения БЖД есть человек и человеческое сообщество, среда, которая их окружает, процесс взаимодействия человека с окружающей средой (т.е. жизнедеятельность), а также опасности, которые при этом возникают.

Цель дисциплины «Безопасность жизнедеятельности» заключается в том, чтобы сформировать у человека сознательное, ответственное отношение к вопросам личной безопасности и безопасности тех, кто ее окружает; научить человека распознавать и оценивать потенциальные опасности, определять пути надежной защиты от них; оперативно ликвидировать следствия проявления опасностей в разных сферах человеческой деятельности.

1. Классификации опасностей на примере своей отрасли

Классы опасности опасных производственных объектов, указанных в пункте 1 приложения 1 к настоящему Федеральному закону (за исключением объектов, указанных в пунктах 2, 3 и 4 настоящего приложения), устанавливаются исходя из количества опасного вещества или опасных веществ, которые одновременно находятся или могут находиться на опасном производственном объекте, в соответствии с таблицами 1и 2 настоящего приложения. Классы опасности опасных производственных объектов, указанных в пунктах 2, 3 и 4 настоящего приложения, устанавливаются в соответствии с критериями, указанными в пунктах 2, 3 и 4 настоящего приложения.(в ред. Федерального закона от 02.06.2016 N 170-ФЗ)

(см. текст в предыдущей редакции)

2. Для объектов по хранению химического оружия, объектов по уничтожению химического оружия и опасных производственных объектов спецхимии устанавливается I класс опасности.

3. Для опасных производственных объектов бурения и добычи нефти, газа и газового конденсата устанавливаются следующие классы опасности:

1) II класс опасности - для опасных производственных объектов, опасных в части выбросов продукции с содержанием сернистого водорода свыше 6 процентов объема такой продукции;

2) III класс опасности - для опасных производственных объектов, опасных в части выбросов продукции с содержанием сернистого водорода от 1 процента до 6 процентов объема такой продукции;

3) IV класс опасности - для опасных производственных объектов, не указанных в подпунктах 1 и 2 настоящего пункта.

4. Для газораспределительных станций, сетей газораспределения и сетей газопотребления устанавливаются следующие классы опасности:

1) II класс опасности - для опасных производственных объектов, предназначенных для транспортировки природного газа под давлением свыше 1,2 мегапаскаля или сжиженного углеводородного газа под давлением свыше 1,6 мегапаскаля;

2) III класс опасности - для опасных производственных объектов, предназначенных для транспортировки природного газа под давлением свыше 0,005 мегапаскаля до 1,2 мегапаскаля включительно или сжиженного углеводородного газа под давлением свыше 0,005 мегапаскаля до 1,6 мегапаскаля включительно.

(в ред. Федерального закона от 02.06.2016 N 170-ФЗ)

(см. текст в предыдущей редакции)

5. Для опасных производственных объектов, указанных в пункте 2 приложения 1 к настоящему Федеральному закону, устанавливаются следующие классы опасности:

1) III класс опасности - для опасных производственных объектов, осуществляющих теплоснабжение населения и социально значимых категорий потребителей, определяемых в соответствии с законодательством Российской Федерации в сфере теплоснабжения, а также иных опасных производственных объектов, на которых применяется оборудование, работающее под избыточным давлением 1,6 мегапаскаля и более (за исключением оборудования автозаправочных станций, предназначенных для заправки транспортных средств природным газом) или при температуре рабочей среды 250 градусов Цельсия и более;

(в ред. Федерального закона от 22.02.2017 N 22-ФЗ)

(см. текст в предыдущей редакции)

2) IV класс опасности - для опасных производственных объектов, не указанных в подпункте 1 настоящего пункта.

6. Для опасных производственных объектов, указанных в пункте 3 приложения 1 к настоящему Федеральному закону, устанавливаются следующие классы опасности:

1) III класс опасности - для подвесных канатных дорог;

2) IV класс опасности - для опасных производственных объектов, не указанных в подпункте 1 настоящего пункта.

7. Для опасных производственных объектов, указанных в пункте 4 приложения 1 к настоящему Федеральному закону, устанавливаются следующие классы опасности:

1) II класс опасности - для опасных производственных объектов, на которых используется оборудование, рассчитанное на максимальное количество расплава 10 000 килограммов и более;

2) III класс опасности - для опасных производственных объектов, на которых используется оборудование, рассчитанное на максимальное количество расплава от 500 до 10 000 килограммов.

8. Для опасных производственных объектов, указанных в пункте 5 приложения 1 к настоящему Федеральному закону, устанавливаются следующие классы опасности:

1) I класс опасности - для шахт угольной промышленности, а также иных объектов ведения подземных горных работ на участках недр, где могут произойти:

взрывы газа и (или) пыли;

внезапные выбросы породы, газа и (или) пыли;

горные удары;

прорывы воды в подземные горные выработки;

2) II класс опасности - для объектов ведения подземных горных работ, не указанных в подпункте 1 настоящего пункта, для объектов, на которых ведутся открытые горные работы, объем разработки горной массы которых составляет 1 миллион кубических метров в год и более, для объектов переработки угля (горючих сланцев);

3) III класс опасности - для объектов, на которых ведутся открытые горные работы, объем разработки горной массы которых составляет от 100 тысяч до 1 миллиона кубических метров в год, а также объектов, на которых ведутся работы по обогащению полезных ископаемых (за исключением объектов переработки угля (горючих сланцев);

4) IV класс опасности - для объектов, на которых ведутся открытые горные работы, объем разработки горной массы которых составляет менее чем 100 тысяч кубических метров в год.

9. Для опасных производственных объектов, указанных в пункте 6 приложения 1 к настоящему Федеральному закону, устанавливаются следующие классы опасности:

1) III класс опасности - для элеваторов, опасных производственных объектов мукомольного, крупяного и комбикормового производства;

2) IV класс опасности - для иных опасных производственных объектов.

10. В случае, если для опасного производственного объекта по указанным в пунктах 1 - 9 настоящего приложения критериям могут быть установлены разные классы опасности, устанавливается наиболее высокий класс опасности.

(в ред. Федерального закона от 02.06.2016 N 170-ФЗ)

(см. текст в предыдущей редакции)

11. В случае, если опасный производственный объект, для которого в соответствии с пунктами 1 - 10 настоящего приложения должен быть установлен II, III или IV класс опасности, расположен на землях особо охраняемых природных территорий, континентальном шельфе Российской Федерации, во внутренних морских водах, в территориальном море или прилежащей зоне Российской Федерации, на искусственном земельном участке, созданном на водном объекте, находящемся в федеральной собственности, для такого опасного производственного объекта устанавливается более высокий класс опасности соответственно.

(в ред. Федерального закона от 02.06.2016 N 170-ФЗ).

Почти все производственные объекты в нефтяной и газовой промышленности при соответствующих условиях загрязняют окружающую природную среду множеством опасных вредных веществ. Помимо природных углеводородов, их спутников, продуктов переработки, в составе загрязнений содержатся многочисленные реагенты, катализаторы, ПАВ, ингибиторы, щелочи, кислоты, вещества, образующиеся при горении, химическом превращении и т.д.

Основные из загрязняющих веществ рассматриваются подробнее /12, 13, 14/.

Окись углерода. СО - бесцветный газ без вкуса и запаха. Плотность газа по воздуху 0,967 мг/м3. Поступление СО в организм подчиняется закону диффузии газов. ПДК окиси углерода в воздухе рабочей зоны 20 мг/м3. Концентрацию 300 мг/м3 человек переносит без заметного действия в течение 2-4 ч.; 600 мг/м3 за это время вызывает легкое отравление; 1800 мг/м3 - тяжелое отравление наступает через 10-30 минут; 3600 мг/м3 - человек переносит 1-5 минут. Окись углерода вытесняет кислород из оксигемоглобина крови, образуя карбоксигемоглобин (СОН6). Кроме того, в присутствии окиси углерода в крови ухудшается отдача кислорода тканями. При содержании 0,04% СО в воздухе более 30% гемоглобина крови химически связано с СО; при 0,1% - соответственно 50%; при 0,4% - более 80%; 0,5% - смерть наступает через 2-3 вздоха. Двуокись углерода СО2 - бесцветный, тяжелый, малореакционноспособный газ. При низких и умеренных температурах обладает слегка кисловатым запахом и вкусом. При содержании в воздухе до 1% не оказывает токсичного воздействия; при 4-5% раздражающе воздействует на органы дыхания, значительно учащая частоту дыхания; при 10% вызывает сильное отравление. Углекислый газ оказывает наркотическое действие на человека и может изменять его поведение (походку, реакцию зрачков и др.), раздражать слизистую оболочку. В воздухе, вдыхаемом человеком, содержится примерно 0,04% СО2. В относительно малых количествах СО2 стимулирует дыхательный центр, в больших количествах - угнетает его и вызывает повышение содержания адреналина в крови. Привыкание людей к СО2 признается возможным /13/, но связано с тренировкой органов дыхания и кровообращения. ПДК СО2 в воздухе составляет 1%.

Предельные углеводороды. Химически наиболее инертны среды органических соединений, они являются в то же время сильнейшими наркотиками. Действие их ослабляется ничтожной растворимостью в воде и крови, вследствие чего только при высоких концентрациях создается опасность отравления этими веществами. С увеличением числа атомов углерода сила наркотического действия растет. Характерна неустойчивость реакций центральной нервной системы, возникающих под влиянием паров некоторых предельных углеводородов. Такое действие проявляется не только при высоких концентрациях, но и воздействии низких, пороговых /13, 14/. Постоянный контакт с предельными углеводородами вызывает покраснение, зуд, пигментацию кожи. ПДК (в пересчете на углерод) - 300 мг/м3. Некоторые ученые считают, что в замкнутых пространствах эта концентрация должна быть в 4 раза меньше /13/. Присутствие Н2S и повышенная температура усиливает токсичность предельных углеводородов /13/.

Запах бутана в воздухе человек ощущает при концентрации 328 мг/м3, пентана - 217 мг/м3.

Природный газ обычно рассматривается как безвредный газ. Действие его идентично действию предельных углеводородов. Главная опасность связана с асфикцией при недостатке кислорода. Это может происходить при большом содержании СН4 в воздухе, когда парциальное давление и удельное содержание кислорода в воздухе резко уменьшаются. Природные газы, содержащие Н2S очень токсичны. Известно большое число тяжелых и молниеносных отравлений этими газовыми смесями. Освобожденный от Н2S природный газ при концентрации в воздухе 20% не дает токсичного эффекта. Природный газ, транспортируемый потребителям для бытовых нужд, должен соответствовать ОСТ 51.40-83.

Нефтяной крекинг-газ. Действует на человека, как смесь углеводородов в комбинации с Н2S.

Сернистые соединения. Профессиональная вредность сернистых соединений определяется наиболее токсичными ингредиентами газовыделений из многосернистой нефти, природного газа и конденсата. Нефти разных месторождений характеризуются неодинаковым составом сернистых соединений и обладают в связи с этим токсикологическими свойствами.

При температурах термической переработки нефти сера, дегидрируя углеводороды, образует сероводород. Сульфиды и дисульфиды при этом распадаются, также образуя сероводород. Остаточная сера объединяет те соединения, которые при температурах переработки нефти не вступают в реакции, таблица 2. Отсюда следует, что сероводорода в процессе термической переработки нефти образуется тем больше, чем меньше в ней остаточной серы /12/.

Таблица 2

Удельный вес различных сернистых соединений в нефти (в % по отношению к общей сере, принятой за 100%)

Соединение серы

Месторождения нефти

Туймазинское

Ишимбаевское

Бугуруслановское

девонская нефть

поверхностного залегания

Общая сера

100

100

100

100

сероводород

0

8

16,8

30,0

элементарная сера

2,7

3,6

5,8

2,8

сульфиды

21,9

24,5

5,3

5,8

дисульфиды

6,8

12,3

9,8

7,2

Меркаптаны

21,0

25,3

46,8

32,8

остаточная сера

47,6

26,3

15,5

21,4

Меркаптаны - органические серосодержащие газы с высокой токсичностью. Образуются при термическом воздействии на нефтесодержащую среду. Меркаптаны обнаруживаются в воздухе нефтепромыслов и нефтеперерабатывающих заводов в сотни и в тысячи раз меньших концентрациях, чем сероводород.

Сероводород. Бесцветный газ с неприятным запахом, ощутимым даже при незначительных концентрациях 1 : 100000. Прямой пропорциональности между концентрацией сероводорода и интенсивностью запаха не наблюдается. Напротив, при большой, очень опасной концентрации ощущение запаха сероводорода ослабевает, вплоть до исчезновения, по-видимому, вследствие паралича окончаний обонятельного нерва. Сероводород вообще является наиболее токсичным ингредиентом в составе атмосферы объектов по добыче и переработке высокосернистых нефтей и газа, в том числе по его количеству и характерных загрязнителях воздушного бассейна. Ощущение сероводорода характеризуется: при концентрации 1,4-2,3 мг/м3, но явно ощутимый запах; 3,3-4,6 мг/м3 - сильный запах, для привыкших к нему - не тягостный; 5,0 мг/м3 - запах значительный; 7,0-11,0 мг/м3 запах тягостный даже для привыкших к нему; 280-400 мг/м3 - запах не так силен и неприятен, как при более низких концентрациях. Плотность сероводорода по отношению к воздуху 1,1912. Виду этого он скапливается в низких местах - ямах, колодцах, траншеях, легко растворяется в воде и очень легко переходит из растворенного в свободное состояние.

В организм сероводород поступает в основном через органы дыхания и в небольших количествах через кожу и желудок. При вдыхании сероводород задерживается преимущественно в верхних дыхательных путях. При соприкосновении с влажной поверхностью слизистых оболочек Н2S реагирует с щелочами, образуя сульфид натрия, оказывающий раздражающее и прижигающее действие. Главное токсическое действие сероводорода проявляется не в раздражении слизистых оболочек, а в его общем действии на организм. В настоящее время можно считать установленным, что в основе токсикодинамики сероводорода лежат три действия - действие на центральную нервную систему, окислительные процессы и кровь /14/. Специфическое токсическое действие сероводорода на центральную нервную систему установлено в 1884 году. В небольших количествах сероводород угнетает центральную нервную систему: в умеренных возбуждает, а в больших вызывает паралич, в частности дыхательного и сосудистого центров. Изменения эти во многих случаях функциональны и обратимы. Сероводород оказывает токсическое действие на механизмы окислительных процессов. Снижается способность крови насыщаться кислородом. При хроническом отравлении сероводородом способность гемоглобина к поглощению кислорода снижается до 80-85%, при остром - до 15%. Наблюдается также снижение окислительной способности тканей. Действие сероводорода на кровь происходит в две фазы: вначале количество эритроцитов повышается, затем падает, снижается содержание гемоглобина, повышается свертываемость и вязкость крови. Окисление сероводорода в крови происходит очень быстро. До 99% сероводорода удаляется из организма в течение 3-4 минут. Поэтому его обнаруживают в крови лишь в том случае, если скорость поступления сероводорода равна скорости окисления или превышает последнюю.

Сероводород - высокотоксичный яд. При концентрации свыше 1000 мг/м3 отравление наступает молниеносно; при концентрации 140-150 мг/м3 и действии в течение непродолжительного времени наблюдается раздражение слизистых оболочек. После перенесенного острого отравления очень часто выявляются заболевания - пневмонией, отеком легких, менингитом и энцефалитом. Кроме того, сероводород при добыче и переработке нефти и газа действует не изолированно, а в сочетании с различными углеводородами. При одновременном комбинированном воздействии веществ может изменяться характер их токсического действия. Комбинированное действие может характеризоваться простым суммированием. Иногда суммарный эффект комбинированного действия смеси проявляется в отдельности (потенционирование действия). Подобный эффект экспериментально установлен в отношении сернистого ангидрида и хлора, окиси углерода и окислов азота, бензина и бензола и некоторых других сочетаний. Установлено, что токсичность сероводорода возрастает в составе нефтяного газа /12/. В рабочей зоне ПДК сероводорода 80 мг/м3 /13/, в смеси с углеводородами С1-С5 - 3 мг/м3. Класс опасности - 2. Класс токсичности - 2.

Сернистый ангидрид - бесцветный газ с острым запахом. Раздражает дыхательные пути, образуя на их влажной поверхности серную и сернистую кислоту. Сернистый газ оказывает общее токсическое действие, нарушает углеводный и белковый обмен. Характер воздействия сернистого ангидрида существенно неоднозначен. При концентрации 20-60 мг/м3 - раздражает слизистые оболочки дыхательных путей и глаз (чихание, кашель, покалывание в носу); при 120 мг/м3 - вызывает одышку, синюшность, человек переносит эту концентрацию только 3 минуты; при 300 мг/м3 - происходит расстройство сознания. При воздействии в течение 1 минуты человек теряет сознание. Сернистый ангидрид раздражает кроветворные органы. Способствует образованию метгемоглобина. Вызывает изменение костной ткани. Доказана зависимость частоты острых респираторных заболеваний, хирургических заболеваний легких у взрослых и детей от загрязнения атмосферного воздуха /12/. ПДК 10 мг/м3. Класс опасности - 2. Класс токсичности - 2. При одновременном присутствии в воздухе SO2 и SO3 ПДК обоих веществ соответственно снижается. Токсичность SO2 резко возрастает при одновременном воздействии SO2 и СО /13/. При концентрации сернистого ангидрида в воздухе 260 мг/м3 хвойные деревья погибают в течение нескольких часов; при 5,2-260 мг/м3 наблюдается острое отравление хвойных и лиственных пород; при 1,82-5,2 мг/м3 происходит хроническое отравление всех растений /15/.

Окись азота - бесцветный газ, быстро окисляемый в окись азота. Скорость окисления зависит от температуры окружающей среды, атмосферного давления и концентрации NO. Окись азота - кровяной яд. Она переводит гемоглобин в потгемоглобин. Оказывает прямое действие на центральную нервную систему.

Двуокись азота - бурый газ с удушливым запахом. При температуре > 140оС начинает распадаться на NO и О2; при температуре 600оС распадается полностью. Двуокись азота оказывает чрезвычайно сильное влияние на легкие человека. При работе в течение 3-5 лет в среде с концентрацией 0,8-5 мг/м3 развиваются хронические бронхиты, элфизема легких, астма и некоторые другие заболевания /12/. Воздействие окислов азота при других концентрациях характеризуется данными таблицы 3.

Таблица 3

Воздействие окислов азота в зависимости от концентрации

Концентрация мг/м3

Воздействие

3

никаких явлений

10

ощущается запах

20

легкий запах

90

выраженный неприятный запах, раздражение глотки, слюноотделение

150

удушливый запах, кашель в течение 4 минут

200

опасен даже при кратковременном воздействии

ПДК в перерасчете на NO2 - 5 мг/м3 /13/. При одновременном присутствии в воздухе азота и СО рекомендуется снизить ПДК обоих соединений.

Детергенты. Под детергентами понимаются ПАВ, а также добавки, активаторы, комплексообразующие вещества, наполнители и присадки. Детергенты, являясь загрязнителями окружающей среды, представляют опасность для человека, фауны и флоры. Попадая со сточными водами в водоемы, они образуют в шлюзах, плотинах и других местах большое количество пены. Последняя помимо эстетического урона водоему может создавать некоторые препятствия и затруднять поведение навигации. При сильном ветре пена уносится на большое расстояние и (может) нарушать дорожное движение, явиться причиной распространения бактерий или патогенных вирусов, опасных для человека и окружающей среды. Патогенные микробактерии могут переноситься из очистных сооружений в реки и озера: напротив, сальмонеллы и стафилококки в пенной среде быстро погибают.

И, наконец, образование непрерывного слоя пены на поверхности водоема нарушает газовый обмен между водоемом и атмосферой, нарушая условия жизни обитателей подводного мира и процессы самоочищения воды, так как ПАВ замедляет поступление кислорода в воду и резко снижает растворение этого газа в воде. Установлено, кроме того, что изменение обмена органических веществ в природной среде затормаживает окислительно-восстановительные процессы.

ПАВ оказывает опасное действие на рыб, понижая поверхностное натяжение воды, они нарушают дыхательный обмен на уровне бронхов, активизируют действие некоторых опасных веществ, находящихся в составе водоема.

Сильное токсическое действие ПАВ может проявляться при концентрациях его 2000-3000 мг/м3.

е. Токсичное действие их на человека и животных при этом может проявляться на длительном отрезке времени. Исследованиями установлено, что концентрация анионактивных веществ нередко значительно превышают их ПДК, равную для питьевой воды 500 мг/м3. имеются данные, что ПАВ благоприятствуют кишечному абсорбированию посторонних примесей, способных оказывать токсичное действие на организм, интенсифицировать развитие раковых заболеваний /12/.

Метиловый спирт (метанол, карбинол, древесный спирт), СН3ОН - молекулярный вес 32, ОН - простейший представитель предельных одноатомных спиртов.

Физические свойства: бесцветная легкоподвижная жидкость, с запахом, подобным запаху этилового спирта, температура плавления - минус 97,88оС, температура кипения 64,509 оС. Граница взрывоопасных концентраций в воздухе 6,72-36,5% об. метилового спирта. Метиловый спирт во всех соотношениях смешивается с водой и спиртами, бензолом, ацетоном и др. органическими растворами.

Метиловый спирт - сильный яд. Он действует преимущественно на нервную и сосудистую систему, обладает резко выраженным куммулятивным действием. Прием внутрь 5-10 мл метилового спирта приводит к тяжелому отравлению, а прием 30 мл и более - смертелен. В парообразном состоянии спирт сильно раздражает дыхательные пути и слизистые оболочки глаз, проникает через кожу, поражает зрительные нервы и сетчатку глаз (человек слепнет).

2. Общественный контроль за охраной труда

1. Общественный контроль за соблюдением прав и законных интересов работников в области охраны труда осуществляется профессиональными союзами и иными уполномоченными работниками представительными органами, которые вправе создавать в этих целях собственные инспекции, а также избирать уполномоченных (доверенных) лиц по охране труда профессиональных союзов и иных уполномоченных работниками представительных органов.

2. Профессиональные союзы в лице их соответствующих органов и иные уполномоченные работниками представительные органы имеют право:

осуществлять контроль за соблюдением работодателями законодательства об охране труда;

проводить независимую экспертизу условий труда и обеспечения безопасности работников организации;

принимать участие в расследовании несчастных случаев на производстве и профессиональных заболеваний, а также осуществлять их самостоятельное расследование;

получать информацию от руководителей и иных должностных лиц организаций об условиях и охране труда, а также о всех несчастных случаях на производстве и профессиональных заболеваниях;

предъявлять требования о приостановлении работ в случаях угрозы жизни и здоровью работников;

осуществлять выдачу работодателям обязательных к рассмотрению представлений об устранении выявленных нарушений требований охраны труда;

осуществлять проверку условий и охраны труда, выполнения обязательств работодателей по охране труда, предусмотренных коллективными договорами и соглашениями;

принимать участие в работе комиссий по испытаниям и приемке в эксплуатацию производственных объектов и средств производства в качестве независимых экспертов;

принимать участие в разработке проектов подзаконных нормативных правовых актов об охране труда, а также согласовывать их в установленном Правительством Российской Федерации порядке;

обращаться в соответствующие органы с требованиями о привлечении к ответственности лиц, виновных в нарушении требований охраны труда, сокрытии фактов несчастных случаев на производстве;

принимать участие в рассмотрении трудовых споров, связанных с нарушением законодательства об охране труда, обязательств, предусмотренных коллективными договорами и соглашениями, а также с изменениями условий труда.

3. Уполномоченные (доверенные) лица по охране труда профессиональных союзов и иных уполномоченных работниками представительных органов имеют право беспрепятственно проверять в организациях соблюдение требований охраны труда и вносить обязательные для рассмотрения должностными лицами предложения об устранении выявленных нарушений требований охраны труда.

3. Индекс тепловой нагрузки (среды ТНС-индекс)

Условия труда - совокупность факторов производственной среды и трудового процесса, оказывающих влияние на работоспособность и здоровье работника. (Трудовой кодекс Российской Федерации: от 30.12.2001 №197-ФЗ - В ред. от 01.12.2007 - Ст. 209).

Условия труда в соответствии с Гигиенической классификацией труда имеют следующую классификацию:

I класс - оптимальные условия труда;

II класс - допустимые условия труда;

III класс (1, 2, 3, 4-я степени) - вредные условия труда;

IV класс - опасные условия труда.

Классы условий труда по микроклимату определяются различными показателями в зависимости от периода года: холодный (зима) и теплый. Теплый период года характеризуется среднесуточной температурой наружного воздуха +10°С и выше, холодный - ниже +10°С. Зимой для оценки микроклимата в производственном помещении необходимо измерять температуру, относительную влажность и скорость движения воздуха на рабочем месте. В этот же период на открытой территории и в холодных помещениях (холодильники, неотапливаемые склады и т.п.) достаточно измерить только температуру воздуха. В теплый период года различия между помещением и открытой территорией не делается.

Параметры микроклимата при оптимальном и допустимом классах условий труда могут оцениваться как по критериям производственных помещений в холодный период года, так и по индексу тепловой нагрузки среды ТНС-индексу или, как он еще называется, температурному индексу WBGT (Wet Body Global Temperature). ТНС-индекс - это эмпирический интегральный показатель (выраженный в °С), отражающий сочетанное влияние температуры воздуха, скорости его движения, влажности и теплового облучения на теплообмен человека с окружающей средой.

WBGT-индекс рассчитывается из уравнения:

1. при учете измерений вне помещений при солнечной нагрузке (или в помещении при тепловом излучении).

WBGT = 0,7 tвл + 0,1 tc + 0.2 tш

2. при учете измерений в помещении (при отсутствии теплового излучения) или снаружи без солнечной нагрузки.

WBGT = 0,7 tвл + 0,3 tш

где tвл , tc , tш - соответственно температура влажного, сухого и шарового термометра.

Температура шарового термометра или, иными словами, температура внутри зачерненного шара измеряется термометром, который помещен в центр зачерненного полого шара; tш отражает влияние температуры воздуха, температуры поверхностей и скорости движения воздуха. Зачерненный шар должен иметь диаметр 90 мм, минимально возможную толщину и коэффициент поглощения 0,95. Погрешность измерения температуры внутри шара не более ±0,5°С.

ТНС-индекс рекомендуется использовать для интегральной оценки тепловой нагрузки среды на рабочих местах, на которых скорость движения воздуха не превышает 0,6 м/с, а интенсивность теплового облучения - 1200 Вт/м2.

В соответствии с ГОСТ Р ИСО 7243-2007 если параметры окружающей среды не имеют постоянного значения в пространстве, то индекс рекомендуется определять в трех положениях, соответствующих высоте головы, живота и лодыжек относительно земли. Если рабочий стоит, измерения следует выполнять на высоте 0,1; 1,1 и 1,7 м от пола; если сидит - 0,1; 0,6 и 1,1 м от пола. Если анализ, проведенный до теплового перегрева в изучаемой точке, показал, что окружающая среда была фактически однородной (разнородность <5%), можно применить упрощенную процедуру, состоящую только в определении одного индекса WВGT на уровне живота.

Для быстрого определения индекса WBGT достаточно выполнить одно измерение на уровне, на котором тепловой перегрев будет максимальным. Использование такой процедуры приводит к переоценке теплового перегрева со смещением порога безопасности.

Оптимальные и допустимые микроклиматические условия.

Согласно ГОСТ 12.1.005-88 в рабочей зоне производственного помещения могут быть установлены оптимальные и допустимые микроклиматические условия.

Оптимальные микроклиматические условия - это такое сочетание параметров микроклимата, которое при длительном и систематическом воздействии на человека обеспечивает ощущение теплового комфорта и создает предпосылки для высокой работоспособности.

Допустимые микроклиматические условия - это такое сочетание параметров микроклимата, которые при длительном и систематическом воздействии на человека могут вызвать напряжение реакций терморегуляции и которые не выходят за пределы физиологических приспособительных возможностей. При этом не возникает нарушений в состоянии здоровья, не наблюдаются дискомфортные теплоощущения, ухудшающие самочувствие и понижение работоспособности.

Категории работ, приведенные в указанных выше таблицах, принимаются по СанПип 2.2.4.548-96. Гигиенические требования к микроклимату производственных помещений.

труд охрана пожар тушение

Таблица 1.

Оптимальные величины показателей микроклимата на рабочих местах производственных помещений

Период года

Категория работ по уровню энергозатрат, Вт

Температура воздуха, °С

Температура поверхностей,°С

Относительная влажность воздуха, %

Скорость движения воздуха, м/с

Холодный

Iа (до 139)

22-24

21-25

60-40

0,1

Iб (140-174)

21-23

20-24

60-40

0,1

IIа (175-232)

19-21

18-22

60-40

0,2

IIб (233-290)

17-19

16-20

60-40

0,2

III (более 290)

16-18

15-19

60-40

0,3

Теплый

Iа (до 139)

23-25

22-26

60-40

0,1

Iб (140-174)

22-24

21-25

60-40

0,1

IIа (175-232)

20-22

19-23

60-40

0,2

IIб (233-290)

19-21

18-22

60-40

0,2

III (более 290)

18-20

17-21

60-40

0,3

Таблица 2.

Допустимые величины показателей микроклимата

на рабочих местах производственных помещений

Период

Категория

Температура воздуха, °С

Температура

Относительная

Скорость движения воздуха, м/с

года

работ по уровню энергозатрат, Вт

диапазон ниже оптимальных величин

диапазон выше оптимальных величин

поверхностей, °С

влажность воздуха,

%

для диапазона температур воздуха ниже оптимальных величин, не более

для диапазона температур воздуха выше оптимальных величин, не более**

Холодный

Iа (до 139)

20,0-21,9

24,1-25,0

19,0-26,0

15-75*

0,1

0,1

Iб (140-174)

19,0-20,9

23,1-24,0

18,0-25,0

15-75

0,1

0,2

IIа (175-232)

17,0-18,9

21,1-23,0

16,0-24,0

15-75

0,1

0,3

IIб (233-290)

15,0-16,9

19,1-22,0

14,0-23,0

15-75

0,2

0,4

III (более 290)

13,0-15,9

18,1-21,0

12,0-22,0

15-75

0,2

0,4

Теплый

Iа (до 139)

21,0-22,9

25,1-28,0

20,0-29,0

15-75*

0,1

0,2

Iб (140-174)

20,0-21,9

24,1-28,0

19,0-29,0

15-75*

0,1

0,3

IIа (175-232)

18,0-19,9

22,1-27,0

17,0-28,0

15-75*

0,1

0,4

IIб (233-290)

16,0-18,9

21,1-27,0

15,0-28,0

15-75*

0,2

0,5

III (более 290)

15,0-17,9

20,1-26,0

14,0-27,0

15-75*

0,2

0,5

*При температурах воздуха 25°С и выше максимальные величины относительной влажности воздуха должны приниматься в соответствии с требованиями п. 6.5.

**При температурах воздуха 26-28 °С скорость движения воздуха в теплый период года должна приниматься в соответствии с требованиями п. 6.6.

Категории работ.

В соответствии со СанПип 2.2.4.548-96. “Гигиенические требования к микроклимату производственных помещений” категории работ разграничиваются на основе интенсивности энергозатрат организма в ккал/ч (Вт):

· К категории Iа относятся работы с интенсивностью энергозатрат до 120 ккал/ч (до 139 Вт), производимые сидя и сопровождающиеся незначительным физическим напряжением (ряд профессий на предприятиях точного приборо- и машиностроения, на часовом, швейном производствах, в сфере управления и т. п.).

· К категории Iб относятся работы с интенсивностью энергозатрат 121-150 ккал/ч (140-174 Вт), производимые сидя, стоя или связанные с ходьбой и сопровождающиеся некоторым физическим напряжением (ряд профессий в полиграфической промышленности, на предприятиях связи, контролеры, мастера в различных видах производства и т. п.).

· К категории IIа относятся работы с интенсивностью энергозатрат 151-200 ккал/ч (175-232 Вт), связанные с постоянной ходьбой, перемещением мелких (до 1 кг) изделий или предметов в положении стоя или сидя и требующие определенного физического напряжения (ряд профессий в механосборочных цехах машиностроительных предприятий, в прядильно-ткацком производстве и т. п.).

· К категории IIб относятся работы с интенсивностью энергозатрат 201-250 ккал/ч (233-290 Вт), связанные с ходьбой, перемещением и переноской тяжестей до 10 кг и сопровождающиеся умеренным физическим напряжением (ряд профессий в механизированных литейных, прокатных, кузнечных, термических, сварочных цехах машиностроительных и металлургических предприятий и т. п.).

· К категории III относятся работы с интенсивностью энергозатрат более 250 ккал/ч (более 290 Вт), связанные с постоянными передвижениями, перемещением и переноской значительных (свыше 10 кг) тяжестей и требующие больших физических усилий (ряд профессий в кузнечных цехах с ручной ковкой, литейных цехах с ручной набивкой и заливкой опок машиностроительных и металлургических предприятий и т.п.).

Нормирование параметров микроклимата производственных помещений

В соответствии с классификацией условий труда по показателям микроклимата различают нагревающий и охлаждающий микроклимат.

Под нагревающим микроклиматом понимают сочетание параметров микроклимата (температура воздуха, влажность, скорость его движения, относительная влажность, тепловое излучение), при котором имеет место нарушение теплообмена человека с окружающей средой, выражающееся в накоплении тепла в организме выше верхней границы оптимальной величины (> 0,87 кДж/кг) и/или увеличении доли потерь тепла испарением пота (> 30%) в общей структуре теплового баланса, появлении общих или локальных дискомфортных теплоощущений (слегка тепло, тепло, жарко).

Для оценки нагревающего микроклимата в помещении (вне зависимости от периода года), а также на открытой территории в теплый период года используется интегральный показатель - тепловая нагрузка среды (ТНС-индекс).

В таблице приведены величины ТНС-индекса применительно к человеку, одетому в комплект легкой летней одежды с теплоизоляцией 0,5 - 0,8 кло (1 кло = 0,155 0С-м2/Вт)

Таблица 3.

Классы условий труда по показателю ТНС-индекса (°С)

для производственных помещений с нагревающим микроклиматом

независимо от периода года и открытых территорий в теплый период года

Категория

работ*

Общие

энерготраты,

Вт/м2

Класс условий труда

Оптимальный

Допустимый

Вредный

Опасный

1 степени

2 степени

3 степени

4 степени

(экстремальн.)

1

2

3.1

3.2

3.3

3.4

4

1 а

68 (58-77)

22,2 - 26,4

26,5-26,6

26,7-27,4

27,5-28,6

28,7-31,0

> 31,0

1 б

88 (78-97)

21,5 - 25,8

25,9-26,1

26,2-26,9

27,0-27,9

28,0-30,3

> 30,3

II а

113 (98-129)

20,5 - 25,8

25,2-25,5

25,6-26,2

26,3-27,3

27,4-29,9

> 29,9

II б

145(130-160)

19,5 - 23,9

24,0-24,2

24,3-25,0

25,1-26,4

26,5-29,1

> 29,1

III

177(161-193)

18,0-21,8

21,9-22,2

22,3-23,4

23,5-25,7

25,8-27,9

> 27,9

* В соответствии с приложением 1 к СанПиН 2.2.4.548-96 «Гигиенические требования к микроклимату производственных помещений» или по формуле

Q =4хЧСС-255, где:

Q - общие энерготраты, Вт/м2;

ЧСС - среднесменная частота сердечных сокращений, определяемая как средневзвешенная величина с учетом времени, затраченного на выполнение различного вида работ и отдых.

Охлаждающий микроклимат - сочетание параметров микроклимата, при котором имеет место изменение теплообмена организма, приводящее к образованию общего или локального дефицита тепла в организме (< 0,87 кДж/кг) в результате снижения температуры «ядра» и/или «оболочки» тела (температура «ядра» и «оболочки» тела - соответственно температура глубоких и поверхностных слоев тканей организма).

Класс условий труда при работе в производственных помещениях с охлаждающим микроклиматом (при отсутствии теплового облучения) определяется по таблице применительно к работающим, одетым в комплект «обычной одежды» с теплоизоляцией 1 кло.

Таблица 4.

Классы условий труда по показателю ТНС-индекса (°С, нижняя граница)

при работе в производственных помещениях с охлаждающим микроклиматом независимо от периода года

Категория

работ*

Общие

энерготраты,

Вт /м2

Класс условий труда

Оптимальный

Допустимый

Вредный**

Опасный

(экстрем.)

1 степени

2 степени

3 степени

4 степени

1

2

3.1

3.2

3.3

3.4

4

I а

68(58-77)

по СанПиН*

по СанПиН *

18

16

14

12

I б

88(78-97)

по СанПиН *

по СанПиН *

17

15

13

11

П а

113(98-129)

по СанПиН *

по СанПиН *

14

12

10

8

П б

145(130-160)

по СанПиН *

по СанПиН *

13

11

9

7

Ш

177(161-193)

по СанПиН *

по СанПиН *

12

10

8

6

*В соответствии с приложением 1 к СанПиН 2.2.4.548-96 «Гигиенические требования к микроклимату производственных помещений» или формуле.

**Применительно к 3-у классу условий труда приведена температура воздуха,оС.

Примечание: При увеличении скорости движения воздуха на 0,1 м/с от оптимальной (по СанПиН «Гигиенические требования к микроклимату производственных помещений») температура воздуха должна быть увеличена на 0,2 °С.

4. Режим работы нейтральной точки источника питания

Электрические сети, как известно, делятся в зависимости от класса напряжения - до и выше 1000В. Нейтраль - это общая точка обмоток у трансформаторов и генераторов, соединенных в звезду. Если же схема обмоток треугольник и необходим ноль, то можно вспомнить про схему «скользящий треугольник». Будем рассматривать только сети переменного тока.

Виды заземления нейтрали в сетях до 1кВ

В электрических сетях напряжением до 1000В принято использовать три системы заземления нейтрали - это TN, IT, TT. Каждая из букв несет определенный смысл, разберемся:

· 1-ая буква описывает способ заземления нейтрали источника питания

o T (terra) - нейтраль глухозаземленная

o I (isolate) - нейтраль изолирована (и - изолирована, легко запомнить)

· 2-ая буква показывает способ заземления открытых проводящих частей (ОПЧ) с землей

o N (neutral) - ОПЧ заземлены через глухозаземленную нейтраль источника питания

o T - ОПЧ заземлены независимо от источника питания

В свою очередь система TN делится на три подсистемы - TN-C, TN-S и TN-C-S. В рамках данной подсистемы третьи буквы (C - combine, S - separe) обозначают совмещение или разделение в одном проводе функций нулевого защитного (PE) и нулевого рабочего (N) проводника.

Рассмотрим теперь каждую систему более подробно.

Система заземления TN

В этой системе нейтраль глухозаземлена, а открытые проводящие части заземлены через эту глухозаземленную нейтраль. Глухозаземленная - это значит что нейтраль присоединена непосредственно к заземляющему устройству (болтом, сваркой) или через малое сопротивление (трансформатор тока).

В сетях до 1кВ глузозаземленная нейтраль используется для питания однофазных и трехфазных нагрузок.

Система заземления TT

Система TT предполагает, что нейтраль источника питания глухозаземлена, а ОПЧ оборудования заземлены заземляющим устройством электрически несвязанным с нейтралью источника. То есть защитный PE-проводник создается у самого потребителя, а не идет от источника питания.

Система заземления IT

В системе IT нейтраль генератора или трансформатора изолирована или заземлена через устройства, имеющие высокое сопротивление, а ОПЧ заземлены независимо. Эта система не рекомендуется для жилых зданий, используется там, где при первом замыкании на землю не требуется перерыв питания. Это могут быть электроустановки с повышенными требованиями надежности снабжения электроэнергией.

Виды заземления нейтрали в электросетях выше 1кВ

В сетях напряжением выше 1000В используется изолированная (незаземленная) нейтраль, эффективно заземленная нейтраль и резонансно-заземленная нейтраль. Глухозаземленная нейтраль используется только в сетях до 1кВ.

Сети с незаземленной (изолированной) нейтралью

Исторически первая система заземления. Нейтральная точка источника питания не присоединена к заземляющему устройству. Обмотки соединены в треугольник и выходит, что нулевая точка отсутствует. Применяется на напряжение 3-35кВ.

Сети с эффективно-заземленной нейтралью

Этот вид заземления используется в сетях напряжением выше 110кВ. Достоинство заключается в том, что при однофазных замыканиях на неповрежденных фазах напряжение относительно земли будет равно 0,8 междуфазного в нормальном режиме работы. В этой системе сам контур заземления выполняется с учетом протекания больших токов КЗ, что делает его сложным и дорогим.

Сети с нейтралью, заземленной через резистор или реактор

Применяется в сетях 3-35кВ. Используется для уменьшения величины токов КЗ. Исторически был вторым способом заземления нейтрали. Заземление через резистор используется во всем мире, через реактор - в странах бывшего союза.

Заземление через реактор - при отсутствии замыкания ток через реактор мал. Когда происходит замыкание фазы на землю, то через место повреждения течет емкостной ток КЗ и индуктивный ток реактора. Если их величина равна, то в месте замыкания отсутствует ток (явление резонанса).

Заземление через резистор бывает низкоомным и высокоомным. Разница в величине тока, создаваемым резистором при замыкании на землю. Высокоомное применяется в сетях с малыми емкостными токами, в этом случае замыкание можно не отключать немедленно. Низкоомное заземление наоборот используется при больших емкостных токах.

Выбор виды заземления нейтрали зависит от следующих факторов:

· величина емкостного тока сети

· допустимая величина однофазного замыкания

· возможности отключения однофазного замыкания

· вида и типа релейных защит

· безопасности персонала

· наличия резерва

5. Технические средства для тушения пожаров в элекроустановках

Причиной большинства пожаров на энергообъектах является нарушение технической эксплуатации, в ряде случаев пожары происходят из-за неосторожного обращения с огнём и совсем редко пожары возникают из-за попадания молнии, нарушения правил монтажа электрооборудования и по прочим причинам. Пожары на подстанциях могут возникать на трансформаторах, масляных выключателях и в кабельном хозяйстве. Крупные районные подстанции имеют специальные масляные станции, где находится большое количество трансформаторного масла. Трансформаторы и выключатели распределительных устройств устанавливают на фундаменты, под которыми располагают маслоприемники, соединенные с аварийными емкостями. Каждый трансформатор, как правило, помещают в отдельной камере, которая соединяется монтажными проемами с помещением распределительного щита и кабельными каналами.

Особенности развития пожаров трансформаторов зависит от места его возникновения. При коротком замыкании в результате воздействия электрической дуги на трансформаторное масло и разложения его на горючие газы могут происходить взрывы, которые приводят к разрушению трансформаторов и масляных выключателей и растеканию горящего масла. Пожары из камер, где установлены трансформаторы, могут распространяться в помещение распределительного щита и кабельные каналы или туннели, а также создавать угрозу соседним установкам и трансформаторам. О размерах возможного очага пожара можно судить по тому, что в каждом трансформаторе или реакторе содержится до 100 т масла. Необходимо помнить, что пожары на электростанциях и подстанциях могут приводить к остановке не только энергетического объекта, но и других народнохозяйственных объектов из-за недостатка электрической энергии. Все электростанции и подстанции снабжены надежной системой аварийной защиты и сигнализации. При возникновении пожаров поврежденное оборудование и аппараты автоматически отключаются устройствами релейной защиты.

Особенности организации и тушения пожаров, соблюдение правил охраны труда и взаимодействие с дежурным персоналом энергетических объектов определены в Боевом уставе пожарной охраны, Инструкцией по тушению пожаров на действующих электроустановках электростанций и подстанций РАО "ЕЭС России", ВНИИПО и ГУГПС МВД России. Инструкция определяет основные критерии по наиболее рациональным и безопасным действиям персонала при тушении пожаров действующих электроустановок, находящихся под напряжением до 200 кВ, на энергетических, строительных, промышленных и других объектах РАО "ЕЭС России" до прибытия пожарных подразделений МЧС России. Под действующими электроустановками следует понимать установки, находящиеся под напряжением, или на которые в любой момент может быть подано напряжение персоналом энергопредприятия или действием автоматики, блокировки, сигнализации и т. п.

Необходимость тушения пожара электроустановок, находящихся под напряжением до 0,4 кВ, определяется следующими основными требованиями:

* невозможностью снять напряжение 0,4 кВ переменного и постоянного тока с цепей вторичной коммутации из-за недопустимости потери управления оборудованием, что может привести к тяжёлым последствиям для технологии энергетического производства и режима работы энергосистемы; Успешное тушение пожаров на объектах энергетики во многом зависит от заблаговременной подготовки к тушению. Весь начальствующий состав, привлекаемый к тушению пожаров на этих объектах, должен тщательно изучить оперативно-тактические особенности и вместе с личным составом всех караулов, участвующих в тушении пожаров, не реже одного раза в год проходить специальный инструктаж под руководством инженерно-технического персонала энергообъекта по заранее разработанной программе. На тепловые, атомные, гидравлические электростанции и подстанции напряжением 500 кВ и выше независимо от мощности разрабатываются планы пожаротушения, в которых определяют действия персонала энергообъекта при возникновении пожаров и порядок взаимодействия с личным составом пожарных подразделений, а также особенности использования сил и средств подразделений с учетом техники безопасности. Планы составляют работники пожарной охраны совместно с работниками энергообъекта, рассматривают и утверждают начальник гарнизона пожарной охраны и директор энергопредприятия и изучают со всем дежурным персоналом объекта и начальствующим составом гарнизона пожарной охраны. На подстанции напряжением от 35 до 330 кВ должны составляться карточки пожаротушения. Для руководителя тушения пожара разрабатывают конкретные рекомендации по тушению пожаров на котельных установках, генераторах, трансформаторах, в кабельных помещениях и других наиболее опасных местах и включают в план тушения пожара.

Для дежурного персонала объекта разрабатывают оперативные карточки для каждого отсека кабельных помещений, генератора, трансформатора, которые утверждает главный инженер. В оперативных карточках указывают порядок вызова, встречи и обеспечения безопасной работы пожарных подразделений по тушению, операции по отключению и снятию напряжения с агрегатов и установок по включению стационарных систем тушения и другие вопросы по обеспечению тушения пожара. Особенно подробно разрабатывают порядок действий дежурного персонала энергообъекта и подразделений пожарной охраны при тушении пожаров на энергоустановках без снятия напряжения. Эти действия включают в оперативные карточки дежурному персоналу и в планы тушения пожаров. В графической части планов обязательно указывают соответствующими знаками места подключения гибких заземлителей к заземленным конструкциям, а также боевые позиции пожарных с учетом безопасных расстояний до конкретных электроустановок.

На каждом энергопредприятии хранят необходимое количество диэлектрической обуви, перчаток и заземляющих устройств. Определяют порядок их выдачи прибывающим пожарным подразделениям и оказание помощи по заземлению пожарной техники и проверки надежности заземления. Заземление ручных стволов и пожарной техники с помощью гибких медных оголенных проводов сечением не менее 25 мм2 в электроустановках напряжением выше 1000 В и не менее 16 мм2 ниже 1000 В, снабженных струбцинами для подключения к оборудованию я обозначенным местам заземления. Дежурный персонал (начальник станции, диспетчер или дежурный подстанции, предприятия энергосети) при пожаре немедленно сообщает в пожарную охрану, руководству энергообъекта и диспетчеру энергосистемы. Старший по смене определяет место пожара, возможные пути его распространения, а также угрозу электрооборудованию, установкам и конструкциям здания, находящимся в зоне пожара. Он проверяет включение автоматических установок пожаротушения, производит действия по аварийному режиму, своими силами приступает к тушению пожара, выделяет представителя для встречи пожарных подразделений и до их прибытия руководит т...


Подобные документы

  • Контроль за состоянием охраны труда на предприятии. Виды инструктажа, порядок и сроки проведения. Меры защиты от поражения электрическим током. Мероприятия по защите от шума и вибрации. Применяемые средства тушения пожаров. Чрезвычайные ситуации.

    шпаргалка [1,7 M], добавлен 08.06.2009

  • Правовые основы обеспечения охраны труда. Документы, регламентирующие безопасность дорожного движения. Государственный контроль состояния охраны труда. Инструктаж и обучение технике безопасности. Организация безопасного движения транспортных средств.

    контрольная работа [33,2 K], добавлен 07.02.2011

  • Государственный надзор и общественный контроль за охраной труда. Основные факторы производственной безопасности. Организация службы охраны труда и природы на предприятии. Обучение безопасности труда и виды инструктажа. Травматизм и методы его изучения.

    курсовая работа [46,5 K], добавлен 10.08.2011

  • Правовые основы безопасности жизнедеятельности. Принципы государственной политики в области охраны труда. Законодательные основы охраны труда, Федеральный закон. Инструкции по охране труда на предприятии. Государственный надзор и общественный контроль.

    реферат [21,6 K], добавлен 23.02.2009

  • Закон об охране труда. Нормативная и нормативно-техническая документация. Система стандартов безопасности. Организация и функции служб охраны труда на предприятии. Государственный надзор и общественный контроль за соблюдением закон об охране труда.

    реферат [26,3 K], добавлен 31.03.2008

  • Государственный надзор и общественный контроль за охраной труда. Основные факторы производственной безопасности. Организация службы охраны труда и природы на предприятии. Обучение безопасности труда и виды инструктажа. Травматизм и методы его изучения.

    курсовая работа [45,7 K], добавлен 17.03.2011

  • Обеспечение защиты работника от неблагоприятного воздействия производственной среды. Правовые, организационно-технические, санитарно-гигиенические, лечебно-профилактические мероприятия по безопасности труда. Контроль и надзор в области охраны труда.

    презентация [1,1 M], добавлен 19.11.2013

  • Законодательная и нормативная база охраны труда, принципы государственной политики. Гарантии прав на охрану труда, государственный надзор и общественный контроль. Обучение и проверка знаний, виды инструктажей, расследование и учет несчастных случаев.

    учебное пособие [240,5 K], добавлен 01.05.2010

  • Влияние условий труда на производительность. Особенности безопасных условий труда на НПРУП "Экран", административно-общественный контроль охраны труда. Мероприятия по улучшению условий труда и пути повышения работоспособности на промышленном предприятии.

    реферат [19,3 K], добавлен 12.05.2009

  • Лица, ответственные за безопасность работ по наряду, их права и обязанности, функции и значение на предприятии. Порядок тушения пожаров в электроустановках энергетических предприятий. Правовые вопросы природопользования и охраны окружающей среды.

    контрольная работа [34,5 K], добавлен 29.04.2016

  • Охрана труда и безопасность жизнедеятельности в условиях производства. Правовые, законодательные, организационные и нормативные основы охраны труда в РФ; государственный надзор и контроль за соблюдением законодательства; управление условиями труда.

    реферат [24,5 K], добавлен 29.03.2014

  • Понятие и методы управления безопасностью условий труда на предприятии. Оценка организации охраны труда на предприятии ООО "Русская пробка". Разработка мер по устранению негативных факторов, влияющих на безопасность работы на данном производстве.

    дипломная работа [210,1 K], добавлен 22.08.2015

  • Планирование работы по охране труда, финансирование мероприятий по улучшению условий труда. Характеристики, нормирование и воздействие на организм человека производственного шума. Электрозащитные средства и безопасность при обслуживании электроустановок.

    контрольная работа [30,6 K], добавлен 15.10.2010

  • Обязанности работодателя в сфере охраны. Служба охраны труда на предприятии. Общественный контроль над соблюдением законодательства об охране труда. Классификация аварий. Вредные примеси рабочей зоны воздуха. Причины и источники вибрации на предприятиях.

    контрольная работа [32,7 K], добавлен 20.01.2009

  • Рассмотрение целей, методов и правового регулирования охраны труда. Определение факторов производственной среды в рабочем процессе: технические, санитарно-гигиенические, психофизиологические, экономические. Меры профилактики травматизма на предприятии.

    контрольная работа [20,1 K], добавлен 21.01.2010

  • Система сохранения жизни и здоровья работников в процессе трудовой деятельности на предприятии. Элементы системы охраны труда. Требования к безопасности рабочих условий согласно с российским законодательством. Правила и инструкции по охране труда.

    презентация [1,8 M], добавлен 26.08.2019

  • Государственный надзор и контроль за соблюдением требований законодательных и иных нормативных актов по охране труда осуществляются федеральной инспекцией труда. Требования к охране окружающей среды для предприятий торговли и общественного питания.

    контрольная работа [3,0 M], добавлен 17.04.2008

  • Государственная политика и законодательство РФ в области охраны труда. Анализ производственного травматизма. Охрана труда женщин и молодежи. Метеорологические условия труда, молниезащита. Безопасность труда на строительных работах; радиационный контроль.

    контрольная работа [173,4 K], добавлен 03.06.2013

  • Характеристика и среда функционирования предприятия ООО "Сфера"; система охраны труда работников, их безопасность. Правовое регулирование отношений в области охраны труда между работодателями и работниками; порядок расследования несчастных случаев.

    курсовая работа [61,9 K], добавлен 26.05.2012

  • Правовая основа, надзор и контроль в сфере охраны труда, система предупреждения несчастных случаев на производстве. Особенности охраны труда некоторых категорий работников: женщин, несовершеннолетних, лиц с пониженной трудоспособностью, их возможности.

    контрольная работа [24,2 K], добавлен 09.09.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.