Генетические последствия облучения

Фоновое облучение человека. Влияние радиаций на организм человека. Генетическое последствие облучения. Генные и хромосомные мутации. Естественный, измененный и искусственный радиационный фон. Суммарная средняя мощность эффективной эквивалентной дозы.

Рубрика Безопасность жизнедеятельности и охрана труда
Вид реферат
Язык русский
Дата добавления 08.12.2021
Размер файла 60,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Профессиональное образовательное учреждение

«Уральский региональный колледж»

Реферат

по дисциплине «Безопасность жизнедеятельности»

Генетические последствия облучения

Обучающийся гр. ЮЗ - 201ПК /02

Комилова Махина Умаралиевна

Проверил

Свириденко А.Н.

Челябинск, 2022

Содержание

Введение

Глава 1. Источники облучения человека

1.1 Фоновое облучение человека

1.2 Влияние радиаций на организм человека

Глава 2. Действие радиаций на человека

2.1. Острое поражение

2.2 Рак

2.3 Генетическое последствие облучения

Глава 3. Мутации

3.1 Генные мутации

3.2 Хромосомные мутации

Заключение

Список использованных источников

Введение

Тема моего проекта «Генетические последствия облучения».

Цель моей работы была следующая: Ближе познакомиться с генетическими последствиями облучения

Задачи, которые я поставила перед собой следующие:

- Изучить влияние радиоактивного природного фона на здоровье человека

- Изучить действие радиации на человека

- Узнать о фоновой облучений человека

- Узнать какие есть мутации

Актуальность данной темы в том, что коварство многих болезней, вызываемых радиацией, состоит в длительном скрытом периоде. Лучевое поражение может развиться через несколько минут или спустя десятилетия. Иногда последствия облучения организма затрагивают его наследственный аппарат. В этом случае страдают уже последующие поколения.

Эта тема достаточно трудна для изучения, поэтому окончательные выводы о биологическом воздействии радиации пока не сделаны. Но некоторые заключения все же имеют под собой серьезную исследовательскую почву. Например, достоверно известно, что ионизирующее излучение в гораздо большей степени поражает мужские половые клетки, чем женские. Так, полученная при низком уровне радиации доза облучения в 1 Гр вызывает:

до 2000 случаев генетических мутаций и до 10000 случаев хромосомных нарушений на каждый миллион младенцев, родившихся у облученных мужчин.

до 900 мутаций и 300 хромосомных патологий у потомства облученных женщин.

При получении этих данных учитывались только тяжелые генетические последствия облучения. Ученые полагают, что число менее серьезных дефектов намного больше, а ущерб от них зачастую еще выше.

Глава 1. Источники облучения человека

Естественный, технологически измененный и искусственный радиационный фон

Земная радиация

Космическое излучение

Техногенные источники излучения

Радиация в медицине

Испытания ядерного оружия

Атомная энергетика

Профессиональное облучение

1.1 Фоновое облучение человека

облучение радиация хромосомный мутация

Фоновое облучение человека состоит из облучения естественными и искусственными источниками. Основную часть облучения население земного шара получает от естественных источников радиации. Большинство из них таковы, что избежать облучения от них совершенно невозможно. Естественный фон обуславливается внешним и внутренним облучением; внешний радиационный фон Земли складывается из излучения, обусловленного космическим излучением, и излучения от рассеянных в Земной коре, воздухе, воде, теле человека и других объектах внешней среды природных радионуклидов и внутренним - за счет воздействия на организм излучений естественных радионуклидов, находящихся в организме семейства урана и тория, поступающие в организм с воздухом, пищей и водой. Внутреннее облучение создает примерно 40% естественного фона, около 60% приходится на внешнее облучение. Человек всегда подвергался облучению указанными источниками.

Таким образом, жизнь на Земле возникла и развивалась на фоне ионизирующей радиации. Поэтому биологическое действие её не является каким-то новым раздражителем в пределах естественного радиационного фона. Основной вклад в дозу облучения вносят 40К, 238U, 232Th вместе с продуктами распада урана и тория. В среднем доза фонового (внешнего и внутреннего) облучения человека составляет 1 мЗв/год. В отдельных районах с высоким содержанием природных радионуклидов это значение может достигать 10 мЗв и более. Считают, что часть наследственных изменений и мутаций у животных и растений связана с радиационным фоном.

Доза естественного фона зависит от таких факторов, как высота над уровнем моря, количество и вид радионуклидов в горных породах и почве, количество радионуклидов, которые поступают в организм человека с воздухом, пищей и водой. Например, люди, живущие на уровне моря, получают в среднем эквивалентную дозу от космического излучения около 0,3 мЗв в год или примерно 0,03 мкЗв (микрозиверт) в 1ч. Для людей, живущих на высоте выше 2 км над уровнем моря, это значение в несколько раз больше. Заметим, что 4 км - максимальная высота, на которой еще расположены человеческие поселения на склонах Эвереста. Еще более интенсивному облучению подвергаются экипажи и пассажиры самолетов. При подъеме с 4 км до 12 км (максимальная высота полета трансконтинентальных авиалайнеров) доза комического излучения возрастает примерно в 25 раз. С дальнейшим увеличением высоты над уровнем моря доза космического излучения продолжает увеличиваться и на высоте 20 км (максимальная высота полета сверхзвуковых реактивных самолетов) достигает 13 мкЗв/ч.

Суммарная средняя мощность эффективной эквивалентной дозы для человека от естественного фона на уровне моря составляет 1 мЗв/год, а в отдельных районах доза повышенного естественного фона может превосходить среднюю в десятки раз. Изменение человеком окружающей среды и его деятельность могут увеличить дозы «нормального» облучения за счет естественных источников. Такой фактор, как проживание в доме, часто приводит к повышению облучения, вызванному накоплением газообразных радионуклидов и их продуктов распада при недостаточной скорости вентиляции. Наибольший вклад в дозу облучения в этом случае дает не имеющий вкуса и запаха тяжелый газ радон 222Rn - дочерний продукт 226Ra, который в свою очередь является членом радиоактивного ряда, образуемого продуктами распада 238U. Примерно в 20 раз меньший вклад в дозу в этом случае дает 220Rn (Tn) - член радиоактивного ряда 232Th. Ниже под радоном будем понимать оба изотопа 222Rn и 220Rn (Tn). Большая часть облучения человека происходит дочерними продуктами распада радона. Основную дозу облучения от радона и продуктов его распада человек получает, находясь в закрытом непроветриваемом помещении. В зонах с умеренным климатом концентрация радона в закрытых помещениях в среднем в 8 раз выше, чем в наружном воздухе.

1.2 Влияние радиаций на организм человека

Основную часть облучения население земного шара получает от естественных источников радиации. Большинство из них таковы, что избежать облучения от них совершенно невозможно. На протяжении всей истории существования Земли разные виды излучения падают на поверхность Земли из космоса и поступают от радиоактивных веществ, находящихся в земной коре. Человек подвергается облучению двумя способами. Радиоактивные вещества могут находиться вне организма и облучать его снаружи; в этом случае говорят о внешнем облучении. Или же они могут оказаться в воздухе, которым дышит человек, в пище или в воде и попасть внутрь организма. Такой способ облучения называют внутренним. Облучению от естественных источников радиации подвергается любой житель Земли, однако одни из них получают большие дозы, чем другие. Это зависит, в частности, от того, где они живут. Уровень радиации в некоторых местах земного шара, там, где залегают особенно радиоактивные породы, оказывается значительно выше среднего, а в других местах - соответственно ниже. Доза облучения зависит также от образа жизни людей. Применение некоторых строительных материалов, использование газа для приготовления пищи, открытых угольных жаровен, герметизация помещений и даже полеты на самолетах все это увеличивает уровень облучения за счет естественных источников радиации. Земные источники радиации в сумме ответственны за большую часть облучения, которому подвергается человек за счет естественной радиации. В среднем они обеспечивают более 5/6 эффективной годовой эквивалентной дозы, получаемой населением, в основном вследствие внутреннего облучения. Остальную часть вносят космические лучи, главным образом путем внешнего облучения. Такие излучения как ионизирующие способны вызывать все виды наследственных перемен (мутации).

Последние исследования Киевского Института нейрохирургии показали, что радиация даже в малых количествах, при дозах в десятки бэр, сильнейшим образом воздействует на нервные клетки - нейроны. Общие нарушения в организме под действием радиации приводит к изменению обмена веществ, которые влекут за собой патологические изменения головного мозга. В своем последнем докладе НКДАР ООН впервые за 20 лет опубликовал подробный обзор сведений, относящихся к острому поражению организма человека, которое происходит при больших дозах облучения. Вообще говоря, оказывает подобное действие, лишь начиная с некоторой минимальной, или «пороговой», дозы облучения. Большое количество сведений было получено при анализе результатов применения лучевой терапии для лечения рака. Многолетний опыт позволил медикам получить обширную информацию о реакции тканей человека на облучение. Эта реакция для разных органов и тканей оказалась неодинаковой, причем различие очень велики. Оказалось также, что облучение мозга ребенка при лучевой терапии может вызвать изменения в его характере, привести к потере памяти. Крайне чувствителен к действию радиации и мозг плода, особенно если мать подвергается облучению между восьмой и пятнадцатой неделями беременности. В этот период у плода формируется кора головного мозга, и существует большой риск того, что в результате облучения матери (например, рентгеновскими лучами) родится умственно отсталый ребенок.

Изучение генетических последствий облучения связано с еще большими трудностями, чем в случае рака. Во-первых, очень мало известно о том, какие повреждения возникают в генетическом аппарате человека при облучении; во-вторых, полное выявление всех наследственных дефектов происходит лишь на протяжении многих поколений; и, в-третьих, как и в случае рака, эти дефекты невозможно отличить от тех, которые возникли совсем по другим причинам. Около 10% всех живых новорожденных имеют те или иные генетические дефекты, начиная от необременительных физических недостатков типа дальтонизма и кончая такими тяжелыми состояниями, как синдром Дауна, хорея Гентингтона и различные пороки развития. Многие из эмбрионов и плодов с тяжелыми наследственными нарушениями не доживают до рождения; согласно имеющимся данным, около половины всех случаев спонтанного аборта связаны с аномалиями в генетическом материале. Но даже если дети с наследственными дефектами рождаются живыми, вероятность для них дожить до своего первого дня рождения в пять раз меньше, чем для нормальных детей. Генетические нарушения можно отнести к двум основным типам: хромосомные аберрации, включающие изменения числа или структуры хромосом, и мутации в самих генах. Генные мутации подразделяются далее на доминантные (которые проявляются сразу в первом поколении) и рецессивные (которые могут проявиться лишь в том случае, если у обоих родителей мутантным является один и тот же ген; такие мутации могут не проявиться на протяжении многих поколений или не обнаружиться вообще). Оба типа аномалий могут привести к наследственным заболеваниям в последующих поколениях, а могут и не проявиться вообще.

Глава 2. Действие радиаций на человека

Радиация по самой своей природе вредна для жизни. Малые дозы облучения могут «запустить» не до конца еще установленную цепь событий, приводящую к раку или к генетическим повреждениям. При больших дозах радиация может разрушать клетки, повреждать ткани органов и явиться причиной скорой гибели организма.

Повреждения, вызываемые большими дозами облучения, обыкновенно проявляются в течение нескольких часов или дней. Раковые заболевания, однако, проявляются спустя много лет после облучения - как правило, не ранее чем через одно - два десятилетия. А врожденные пороки развития и другие наследственные болезни, вызываемые повреждением генетического аппарата, по определению появляются лишь в следующем или последующем поколениях: это дети, внуки и более отдаленные потомки индивидуума, подвергшегося облучению.

Чтобы вызвать острое поражение организма, дозы облучения должны превышать определенный уровень, но нет никаких оснований считать, что это правило действует в случае таких последствий, как рак или повреждение генетического аппарата. По крайней мере, теоретически для этого достаточно самой малой дозы. Однако в то же самое время никакая доза облучения не приводит к этим последствиям во всех случаях. Даже при относительно больших дозах облучения далеко не все люди обречены на эти болезни: действующие в организме человека репарационные механизмы обычно ликвидируют все повреждения. Точно так же любой человек, подвергшийся действию радиации, совсем не обязательно должен заболеть раком или стать носителем наследственных болезней; однако вероятность или риск, наступления таких последствий у него больше, чем у человека, который не был облучен. И риск этот тем больше, чем больше доза облучения.

2.1 Острое поражение

Многолетний опыт позволил медикам получить обширную информацию о реакции тканей человека на облучение. Эта реакция для разных органов и тканей оказалась неодинаковой, причем различия очень велики. Величина же дозы, определяющая тяжесть поражения организма, зависит от того, получает ли ее организм сразу, или в несколько приемов. Большинство органов успевает в той или иной степени залечить радиационные повреждения и поэтому лучше переносит серию мелких доз, нежели ту же суммарную дозу облучения, полученную за один прием.

Разумеется, если доза облучения достаточно велика, облученный человек погибнет. Во всяком случае, очень большие дозы облучения порядка 100 Гр вызывает настолько серьезное поражение центральной нервной системы, что смерть, как правило, наступает в течение нескольких часов или дней. При дозах облучения от 10 до 50 Гр при облучении всего тела поражение ЦНС может оказаться не настолько серьезным, чтобы привести к летальному исходу; однако облученный человек, скорее всего, все равно умрет через одну - две недели от кровоизлияний в желудочно-кишечном тракте. При еще меньших дозах может не произойти серьезных повреждений желудочно-кишечного тракта или организм с ним справиться, и тем не менее смерть может наступить через один - два месяца с момента облучения главным образом из-за разрушения клеток красного косного мозга - главного компонента кроветворной системы организма: от дозы в 3-5 Гр при облучении всего тела умирает примерно половина всех облученных. Красный костный мозг и другие элементы кроветворной системы наиболее уязвимы при облучении и теряют способность нормально функционировать уже при дозах облучения 0,5-1 Гр.. Однократное облучение семенников при дозе всего лишь в 0,1 Гр приводит к временной стерильности мужчин, а дозы свыше двух грэев могут привести к постоянной стерильности: лишь через много лет семенники могут вновь продуцировать полноценную сперму. По-видимому, семенники являются единственным исключением из общего правила: суммарная доза облучения, полученная в несколько приемов, для них более, а не менее опасна, чем та же доза, полученная за один прием. Яичники гораздо менее чувствительны к действию радиации, по крайней мере, у взрослых женщин. Но однократная доза больше 3 Гр все, же приводит к их стерильности, хотя еще большие дозы при дробном облучении никак не сказываются на способности к деторождению.

Наиболее уязвимой для радиации частью глаза является хрусталик. Погибшие клетки становятся непрозрачными, а разрастание помутневших участков приводит сначала к катаракте, а затем и к полной слепоте. Чем больше доза, тем больше потеря зрения. Помутневшие участки могут появиться при дозах облучения 2 Гр и менее. Более тяжелая форма поражения глаза - прогрессирующая катаракта - наблюдается при дозах около 5 Гр. Показано, что даже связанное с рядом работ профессиональное облучение вредно для глаз: дозы от 0, до 2 Гр, полученные в течение 10-20 лет, приводит к увеличению плотности и помутнению хрусталика.

Дети также крайне чувствительны к действию радиации. Относительно небольшие дозы при облучении хрящевой ткани могут замедлить или вовсе остановить у них рост костей, что приводит к аномалиям развития скелета. Чем меньше возраст ребенка, тем сильнее подавляется рост костей. Суммарной дозы порядка 10 Гр, полученной в течение нескольких недель при ежедневном облучении, бывает достаточно, чтобы вызвать некоторые аномалии развития скелета. По-видимому, для такого действия радиации не существует никакого порогового эффекта. Оказалось также, что облучение мозга ребенка при лучевой терапии может вызвать изменения в его характере, привести к потере памяти, а у очень маленьких детей даже к слабоумию и идиотии. Кости и мозг взрослого человека способны выдерживать гораздо большие дозы.

Большинство тканей взрослого человека относительно малочувствительны к действию радиации. Почки выдерживают суммарную дозу около 23 Гр, полученную в течение пяти недель, без особого для себя вреда, печень - по меньшей мере, 40 Гр за месяц, мочевой пузырь - по меньшей мере, 55 Гр за 4 недели, а зрелая хрящевая ткань - до70 Гр. Легкие - чрезвычайно сложный орган - гораздо более уязвимы, а в кровеносных сосудах незначительные, но, возможно, существенные изменения могут происходить уже при относительно небольших дозах

Конечно, облучение в терапевтических дозах, как и всякое другое облучение, может вызвать заболевание раком в будущем и привести к неблагоприятным генетическим последствиям. Облучение в терапевтических дозах, однако, применяют обыкновенно для лечения рака, когда человек смертельно болен. Однако далеко не так просто оценить, насколько велик этот риск при гораздо меньших дозах облучения, которые люди получают в своей повседневной жизни на работе, и на этот счет существуют самые разные мнения среди общественности.

2.2 Рак

Рак - наиболее серьезное из всех последствий облучения человека при малых дозах, по крайней мере, непосредственно для тех людей, которые подвергались облучению. В самом деле, обширные обследования, охватившие около 100000 человек, переживших атомные бомбардировки Хиросимы и Нагасаки в 1945 году, показали, что пока рак является единственной причиной повышенной смертности в этой группе населения.

Несмотря на все эти исследования, оценка вероятности заболевания людей раком в результате облучения не вполне надежна. Имеется масса полезных сведений, полученных при экспериментах на животных, однако, несмотря на их очевидную пользу, они не могут в полной мере заменить сведений о действии радиации на человека. Для того чтобы оценка риска заболевания раком для человека была достаточно надежна, полученные в результате обследования людей сведения должны удовлетворять целому ряду условий. Должна быть известна величина поглощенной дозы. Излучение должно равномерно попадать на все тело либо, по крайней мере, на ту его часть, которая изучается в данный момент. Облученное население должно проходить обследование регулярно в течение десятилетий, чтобы успели проявиться все виды раковых заболеваний. Диагностика должна быть достаточно качественной, позволяющей выявить все случаи раковых заболеваний. Очень важно также иметь хорошую «контрольную» группу людей, сопоставимую во всех отношениях (кроме самого факта облучения) с группой лиц, за которой ведется наблюдение, чтобы выяснить частоту заболевания раком в отсутствие облучения. И обе эти копуляции должны быть достаточно многочисленны, чтобы полученные данные были статистически достоверны. Ни один из имеющихся материалов не удовлетворяет полностью всем этим требованиям. Еще более принципиальная неопределенность состоит в том, что почти все данные о частоте заболевания раком в результате облучения получены при обследовании людей, получивших относительно большие дозы облучения - 1 Гр и более. Имеется весьма не много сведений о последствиях облучения при дозах, связанных с некоторыми профессиями, и совсем отсутствуют прямые данные о действии доз облучения, получаемых населением Земли в повседневной жизни. Поэтому нет никакой альтернативы такому способу оценки риска населения при малых дозах облучения, как экстраполяция оценок риска при больших дозах (уже не вполне надежных) в область малых доз облучения.

Согласно имеющимся данным, первыми в группе раковых заболеваний, поражающих население в результате облучения, стоят лейкозы. Они вызывают гибель людей в среднем через 10 лет с момента облучения - гораздо раньше, чем другие виды раковых заболеваний.

От каждой дозы облучения в 1 Гр в среднем два человека из тысячи умрут от лейкозов. Иначе говоря, если кто-нибудь получит дозу в 1 Гр при облучении всего тела, при котором страдают клетки красного косного мозга, то существует один шанс из 500, что этот человек умрет в дальнейшем от лейкоза.

Самыми распространенными видами рака, вызванными действием радиации, оказались рак молочной железы и рак щитовидной железы. Примерно у десяти человек из тысячи облученных отмечается рак щитовидной железы, а у десяти женщин из тысячи - рак молочной железы (в расчете на каждый грэй индивидуальной поглощенной дозы). Однако обе разновидности рака в принципе излечимы, а смертность от рака щитовидной железы особенно низка.

Рак легких, напротив, - беспощадный убийца. Он тоже принадлежит к распространенным разновидностям раковых заболеваний среди облученных групп населения. Вероятность заболеть раком легких на каждую единицу дозы облучения для шахтеров урановых рудников оказалась в 4-7 раз выше, чем для людей, переживших атомную бомбардировку. Вероятность умереть от рака желудка, печени или толстой кишки составляет примерно всего лишь 1/1000 на каждый грэй индивидуальной средней дозы облучения, а риск возникновения рака костных тканей, пищевода, тонкой кишки, мочевого пузыря, поджелудочной железы и лимфатических тканей еще меньше и составляет примерно от 0,2 до 0,5 на каждую тысячу и на каждый грэй индивидуальной средней дозы облучения.

Давно высказывались предположения, что облучение, возможно, ускоряет процесс старения и таким образом уменьшает продолжительность жизни при умеренных и малых дозах, получаемых при хроническом облучении. Облученные группы людей действительно имеют меньшую продолжительность жизни, но во всех известных случаях это целиком объясняется большей частотой раковых заболеваний.

2.3 Генетическое последствие облучения

Изучение генетических последствий облучения связано с еще большими трудностями, чем в случае рака. Во-первых, мало известно о том, какие повреждения возникают в генетическом аппарате человека при облучении; во-вторых, полное выявление всех наследственных дефектов происходит лишь на протяжении многих поколений; и, в-третьих, как и в случае рака, эти дефекты невозможно отличить от тех, которые возникли по другим причинам. Крайне чувствителен к действию радиации и мозг плода, особенно если мать подвергается облучению между восьмой и пятнадцатой неделями беременности. В этот период у плода формируется кора головного мозга, и существует большой риск того, что в результате облучения матери (например, рентгеновскими лучами) родится умственно отсталый ребенок. Именно таким образом пострадали примерно 30 детей, облученных в период внутриутробного развития во время атомных бомбардировок Хиросимы и Нагасаки. Хотя индивидуальный риск при этом большой, а последствия доставляют особенно много страданий, число женщин, находящихся на этой стадии беременности, в любой момент времени составляет лишь небольшую часть всего населения. Это, однако, наиболее серьезный эффект из всех известных эффектов облучения плода человека, хотя после облучения эмбрионов животных в период их внутриутробного развития было обнаружено не мало других серьезных последствий, включая пороки развития, недоразвитость и летальный исход.

Около 10% всех живых новорожденных имеют те или иные генетические дефекты, начиная от необременительных физических недостатков типа дальтонизма и кончая такими тяжелыми состояниями, как синдром Дауна, хорея Гентингтона и различные пороки развития. Многие из эмбрионов и плодов с тяжелыми наследственными нарушениями не доживают до рождения; согласно имеющимся данным, около половины всех случаев спонтанного аборта связаны с аномалиями в генетическом материале. Но даже если дети с наследственными дефектами рождаются живыми, вероятность для них дожить до своего первого дня рождения в пять раз меньше, чем для нормальных детей.

Генетические нарушения можно отнести к двум основным типам: хромосомные аберрации, включающие изменения числа или структуры хромосом, и мутации в самих генах. Генные мутации подразделяются далее на доминантные (которые проявляются сразу в первом поколении) и рецессивные (которые могут проявиться лишь в том случае, если у обоих родителей мутантным является один и тот же ген; такие мутации могут не проявиться на протяжении многих поколений или не обнаружиться вообще). Оба типа аномалий могут привести к наследственным заболеваниям в последующих поколениях, а могут и не проявиться вообще.

Среди более чем 27000 детей, родители которых получили относительно большие дозы во время атомных бомбардировок Хиросимы и Нагасаки, были обнаружены лишь две вероятные мутации, а среди примерно такого же числа детей, родители которых получили меньшие дозы, не отмечено ни одного такого случая. Среди детей, родители которых были облучены в результате взрыва атомной бомбы, не было также обнаружено статистически достоверного прироста частоты хромосомных аномалий. И хотя в материалах некоторых обследований содержится вывод о том, что у облученных родителей больше шансов родить ребенка с синдромом Дауна, другие исследования этого не подтверждают.

Несколько настораживает сообщение о том, что у людей, получивших малые избыточные дозы облучения, действительно наблюдается повышенное содержание клеток крови с хромосомными нарушениями. Этот феномен при чрезвычайно низком уровне облучения был отмечен у жителей курортного местечка Бадгастайн в Австрии и там же среди медицинского персонала, обслуживающего радоновые источники с целебными, как полагают, свойствами. Среди персонала АЭС в ФРГ, Великобритании и США, который получает дозы, не превышающие предельно допустимого, согласно международным стандартам, уровня, также обнаружены хромосомные аномалии. Но биологическое значение таких повреждений и их влияние на здоровье человека не выяснены.

Поскольку нет никаких других сведений, приходится оценивать риск появления наследственных дефектов у человека, основываясь на результатах, полученных в многочисленных экспериментах на животных. При оценке риска появления наследственных дефектов у человека использует два подхода. При одном подходе пытаются определить непосредственный эффект данной дозы облучения, при другом стараются определить дозу, при которой удваивается частота появления потомков с той или иной разновидностью наследственных дефектов по сравнению с нормальными радиационными условиями.

Согласно оценкам, полученным при первом подходе, доза в 1 Гр, полученная при низком уровне радиации только особями мужского пола, индуцирует появление от 1000 до 2000 мутаций, приводящих к серьезным последствиям, и от 30 до 1000 хромосомных аберраций на каждый миллион живых новорожденных. Оценки, полученные для особей женского пола, гораздо менее определенны, но явно ниже; это объясняется тем, что женские половые клетки менее чувствительны к действию радиации. Согласно ориентировочным оценкам, частота мутаций составляет от 0 до 900, а частота аберраций - от 0 до 300 случаев на миллион живых новорожденных.

Согласно оценкам, полученным вторым методом, хроническое облучение при мощности дозы в 1 Гр на поколение (для человека - 30 лет) приведет к появлению около 2000 серьезных случаев генетических заболеваний на каждый миллион живых новорожденных среди детей тех, кто подвергся такому облучению. Этим методом пользуются также для оценки суммарной частоты появления серьезных наследственных дефектов в каждом поколении при условии, что тот же уровень радиации будет действовать все время.

Согласно этим оценкам, примерно 15000 живых новорожденных из каждого миллиона будут рождаться с серьезными наследственными дефектами из-за такого радиационного фона.

Еще большим недостатком оценок является тот факт, что оба метода способны регистрировать лишь серьезные генетические последствия облучения. Есть веские основания считать, что число не очень существенных дефектов значительно превышает число серьезных аномалий, так что наносимый ими ущерб в сумме может быть даже больше, чем от серьезных дефектов.

Несмотря на свою приблизительность, эти оценки все же необходимы, поскольку они представляют собой попытку принять в расчет социально значимые ценности при оценке радиационного риска. А это такие ценности, которые все в большей степени влияют на решение вопроса о том, приемлем риск в том или ином случае или нет. И это можно только приветствовать.

Глава 3. Мутации

Мутации - это внезапные скачкообразные стойкие изменения в структуре генотипа. Организмы у которых произошла мутация называются мутантами. Мутационная теория была создана Гуго де Фризом в 1901-1903 гг. На основных ее положениях строится современная генетика: мутации, дискретные изменения наследственности, в природе спонтанны, мутации передаются по наследству, встречаются достаточно редко и могут быть различных типов. В зависимости от того какой признак положен в основу, на сегодняшний день существует несколько систем классификации мутаций.

Спектр мутаций, индуцированных облучением, не отличается от спектра спонтанных мутаций.

3.1 Генные мутации

Генные (точковые) мутации затрагивают, как правило, один или несколько нуклеотидов, при этом один нуклеотид может превратиться в другой, может выпасть (делеция), продублироваться, а группа нуклеотидов может развернутся на 180 градусов. Например, широко известен ген человека, ответственный за серповидно - клеточную анемию, который может привести к летальному исходу. Соответствующий нормальный ген кодирует одну из полипептидных цепей гемоглобина. У мутантного гена нарушен всего один нуклеотид (ГАА на ГУА). В результате в цепи гемоглобина одна аминокислота заменена на другую (вместо глутамина - валин). Казалось бы, ничтожное изменение, но оно влечет за собой роковые последствия: эритроцит деформируется, приобретая серповидно - клеточную форму, и уже не способен транспортировать кислород, что и приводит к гибели организма. Генные мутации приводят к изменению аминокислотной последовательности белка. Наиболее вероятное мутация генов происходит при спаривание тесно связанных организмов, которые унаследовали мутантный ген у общего предка. По этой причине вероятность возникновения мутации повышается у детей, чьи родители являются родственниками. Генные мутации приводят к таким заболеваниям, как амавротическая идиотия, альбинизм, дальтонизм и др.

Интересно, что значимость нуклеотидных мутаций внутри кодона неравнозначна: замена первого и второго нуклеотида всегда приводит к изменению аминокислоты, третий же обычно не приводит к замене белка. К примеру, "Молчащая мутация" - изменение нуклеотидной последовательности, которая приводит к образованию схожего кодона, в результате аминокислотная последовательность белка не меняется.

3.2 Хромосомные мутации

Хромосомные мутации приводят к изменению числа, размеров и организации хромосом, поэтому их иногда называют хромосомными перестройками. Хромосомные перестройки делятся на внутри- и межхромосомные. К внутрихромосомным относятся:

Дубликация - один из участков хромосомы представлен более одного раза.

Делеция - утрачивается внутренний участок хромосомы.

Инверсия - повороты участка хромосомы на 180 градусов.

Межхромосомные перестройки (их ещё называют транслокации) делятся на:

Реципрокные - обмен участками негомологичных хромосом.

Нереципрокные - изменение положения участка хромосомы.

Дицентрические - слияние фрагментов негомологичных хромосом.

Центрические - слияние центромер негомологичных хромосом.

Хромосомные мутации проявляются у 1% новорождённых. Однако интересно, исследования показали, что нестабильность соматических клеток здоровых доноров не исключение, а норма. В связи с этим была высказана гипотеза о том, что нестабильность соматических клеток следует рассматривать не только как патологическое состояние, но и как адаптивную реакцию организма на изменённые условия внутренней среды. Хромосомные мутации могут обладать фенотипическими явлениями. Наиболее распространённый пример - синдром "Кошачьего крика" (плач ребёнка напоминает мяуканье кошки). Обычно носители такой делеции погибают в младенчестве. Хромосомные мутации часто приводят к паталогическим нарушениям в организме, но в то же время хромосомные перестройки сыграли одну из ведущих ролей в эволюции. Так, у человека 23 пары хромосом, а у обезьяны - 24. Таким образом различие составляет всего одна хромосома.

Ученые предполагают, что в процессе эволюции произошла хотя бы одна перестройка. Подтверждением этого может служить и тот факт, что 17 хромосома человека отличается от такой же хромосомы шимпанзе лишь одной перецентрической инверсией. Такие рассуждения во многом подтверждают теорию Дарвина.

Заключение

Значительную опасность для живых существ, для популяций организмов в экосистемах представляют аварии на предприятиях химической, атомной промышленности, при транспортировании опасных и вредных веществ. Совершенно недопустимо, чтобы установленные нормативами предельные концентрации вредных веществ в воздухе, воде реально превышались в сотни раз. Нужно сделать невыгодным или даже разорительным пренебрежение к охране окружающей среды. Право людей на чистый воздух, чистые реки и озера должно не только декларироваться, но и реально обеспечиваться всеми доступными для государства средствами. Важной задачей является разработка вопросов нормативного разграничения допустимых и недопустимых воздействий, оценивания стоимости экологического ущерба. Основными направлениями в ограничении вредных техногенных воздействий на биосферу являются ресурсосбережение и разработка экологически чистых или безотходных технологий. Чистоту вод можно улучшить методами биотехнологии. Радикальный путь оздоровления экологической обстановки - сокращение вредных выбросов и сбросов, увеличение безаварийности и безопасности опасных производств, переход на безотходные технологии, концентрация и надежное захоронение вредных отходов, разумное сотрудничество и международная взаимопомощь при экологических катастрофах.

Список использованных источников

1. Бондаренко, О.В. Современные дозы внутреннего облучения от цезия-137 жителей минского региона: Материалы 10-й международной научной конференции, Часть 2 / О.В. Бондаренко. - М.: Минск МГЭУ им. А. Д. Сахарова, 2010. - С. 230.

2. Головачев Г.Д. Наследственность человека, Т., "Наука", 1983 г.

3. Гуттман Б., Гриффитс Э., Сузуки Д., Куллис Т. Генетика / Бартон Гуттман, Энтони Гриффитс, Дэвид Сузуки, Тара Куллис. - Пер. с англ. О. Перфильева. - М.: ФАИР-ПРЕСС, 2004. - 448 с.

4. Дорожко С.В. «Защита населения и хозяйственных объектов в чрезвычайных ситуациях. Радиоактивная безопасность».

5. Дорожко С.В. «Защита населения и хозяйственных объектов в чрезвычайных ситуациях. Радиоактивная безопасность».

6. Шевченко В.А., Топорнина Н.А., Стволинская Н.С. Генетика человека: учеб. для студ. высш. учеб. заведений. 2-е изд., испр. и доп. / В.А. Шевченко, Н.А. Топорнина, Н.С. Стволинская - М.: Гуманит. изд. центр ВЛАДОС, 2004. - 240 с.

7. Ярмоненко С.П. Радиобиология человека и животных: учеб, пособие / С.П. Ярмоненко, А.А. Вайнсон - М.: Высш. шк., 2004. - 549 с.

Размещено на Allbest.ru

...

Подобные документы

  • Определение понятия радиации. Соматические и генетические эффекты воздействия радиации на человека. Предельно допустимые дозы общего облучения. Защита живых организмов от радиационных излучений временем, расстоянием и при помощи специальных экранов.

    презентация [131,4 K], добавлен 14.04.2014

  • Источники внешнего облучения. Воздействие ионизирующих излучений. Генетические последствия радиации. Методы и средства защиты от ионизирующих излучений. Особенности внутреннего облучения населения. Формулы эквивалентной и поглощенной доз излучения.

    презентация [981,6 K], добавлен 18.02.2015

  • Источники радиации, используемые в медицине. Современные дозы внутреннего облучения от цезия-137 жителей Минского региона. Характер радиационных изменений центральной нервной системы. Радиочувствительность и лучевые реакции отдельных органов и тканей.

    курсовая работа [511,6 K], добавлен 24.11.2015

  • Радиация: дозы, единицы измерения. Ряд особенностей, характерных для биологического действия радиоактивных излучений. Виды эффектов радиации, большие и малые дозы. Мероприятия по защита от воздействия ионизирующих излучений и внешнего облучения.

    реферат [34,3 K], добавлен 23.05.2013

  • Радиоактивность и ионизирующие излучения. Источники и пути поступления радионуклидов в организм человека. Действие ионизирующих излучений на человека. Дозы радиационного облучения. Средства защиты от радиоактивных излучений, профилактические мероприятия.

    курсовая работа [40,8 K], добавлен 14.05.2012

  • Радиоактивное излучение, его виды. Воздействие радиации на ткани живого организма. Предельно допустимые дозы облучения. Естественные источники радиации. Внутреннее облучение от радионуклидов земного происхождения. Воздействие радиации на человека.

    реферат [39,2 K], добавлен 23.09.2013

  • Эффекты воздействия радиации на человека. Радиационные последствия облучения. Общие клинические проявления лучевой болезни. Клональное злокачественное (неопластическое) заболевание кроветворной системы, причины его возникновения. Симптомы лейкимии.

    презентация [2,7 M], добавлен 17.05.2015

  • Особенности радиоактивности и ионизирующих излучений. Характеристика источников и путей поступления радионуклидов в организм человека: естественная, искусственная радиация. Реакция организма на различные дозы радиационного облучения и средства защиты.

    реферат [42,6 K], добавлен 25.02.2010

  • Природа, источники и основные виды ионизирующего излучения. Лучевая болезнь и ее периоды развития. Последствия влияния ионизирующего излучения на здоровье человека. Нормы радиационной безопасности. Предельно допустимая доза облучения для людей.

    презентация [85,5 K], добавлен 22.12.2013

  • Альфа, бета и гамма излучение. Радиочувствительность различных органов и тканей. Воздействие различных доз облучения на организм. Прямое и косвенное действие радиации. Генетические, соматические детерминированные и стохастические эффекты радиации.

    презентация [576,8 K], добавлен 02.04.2012

  • Описание и анализ норм радиационной безопасности и допустимых уровней облучения, которые, согласно рекомендациям МКРЗ, устанавливают, исходя из концепции беспорогового действия радиации. Особенности и правила функционирования санитарно-защитной зоны.

    реферат [27,4 K], добавлен 20.06.2011

  • Основные виды излучения. Соматические и стохастические эффекты, проявляющиеся через длительное время после одноразового или в результате хронического облучения. Использование обеднённого урана войсками США. Приборы для измерения радиации, защита от нее.

    реферат [48,6 K], добавлен 23.12.2014

  • Радиация и её разновидности. Ионизирующие излучения. Источники радиационной опасности. Устройство ионизирующих источников излучения, пути проникновения в организм человека. Меры ионизирующего воздействия, механизм действия. Последствия облучения.

    реферат [2,1 M], добавлен 25.10.2010

  • Взаимодействие организма человека с окружающей средой. Санитарно-технические требования к территории предприятий, к их зданиям и сооружениям. Влияние шума на организм человека. Виды радиоактивного облучения.

    контрольная работа [44,3 K], добавлен 09.06.2002

  • Влияние электромагнитного поля и излучения на живые организмы. Основные источники электрических и магнитных полей. Опасность сотовых телефонов. Меры безопасности при пользовании мобильным телефоном. Нормы допустимого облучения и защита от его воздействия.

    реферат [179,4 K], добавлен 01.11.2011

  • Ионизирующие излучения, процесс передачи их веществу; биологический эффект и критерии опасности в случае внутреннего облучения. Экспозиционная, поглощенная и эквивалентная дозы; закон ослабления интенсивности излучения. Биологическая защита реактора.

    презентация [261,0 K], добавлен 17.05.2014

  • Поглощенная мощность дозы космического излучения в воздухе на уровне моря. Внешнее облучение от радионуклидов земного происхождения. Радиация от источников, созданных человеком. Внутреннее облучение от ионизирующих излучений радиоактивных веществ.

    реферат [192,4 K], добавлен 24.09.2013

  • Оценка радиационной обстановки на территории фермы. Определение возможной дозы облучения персонала и загрязнения техники. Способы защиты работников чрезвычайной ситуации. Строительство перекрытой щели. Мероприятия по обеспечению устойчивой работы фермы.

    курсовая работа [248,9 K], добавлен 04.05.2011

  • Радиоактивное загрязнение окружающей среды. Последствия однократного общего облучения. Возникновение лучевой болезни при воздействии на организм ионизирующих излучений. Оценка серьезности происшедшего, быстрого оповещения и выбор мер безопасности.

    презентация [273,8 K], добавлен 20.01.2015

  • Распространение искусственного и естественного радиационного заражения. Заражение в результате аварий на АЭС. Инженерные мероприятия по уменьшению распространения искусственного и естественного облучения. Основные средства, применяемые для дезактивации.

    контрольная работа [33,3 K], добавлен 16.10.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.