Моделирование в логистике

Исследование объектов познания на их моделях; построение моделей существующих предметов и явлений. Сохранение знаний о структуре, законах функционирования и управления организации в формальном виде. Управление финансовыми, информационными потоками.

Рубрика Менеджмент и трудовые отношения
Вид реферат
Язык русский
Дата добавления 27.03.2016
Размер файла 24,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Моделирование в логистике

Введение

Моделирование - исследование объектов познания на их моделях; построение моделей реально существующих предметов и явлений (живых организмов, инженерных конструкций, общественных систем, различных процессов и т. п.).

Процесс моделирования включает три элемента:

- субъект (исследователь),

- объект исследования,

- модель, определяющую (отражающую) отношения познающего субъекта и познаваемого объекта.

Первый этап построения модели предполагает наличие некоторых знаний об объекте-оригинале. Познавательные возможности модели обусловливаются тем, что модель отображает (воспроизводит, имитирует) какие-либо существенные черты объекта-оригинала. Вопрос о необходимой и достаточной мере сходства оригинала и модели требует конкретного анализа. Очевидно, модель утрачивает свой смысл как в случае тождества с оригиналом (тогда она перестает быть моделью), так и в случае чрезмерного во всех существенных отношениях отличия от оригинала. Таким образом, изучение одних сторон моделируемого объекта осуществляется ценой отказа от исследования других сторон. Поэтому любая модель замещает оригинал лишь в строго ограниченном смысле. Из этого следует, что для одного объекта может быть построено несколько "специализированных" моделей, концентрирующих внимание на определенных сторонах исследуемого объекта или же характеризующих объект с разной степенью детализации.

На втором этапе модель выступает как самостоятельный объект исследования. Одной из форм такого исследования является проведение "модельных" экспериментов, при которых сознательно изменяются условия функционирования модели и систематизируются данные о ее "поведении". Конечным результатом этого этапа является множество (совокупность) знаний о модели.

На третьем этапе осуществляется перенос знаний с модели на оригинал - формирование множества знаний. Одновременно происходит переход с языка" модели на "язык" оригинала. Процесс переноса знаний проводится по определенным правилам. Знания о модели должны быть скорректированы с учетом тех свойств объекта-оригинала, которые не нашли отражения или были изменены при построении модели.

Четвертый этап - практическая проверка получаемых с помощью моделей знаний и их использование для построения обобщающей теории объекта, его преобразования или управления им.

Моделирование - циклический процесс. Это означает, что за первым четырехэтапным циклом может последовать второй, третий и т. д. При этом знания об исследуемом объекте расширяются и уточняются, а исходная модель постепенно совершенствуется. Недостатки, обнаруженные после первого цикла моделирования, обусловленные малым знанием объекта или ошибками в построении модели, можно исправить в последующих циклах.

Моделирование в логистике

Моделирование, как целенаправленное представление анализируемого реального или гипотетического бизнес-процесса, служит в управлении, прежде всего, двум целям.

Во-первых, это сохранение знаний о структуре, законах функционирования и управления организации в формальном виде (структурное моделирование).

Во-вторых, наполнение модели реальными данными и проведение компьютерной симуляции (имитации реального поведения объекта за отрезок времени) позволяет получить фактографическую основу для принятия решений.

Проведение имитационного моделирования, низвергающего постулат о "невозможности эксперимента в экономике", стало возможным благодаря развитию возможностей вычислительной техники, изучению процессов принятия решения человеком, и развитию дисциплины реинжиниринга.

Особенности моделирования в логистике определяются содержанием самой логистической концепции. Логистика предполагает системный подход к интегрированному и динамическому управлению материальными, финансовыми, информационными потоками в организации, сквозь функциональные границы подразделений. Это во многом перекликается с принципами системной динамики и понятием о бизнес-процессах. Поведение организации, в терминах системной динамики, определяется ее информационно-логической структурой как системы, представляется в терминах потоков, а не функций, рассматривается в развитии и динамике.

Бизнес-процесс может быть определен как целенаправленно преобразуемый и управляемый поток ресурсов.

Таким образом в поисках ответов на вопросы: как формируются затраты и доходы по логистической цепи, каковы ее критические параметры, факторы развития, узкие места и возможности, в чем причины возникшей проблемы, каковы будут результаты планируемых решений - менеджеру логистики помогает компьютерное моделирование бизнес-процессов.

Управление в логистике характеризуется учетом большого числа параметров, функциональных и корреляционных зависимостей, влияния стохастических факторов. Все они анализируются при построении модели, но не все включаются в нее. управление финансовый информационный

Для принятия решения, модель должна отражать сущность проблемы, давая обоснование, по словам А. Эйнштейна, "…по возможности очень простое, но не проще". Полное отражение всех реальных зависимостей в модели невозможно или экономически неоправданно.

Как сказал основатель подхода тотального качества Э. Деминг: "Все модели неправильны, но некоторые модели полезны". Полезными модели становятся тогда, когда при их построении выполняются на практике несколько методических правил.

Первое - моделирование должно быть групповой работой. Это подразумевает не только формирование рабочей группы специалистов разного профиля, но и широкое вовлечение в сбор данных, оценку, тестирование, внесение предложений по модели менеджеров разного уровня и разных подразделений компании. Так достигается и работоспособность модели, и обучение персонала.

Второе - моделирование должно тщательно документироваться. Хорошей модели не повредит немного бюрократии. Все варианты, персонализированные предложения, получаемые в результате выполнения первого правила должны быть зафиксированы.

По результатам моделирования издаются нормативные, плановые документы, должностные инструкции и т.д.

Третье - моделирование - постоянный процесс. Структурные и имитационные модели служат средством обоснования решений, разработки сценариев, обучения и коммуникации персонала. Изменение постановки задачи, влияния внешних факторов, появления новых знаний могут требовать корректировки параметров модели.

Еще одним практическим моментом является выбор моделирования бизнес-процесса в состоянии "Как есть" или "Как должно быть". Как правило, в методической поддержке коммерческих аналитических пакетов даются общие рекомендации по этому вопросу. Особенностью реинжиниринга можно считать третью, в общем-то, спорную, форму моделирования - "Как будет".

Моделирование заставляет менеджеров более точно и полно формулировать описание причин возникновения проблем, возможные результаты изменений, которые они интуитивно чувствуют. В процессе формального построения модели вскрываются внутренние противоречия и сомнения в этих представлениях у разных менеджеров. Групповое построение модели требует достижения консенсуса, а распространение модели бизнес-процесса по логистической цепи улучшает коммуникацию, понимание интересов и роли других подразделений. Таким образом, улучшается столь важное в логистике взаимодействие. Модель становится средством коллективного корпоративного психоанализа. Типология моделей в логистике производна от понятия "логистическая система", которое, как известно, в силу своей громадной концептуальной емкости и многообразия промежуточных форм существования в реальной практике окончательно не установлено. Аморфное представление о сущности и нюансах логистической деятельности не способствует созданию эффективного методологического инструментария в виде модельного ряда, учитывающего специфику и фазы существования объекта логистизации. С другой стороны, неразвитость аппарата моделирования в логистике тормозит развитие ее как науки.

Приходится заимствовать из других областей знаний (системология, исследование операций, теория управления запасами и др.) различные методы и способы моделирования, но этот путь требует глубокого критического анализа имеющегося спектра моделей, переосмысления их потенциальных возможностей и органических недостатков сточки зрения логистики. В противном случае возникают серьезные трудности, а порой и недоразумения, как при выборе способа моделирования, так и при объяснении существа моделируемых логистических процессов. Любой специалист в области моделирования без особого труда найдет во множестве представленных в литературе по логистике моделей немало фактов, когда результаты моделирования родственных объектов невозможно сопоставить между собой даже по шкале порядка: структурные модели выдаются за функциональные, статические за динамические, концептуальные за информационные и даже за аналитические и т.п.

Чтобы установить ассортиментный ряд моделей, который удовлетворял хотя бы скромным запросам исследователей и практиков в области логистики и помогал сократить время на поиск "нужных" моделей, целесообразно обратить более пристальное внимание на известные классификации в теории моделирования сложных физических, экономических и информационных систем. При таком подходе, по характеру фиксации состояния системы следует различать:

- ситуационное моделирование - это модели, применяемые для оценки динамики работы службы закупок, интенсивности и мощности каналов товародвижения в распределительной сети, состояния дел по управлению производственными и товарными запасами и т.д.;

- бехивиоральное моделирование, следует считать те модели, которые дают статистическую оценку степени устойчивости, надежности и адаптивности системы на определенном временном отрезке. К моделям подобного рода можно отнести модели, построенные на основе теории массового обслуживания, поскольку в них используются статистические распределения интервалов между различными логистическими операциями. С их помощью можно оценить уровень функциональности логистической системы по отношению к ранее достигнутому уровню или к соответствующему стандарту в виде среднего времени выполнения и задержки заказа в системе, вероятности его потери и т.п.

В зависимости от формы модельного представления объекта логистизации модельный ряд далее можно разбить на два основных вида: физическое (материальное) и абстрактное моделирование. Физические модели в общем случае разделяются на натурные и макетные. Понятно, что натурные модели способны лучше других обеспечить адекватное отражение действительности. Вместе с тем проведение натурных исследований сопряжено с громадными трудностями как организационно-экономического, так и научного плана. Обычно "на натуре" удается лишь зафиксировать существующее состояние системы без возможности вариаций внешних и внутренних факторов окружающей среды.

При использовании разных вариантов макетного моделирования, например, в форме полупроизводственных испытаний, возможности экспериментатора увеличиваются, но появляется большая вероятность искажения результатов моделирования, особенно в тех случаях, когда не удается установить критерии подобия процессов в модели (макете) и натуре.

Абстрактное моделирование остается пока наиболее приемлемым средством познания в логистике, а чаще всего и единственно возможным. По способам выражения абстрактное моделирование декомпозируется по четырем направлениям: концептуальное, математическое, имитационное и символическое моделирование.

В свою очередь концептуальные модели можно условно разграничить на вербальные модели и модели общесистемных структурных форм. В настоящее время - это наиболее распространенный тип моделей в логистике, особенно в части, именуемой теоретической. Диалектика их широкого применения в наблюдательных и описательных областях науки имеет глубокие гносеологические корни, которые, видимо, не следует нарушать, особенно там, где модели имеют трудноопределимые входы и выходы. Тем не менее, концептуальное моделирование является только средством получения начальных знаний о предмете исследования. Уровень познания наук, использующих только приемы концептуального моделирования, таков, "что они располагают большей частью морфологическими данными об изучаемых системах, иногда эти данные сводятся только к классификации. Установление устойчивых закономерностей - сравнительно редкая и большая удача".

Математические модели в высшем своем проявлении способны на многое, но дать какую-то конкретную характеристику, по которойможно было бы отнести ту или иную модель к математическому типу затруднительно. Слишком громаден диапазон математического действия: от весьма абстрактных моделей в символьных переменных до серьезной проработки вычислительных аспектов. В зависимости от степени достижения результата при описании механизма протекания исследуемых процессов за счет применения математических методов, их можно условно декомпозировать на четыре группы: аналитические (цифровые), аналоговые, кибернетические и игровые. Можно лишний раз подчеркнуть относительность такой градации. Например, если аналитические, аналоговые и кибернетические модели вполне определенно можно отнести к математическим моделям, то игровые модели способны принимать почти нулевой математический уровень в так называемых "деловых играх" и становиться почти на сто процентов аналитическими при формализации конфликтных ситуаций с применением элементов теории игр.

Но еще более сложный характер имеют имитационные модели (ИМ). И неудивительно, поскольку по названному признаку практически все классы, подклассы, виды, группы и разновидности абстрактных моделей можно считать имитацией реальной действительности. Для подтверждения правильности данного заключения можно сослаться на классическое определение сущности имитационного моделирования, которое представляется в виде "процесса формирования модели реальной системы и проведения на этой модели экспериментов в целях выявления свойств системы и определения возможных путей ее создания, совершенствования и (или) эффективного использования".

Весь вопрос заключается лишь в установлении таких правил имитации, при соблюдении которых модель не станет ложной. Среди ученых "старого" поколения бытует соответствующее мнение, согласно которому "в процессе выбора системной модели следует учитывать различную степень их изученности и по возможности избегать использования моделей, не имеющих развитого математического аппарата". Если придерживаться их мнения, то можно считать, что риск "заболеть" неадекватностью отражения реальных процессов при имитационном моделировании будет тем меньше, чем больше будет использоваться соответствующий конкретной специфике математический аппарат. На данном основании имитационные модели можно условно разделить еще на три группы: аналитические, кибернетические и информационные.

В попытке провести тонкую грань между указанными группами будем считать, что признаком аналитического имитационного моделировании являются те случаи, когда имитация структурного и функционального пространства моделируемой системы осуществляется на основе решения системы балансовых уравнений с помощью методов линейного, нелинейного, динамического, статистического и другого вида программирования.

Однако отдавать пальму первенства аналитическим, аналоговым или кибернетическим моделям при имитации реальных процессов в логистике, видимо, не стоит, поскольку многочисленные исключения подтверждают другое правило. По нему "в сложных ситуациях только отдельные слагаемые общей проблемы поддаются аналитическим оценкам как из-за отсутствия пока необходимых зависимостей, так, и это, пожалуй, главное, из-за невозможности в ряде случаев ввести шкалу измерений, "имеющую смысл". Это свойство познания действительности образует множество видов информационных моделей, которые, неся в себе все основные признаки и правила построения имитационных моделей с опорой на формальный и неформальный аппарат анализа, становятся моделями синтетического порядка, способными в конечном итоге приобрести более высокую практическую ценность по сравнению с концептуальными и аналитическими моделями.

Но даже если информационная модель удовлетворяет всем описанным выше требованиям, объем получаемых от нее сведений становится настолько обширным, что их обработка может оказаться мало эффективной. Требуется дальнейшее совершенствование программных средств путем разработки рациональных процедур формирования и использования обобщенной информации. Такие системы поиска и обработки необходимых данных уже появились и стали широко использоваться в Интернете. Одна из них, получив название "ASK JEEVES" (сервис умного поиска), быстро завоевывает мир, а ее зачинатель (Стив Берковец) стал одним из наиболее процветающих бизнесменов США.

Трудно себе представить, чтобы "сервис умного поиска" был вне рамок диалогового управления с оперативным определением функциональных и информационных связей между элементами логистической инфраструктуры. В противном случае, каким образом можно оперативно выработать и привязать оптимальные управляющие параметры к соответствующим горизонтам и фазам процесса управления? Возможность проведения итеративной диалоговой процедуры подразделяет информационные системы еще на две разновидности: диалоговые и простые, т.е. с выдачей для традиционного (без обратной связи) анализа таблиц и отношений. Здесь следует признать, что информационные модели бизнес-процесса А. Шеера, которые в последние годы все шире начинают применяться для решения логистических задач, как раз и можно отнести к диалоговым системам, имеющим элементы "ASK JEEVES".

При более близком знакомстве с подобными информационными моделями можно обнаружить, что их устройство во многом основано на использовании символических моделей, разделяющихся в свою очередь на языковые и знаковые (телеологические). В основе языковых моделей лежит строго зафиксированный определенным машинным языком (FORSIM, GPSS, SIMULA, SIMSCRIPT, BOSS, SOL, DYNAMO, MIMIC, и др.) набор однозначных понятий, а в знаковых с помощью различных знаков (кванторов, предикатов, обозначений элементов из теории множеств и т.п.) отображается набор необходимых понятий, благодаря чему в отдельных символах дается описание какого-либо реального объекта.

Можно сказать, что всевозможные реляционные языки и семантические сети, основанные на алгебре отношений в совокупности с быстро развивающимся аппаратом фреймов и слотов, расширяют возможности создания и идентификации средств представления элементов, связей и предметов логистической деятельности, что в конечном итоге способствует появлению и развитию "ASK JEEVES" в логистике.

Практически все обозначенные выше типы, группы и виды моделей можно структурировать по так называемым признакам функционального и иерархического порядков. В частности, по признаку целевого назначения модели разделяются на функциональные, структурные, организационные, управляющие, обеспечивающие, а также модели данных и модели выхода. По способам управления системой иногда в логистике используются так называемые модели "толкающего" и "тянущего" типов. Модель также может получить название от преобладающего вида моделируемого потока: товарная, финансовая, управления, ресурсов, продуктов и т.д.

Градация по степени обобщения объектов моделирования образует локальные, корпоративные, региональные, отраслевые, республиканские и другие виды моделей. Каждую из них можно декомпозировать в зависимости от специфики решаемых задач. Например, локальная операционная модель (ЛОМ) может быть предназначена для исследования проблем управления транспортом, финансами, ресурсами.

Практически все области логистической деятельности пронизывает подсистема управления запасами (УЗ). Считаясь относительно молодой отраслью исследования операций, теория управления запасами уже располагает несколькими сотнями моделей, которые детально классифицируются по нескольким десяткам признаков. Приводить их в полном объеме имеет смысл лишь при создании компьютерной базы знаний по УЗ. Здесь достаточно ограничиться укрупненной классификацией, которая различает модели по: числу номенклатур; числу складов; характеру восполнения; характеру спроса; способу рассмотрения динамики; целевой функции; стратегии восполнения; способу контроля уровня запаса; учету недостач; задержке поставок

Кроме того, в зависимости от характера изучаемых процессов все модели могут быть разделены на детерминированные и стохастические, статические и динамические, непрерывные и дискретные. Однако в указанном "чистом" виде логистические процессы, и, следовательно, модели, встречаются крайне редко, особенно в детерминированной, статической и непрерывной формах, что сопряжено, главным образом, с нестационарным и независимым характером спроса. Типология моделей в логистике производна от понятия "логистическая система", которое, как известно, в силу своей громадной концептуальной емкости и многообразия промежуточных форм существования в реальной практике окончательно не установлено. Аморфное представление о сущности и нюансах логистической деятельности не способствует созданию эффективного методологического инструментария в виде модельного ряда, учитывающего специфику и фазы существования объекта логистизации. С другой стороны, неразвитость аппарата моделирования в логистике тормозит развитие ее как науки.

Наиболее часто в логистике применяется имитационное моделирование. Имитационное моделирование - в нём закономерности, определяющие характер количественных отношений остаются непознанными, логистический процесс остаётся чёрным ящиком. Например, мы нажимает на кнопки телевизора, получая результат, не знаем, какие именно процессы происходят внутри его.

Основные процессы имитационного моделирования.

1. Конструирование модели реальной системы.

2. Постановка экспериментов на этой модели.

Цели: понять поведение логистической системы; выбрать стратегию обеспечивающую наиболее эффективное функционирование логистической системы. Как правило, имитационное моделирование осуществляется с помощью компьютеров. Основные условия, при которых рекомендуется применять имитационное моделирование.

1. Не существует законченной постановки данной задачи, либо ещё не разработаны аналитические методы решения сформулированной математической модели.

2. Аналитические модели имеются, но процедуру столь сложны и трудоёмки, что имитационное моделирование даёт более простой способ решения задач.

3. Аналитические решения существуют, но их реализация не возможна вследствие недостаточной математической подготовки персонала.

Достоинством имитационного моделирования является:

1. Этим методом можно решать более сложные задачи.

2. Данные модели позволяют достаточно просто учитывать случайные воздействия и другие факторы, которые создают трудности при аналитическом исследовании.

3. При имитационном моделировании воспроизводится процесс функционирования системы во времени.

4. Сохраняется логическая структура. Недостатки имитационного моделирования. Недостатки:

1. Исследования с помощью этого метода обходятся дорого.

2. Необходим высококвалифицированный специалист-програмист.

3. Необходимо большое количество машинного времени.

4. Модели разрабатываются для конкретных условий и не могут применяться для других похожих моделей.

5. Велика возможность ложной имитации. Это может произойти даже при незначительных изменениях в реальных условиях.

Описание имитационной модели можно завершить словами Р. Шеннона: "Разработка и применение имитационных моделей в большей степени искусство, чем наука. Следовательно, успех или неудача в большей степени зависит не от метода, а от того, как он применяется".

Заключение

Сейчас трудно указать область человеческой деятельности, где не применялось бы моделирование. Разработаны, например, модели производства автомобилей, выращивания пшеницы, функционирования отдельных органов человека, жизнедеятельности Азовского моря, последствий атомной войны.

В перспективе для каждой системы могут быть созданы свои модели, перед реализацией каждого технического или организационного проекта должно проводиться моделирование.

Список литературы

1. И. Черных. Моделирование электротехнических устройств в MATLAB, SimPowerSystems и Simulink. М.: ИД Питер, 2007.

2. С.Д. Штовба. Проектирование нечетких систем средствами MATLAB. М.: Горячая Линия - Телеком, 2007.

3. Р. Гонсалес, Р. Вудс, С. Эддинс Цифровая обработка изображений в среде MATLAB. М.: Техносфера, 2006.

4. Хайрулин С.А. Сертификация услуг товарного склада. Нормативные документы и комментарии. - М.: РИА "Стандарты и качество", 2002.

5. Миротин Л.Б., Некрасов А.Г., \"Логистика интегрированных цепочек поставок\": Учебник / Л.Б. Миротин, А.Г. Некрасов. М.: Издательство "Экзамен", 2003.

6. Миротин Л.Б. и др. \"Эффективность логистического управления\" Учебник для вузов / Под общ. ред. д. т. н., проф. Л.Б. Миротина. - М.: Издательство "Экзамен", 2004. - 448 с. (Серия "Учебник для вуза").

Размещено на Allbest.ru

...

Подобные документы

  • Сущность информационного обеспечения экономических систем. Информационные и финансовые потоки: понятие и виды. Системы управленческой информации. Специальные средства информационного обеспечения экономических систем. Управление финансовыми потоками.

    реферат [25,7 K], добавлен 04.06.2010

  • Теоретические основы управления информационными потоками в интернет-торговле. Логистические информационные потоки и их характеристики. Сущность принципа Парето. Организационно-экономическая характеристика деятельности торгового дома "Библио-Глобус".

    дипломная работа [126,2 K], добавлен 11.01.2016

  • Определение понятий, классификации и виды исследований систем управления. Совершенствование организации, ее структуры, методов и моделей управления. Развитие средств автоматизации. Моделирование ситуаций принятия решений в организационных системах.

    курсовая работа [48,0 K], добавлен 19.08.2013

  • Раскрытие содержания и изучения структуры управления как социального явления, его социальная сущность и институциональный характер. Состав философского и общенаучного уровней познания явлений управления. Социологический подход к задачам менеджмента.

    реферат [26,8 K], добавлен 28.02.2013

  • Сущность и понятия всеобщего управления качеством, интеграция задач обеспечения качества с задачами бизнеса и интересами общества. Управление материальными и информационными потоками при производстве продукции, организация службы управления персоналом.

    методичка [69,6 K], добавлен 02.02.2011

  • Основы организации финансов предприятия. Планирование финансов. Управление финансами и оценка экономической эффективности управления производством. Общие принципы управления финансами и малый бизнес как финансовая система.

    дипломная работа [705,1 K], добавлен 13.09.2006

  • Теоретические и методологические основы оперативного управления информационными потоками. Сущность коммуникационного процесса на предприятии. Характеристика службы информационного обеспечения. Правила организации, схема движения и обработки документов.

    курсовая работа [64,2 K], добавлен 25.11.2011

  • Обзор службы управления логистикой в организационной структуре предприятия. Изучение принципов и задач логистического сервиса в условиях формирования рыночных отношений в России. Анализ особенностей управления информационными потоками и распределением.

    курсовая работа [162,9 K], добавлен 13.04.2012

  • Классификация потоков в логистике и их сущность. Организация информационных потоков на предприятии, их особенности на разных должностных уровнях. Основные комплексы задач логистики. Зарубежный опыт управления информационными потоками организаций.

    реферат [28,4 K], добавлен 21.12.2012

  • Теоретические аспекты финансовых потоков предприятия: сущность, принципы и методы управления. Отечественный и зарубежный опыт управления финансовыми рисками предприятий. Анализ управления финансовыми рисками организации на примере ООО "Швейная фабрика".

    курсовая работа [83,2 K], добавлен 20.10.2010

  • Общий процесс функционирования организации, распределение функций между ее службами. Построение организационной структуры управления. Использование модели охвата контролем. Расчет оптимальной численности работников аппарата управления организацией.

    курсовая работа [664,6 K], добавлен 22.10.2011

  • Наблюдение, анализ и моделирование как средства познания и прогнозирования процессов, явлений и ситуаций. Условия и основные факторы выделения системы. Методы построения и исследования стохастических систем. Классификация и основные типы моделей.

    реферат [26,2 K], добавлен 11.06.2010

  • Сущность, принципы и задачи управления денежными потоками организации. Система показателей, их оценки. Организационно-экономическая характеристика ОАО "Газпром". Показатели формирования финансовых результатов предприятия, управление денежными потоками.

    курсовая работа [113,6 K], добавлен 17.11.2014

  • Материальные потоки в логистике. Современная рациональная организация и управление движением материальных потоков. Обеспечение ритмичной, согласованной работы всех звеньев производства, максимальной непрерывности процессов и планового руководства.

    реферат [24,4 K], добавлен 03.05.2009

  • Объекты управления в системе возвратной логистики. Необходимость управления возвратными потоками. Проблемы их эффективной организации. Экономические и внутриорганизационные причины, приводящие к возвратным товаропотокам. Формирование полной цепи поставок.

    доклад [64,6 K], добавлен 17.12.2013

  • Вид деятельности, история создания и развития ЗАО НПК "Электрические машины". Миссия и основные цели предприятия. Выбор и обоснование стратегии развития организации, построение "дерева решений". Обоснование необходимых изменений в структуре управления.

    курсовая работа [236,4 K], добавлен 24.05.2015

  • Толкающая система управления материальными потоками. Тянущая система управления материальными потоками. Логистическая концепция RP. Логистическая концепция "just-in-time". Системы KANBAN, ORT. Управление запасами на предприятии с помощью анализа XYZ.

    курсовая работа [57,9 K], добавлен 18.11.2005

  • Сущность моделирования в управленческой деятельности. Классификация моделей. Модель организации как объекта управления. Особенности моделирования процессов управления. Словесные модели. Математическое моделирование. Практическая модель управления.

    курсовая работа [58,3 K], добавлен 21.01.2008

  • Роль запасов и управления запасами для предприятий. Анализ существующих моделей, методов, концепций, информационные технологий в сфере управления запасами. Совершенствование моделей расчета в управлении поставками при расчете оптимального размера заказа.

    контрольная работа [271,5 K], добавлен 08.01.2017

  • Анализ хозяйственной деятельности и финансового состояния ОАО "Ливгидромаш". Управление материальными и информационными потоками предприятия. Построение логистических цепей и каналов сбыта. Анализ их использования на практике и пути оптимизации.

    курсовая работа [86,8 K], добавлен 12.08.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.