Методы прогнозирования. Анализ временных рядов

Характеристика основных методов прогнозирования. Методы социального, финансового, экономического прогнозирования и их особенности. Статистические и экспертные методы, анализ временных рядов. Характеристика основных структурных компонентов временного ряда.

Рубрика Менеджмент и трудовые отношения
Вид контрольная работа
Язык русский
Дата добавления 16.05.2016
Размер файла 171,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

Основные методы прогнозирования

Методы социального прогнозирования

Методы финансового прогнозирования

Методы экономического прогнозирования

Статистические методы прогнозирования

Экспертные методы прогнозирования

Анализ временных рядов

Структурные компоненты временного ряда

Основные методы прогнозирования

Прогнозирование - это предсказание будущего на основании накопленного опыта и текущих предположений относительно него.

Прогнозирование представляет собой сложный процесс, по ходу которого необходимо решать большое количество различных вопросов. Для его производства следует применять в сочетании различные методы прогнозирования, которых на сегодняшний день существует огромное множество, но на практике используются всего 15 - 20. На наиболее популярных из них мы и остановимся.

Метод экспертных оценок. Суть данного метода заключается в том, что в основе прогноза лежит мнение одного специалиста или группы специалистов, которое основано на профессиональном, практическом и научном опыте. Различают коллективные и индивидуальные экспертные оценки, часто используется при оценке персонала.

Метод экстраполяции. Основная идея экстраполяции - изучение сложившихся как в прошлом, так и настоящем стойких тенденций развития предприятия и перенос их на будущее. Различают прогнозную и формальную экстраполяцию. Формальная - основывается на предположении о том, что в будущем сохранятся прошлые и настоящие тенденции развития предприятия; при прогнозной - настоящее развитие увязывают с гипотезами о динамике предприятия с учетом того, что в будущем изменится влияние на него различных факторов. Следует знать, что методы экстраполяции лучше применять на начальной стадии прогнозирования, чтобы выявить тенденции изменения показателей.

Методы моделирования. Моделирование - это конструирование модели на основании предварительного изучения объекта и процессов, выделение его существенных признаков и характеристик. Прогнозирование с использованием моделей включает в себя ее разработку, экспериментальный анализ, сопоставление результатов предварительных прогнозных расчетов с фактическими данными состояния процесса или объекта, уточнение и корректировку модели.

Метод экономического прогнозирования (экономический анализ) заключается в том, что какой либо экономический процесс или явление, имеющие место на предприятии, расчленяются на части, после чего выявляется влияние и взаимосвязь этих частей на ход и развитие процесса, а также друг на друга. При помощи анализа можно раскрыть сущность такого процесса, а также определить закономерности его изменения в будущем, всесторонне оценить пути достижения поставленных целей. Поскольку экономический анализ - это необъемлемая часть и один из элементов логики прогнозирования, он должен осуществляться на макро-, мезо- и микроуровнях. Используется при планировании производства на предприятии. прогнозирование экономический временной экспертный

Процесс экономического анализа можно подразделить на несколько стадий:

* постановка проблемы, определение критериев оценки и целей;

* подготовка необходимой для анализа информации;

* аналитическая обработка информации после ее изучения;

* разработка рекомендаций о возможных путях достижения целей;

* оформление результатов.

Балансовый метод. Данный метод основан на разработке балансов, которые представляют собой систему показателей, где первая часть, характеризующая ресурсы по источникам их поступления, равна второй, отражающей распределение их по всем направлениям расхода.

При помощи балансового метода воплощается в жизнь принцип пропорциональности и сбалансированности, который применяется при разработке прогнозов. Его суть заключается в увязке потребностей предприятия в различных видах сырьевых, материальных, финансовых и трудовых ресурсах с возможностями производства продукта и источниками ресурсов. Таким образом, система балансов, которую используют в прогнозировании, включает: финансовые, материальные и трудовые балансы. В каждую из данных групп входит еще ряд балансов.

Нормативный метод - один из основных методов прогнозирования. В настоящее время ему стало придаваться большое значение. Его сущность заключается в технико-экономических обоснованиях прогнозов с использованием нормативов и норм. Последние применяются при расчете потребности в ресурсах, а также показателей их использования.

Программно-целевой метод (ПЦМ). В сравнении с другими методами данный метод является сравнительно новым и недостаточно разработанным. Он начал широко применяться только в последние годы. ПЦМ тесно связан с уже рассмотренными методами и предполагает разработку прогноза начиная с оценки итоговых потребностей на основании целей развития предприятия при дальнейшем определении и поиске эффективных средств и путей их достижения, а также ресурсного обеспечения.

Суть ПМЦ заключается определении основных целей развития предприятия, разработки взаимосвязанных мероприятий по их достижению в заранее определенные сроки при сбалансированном обеспечении ресурсами, а также с учетом эффективного их использования.

Кроме прогнозирования, ПМЦ применяется при создании комплексных целевых программ, которые представляют собой документ, где отражены цель и комплекс производственных, организационно-хозяйственных, социальных и других мероприятий и заданий, увязанных по исполнителям, срокам осуществления и ресурсам.

Методы социального прогнозирования

Социальное прогнозирование как исследование с широким охватом объектов анализа опирается на множество методов. При классификации методов прогнозирования выделяются основные их признаки, позволяющие их структурировать по: степени формализации; принципу действия; способу получения информации.

Степень формализации в методах прогнозирования в зависимости от объекта исследования может быть различной; способы получения прогнозной информации многозначны, к ним следует отнести: методы ассоциативного моделирования, морфологический анализ, вероятностное моделирование, анкетирование, метод интервью, методы коллективной генерации идей, методы историко-логического анализа, написания сценариев и т.д. Наиболее распространенными методами социального прогнозирования являются методы экстраполяции, моделирования и экспертизы.

Экстраполяция означает распространение выводов, касающихся одной части какого-либо явления, на другую часть, на явление в целом, на будущее. Экстраполяция основывается на гипотезе о том, что ранее выявленные закономерности будут действовать в прогнозном периоде. Например, вывод об уровне развития какой-либо социальной группы можно сделать по наблюдениям за ее отдельными представителями, а о перспективах культуры - по тенденциям прошлого.

Экстраполяционный метод отличается многообразием - насчитывает не менее пяти различных вариантов. Статистическая экстраполяция - проекция роста населения по данным прошлого - это один из важнейших методов современного социального прогнозирования.

Моделирование - это метод исследования объектов познания на их аналогах - вещественных или мысленных.

Аналогом объекта может быть, например, его макет, чертеж, схема и т.д. В социальной сфере чаще используются мысленные модели. Работа с моделями позволяет перенести экспериментирование с реального социального объекта на его мысленно сконструированный дубликат и избежать риска неудачного, тем более опасного для людей управленческого решения. Главная особенность мысленной модели и состоит в том, что она может быть подвержена каким угодно испытаниям, которые практически состоят в том, что меняются параметры ее самой и среды, в которой она (как аналог реального объекта) существует. В этом огромное достоинство модели. Она может выступить и как образец, своего рода идеальный тип, приближение к которому может быть желательно для создателей проекта.

Самый практикуемый метод прогнозирования - экспертная оценка. По мнению Е.И.Холостовой, «экспертиза есть исследование трудноформализуемой задачи, которое осуществляется путем формирования мнения (подготовки заключения) специалиста, способного восполнить недостаток или несистемность информации по исследуемому вопросу своими знаниями, интуицией, опытом решения сходных задач и опорой на «здравый смысл».

Существуют такие сферы социальной жизни, в которых невозможно использовать другие методы прогнозирования, кроме экспертных. Прежде всего, это касается тех сфер, где отсутствует необходимая и достаточная информация о прошлом.

При экспертной оценке состояния либо отдельной социальной сферы, либо ее составляющего элемента, либо ее компонентов учитывается ряд обязательных положений, методических требований.

Прежде всего - оценка исходной ситуации:

- факторы, предопределяющие неудовлетворительное состояние;

- направления, тенденции, наиболее характерные для данного состояния ситуации;

- особенности, специфика развития наиболее важных составных;

- наиболее характерные формы работы, средства, с помощью которых осуществляется деятельность.

Второй блок вопросов включает в себя анализ деятельности тех организаций и служб, которые осуществляют эту деятельность. Оценка их деятельности идет по выявлению тенденций в их развитии, их рейтинга в общественном мнении.

Экспертную оценку проводят специальные центры экспертизы, научные информационно-аналитические центры, лаборатории экспертов, экспертные группы и отдельные эксперты.

Методика экспертной работы включает в себя ряд этапов:

- определяется круг экспертов;

- выявляются проблемы;

- намечается план и время действий;

- разрабатываются критерии для экспертных оценок;

- обозначаются формы и способы, в которых будут выражены результаты экспертизы (аналитическая записка, «круглый стол», конференция, публикации, выступления экспертов).

Итак, социальное прогнозирование опирается на различные методы исследования, основными из которых являются экстраполяция, моделирование и экспертиза.

Методы финансового прогнозирования

Финансовое прогнозирование по методу бюджетирования

Процесс бюджетирования является составной частью финансового планирования - процесса определения будущих действий по формированию и использованию финансовых ресурсов.

Бюджетирование - процесс построения и исполнения бюджета предприятия на основе бюджетов отдельных подразделений.

Бюджет - детализированный план деятельности предприятия на ближайший период, который охватывает доход от продаж, производственные и финансовые расходы, движение денежных средств, формирование прибыли предприятия.

Бюджеты подразделяются на два основных вида:

- операционный бюджет, отражающий текущую (производственную) деятельность предприятия;

- финансовый бюджет, представляющий собой прогноз финансовой отчетности.

План прибылей и убытков - основной документ операционного бюджета. Содержит данные о величине и структуре выручки от продаж, себестоимости реализованной продукции и конечных финансовых результатах.

Финансовый бюджет составляется с учетом информации, содержащейся в бюджете о прибылях и убытках.

Одним из основных этапов бюджетирования является прогнозирование движения денежных средств.

Бюджет движения денежных средств - это план денежных поступлений и платежей. При расчете бюджета движения денежных средств принципиально важно определить время поступлений и платежей, а не время исполнения хозяйственных операций.

Значение общего бюджета для предприятия раскрывается через следующие его функции:

- планирование операций, обеспечивающих достижение целей предприятия;

- координация различных видов деятельности и отдельных подразделений. Согласование интересов отдельных работников и групп в целом по предприятию;

- стимулирование руководителей всех рангов на достижение целей своих центров ответственности;

- контроль текущей деятельности, обеспечение плановой дисциплины;

- основа для оценки выполнения плана центрами ответственности и их руководителей;

- средство обучения менеджеров.

В отличие от формализованных отчетах о прибылях и убытках или бухгалтерского баланса, бюджет не имеет стандартизированной формы, которая должна строго соблюдаться. Бюджет может иметь бесконечное количество видов и форм. Форма и структура бюджета зависят от многих факторов: масштаба деятельности предприятия; достаточности и доступности исходной информации; состояния нормативной базы предприятия; от квалификации и опыта разработчика.

Финансовое прогнозирование по методу « процента от продаж

Существует два основнх метода финансового прогнозирования. Один из них - метод бюджетирования - представлен в разделе 3 методических указаний. Напомним, что он основан на концепции денежных потоков и его аналогом служит расчет финансовой части бизнес-плана.

Второй метод называется метод «процента от продаж» (первая модификация) или метод «формулы» (вторая модификация). Его преимущества - простота и лаконичность. Применяется для ориентировочных расчетов потребности во внешнем финансировании.

Факторы, оказывающие влияние на величину потребности в дополнительном финансировании:

- планируемый темп роста объема реализации;

- исходный уровень использования основных средств;

- капиталоемкость (ресурсоемкость) продукции;

- рентабельность продукции;

- дивидендная политика.

Метод «процента от продаж» - метод пропорциональной зависимости показателей деятельности предприятия от объема реализации.

Все вычисления по методу «процента от продаж» (методу «формулы») делаются на основе следующих предположений:

1. Переменные затраты, текущие активы и текущие обязательства при наращивании объема продаж на определенное количество процентов увеличиваются, в среднем, на столько же процентов. Это означает, что и текущие активы, и текущие пассивы будут составлять в плановом периоде прежний процент от выручки;

2. Процент увеличения стоимости основных средств рассчитывается под заданный процент наращивания оборота в соответствие с:

а) технологическими условиями бизнеса;

б) учетом наличия недогруженных основных средств на начало периода прогнозирования;

в) в соответствие со степенью материального и морального износа наличных основных средств и т.п.;

3. Долгосрочные обязательства и акционерный капитал берутся в прогноз неизменными;

4. Нераспределенная прибыль прогнозируется с учетом нормы распределения чистой прибыли на дивиденды и чистой рентабельности реализованной продукции.

Для прогнозирования нераспределенной прибыли к нераспределенной прибыли базового периода прибавляют прогнозируемую чистую прибыль и вычитают дивиденды.

Методы экономического прогнозирования

Особое место в классификации методов экономического прогнозирования занимают так называемые комбинированные методы, которые объединяют различные другие методы. Например, коллективные экспертные оценки и методы моделирования или статистические и опрос экспертов.

В качестве информации используется фактографическая и экспертная информация.

При классификации методов прогнозирования необходимо иметь в виду, что содержательная систематизация методов прогнозирования должна определяться самим объектом прогнозирования, экономическими процессами развития и их закономерностями.

С точки зрения оценки возможных результатов и путей прогнозного научно-технического развития прогнозы можно классифицировать по трем этапам: исследовательскому, программному и организационному.

Задачей исследовательского прогноза является определение возможных результатов будущего развития и выбор из множества возможных вариантов одного или нескольких положительных результатов. Так, например, развитие средств вычислительной техники можно отразить в росте их быстродействия, увеличении объема памяти и диапазона логических возможностей.

Основная цель этого этапа состоит в раскрытии широкой гаммы принципиально возможных перспектив в виде одной или ряда научно-технических проблем, подлежащих решению в течение прогнозируемого периода.

Программный аспект прогноза заключается в определении возможных путей достижения желаемых и необходимых результатов; ожидаемого по времени реализации каждого из возможных варианта и степени достоверности в успешном достижении некоторого результата по тому или иному варианту.

Организационная сторона прогноза включает в себя комплекс организационно-технических мероприятий, обеспечивающих достижение определенного результата по тому или иному варианту. В организационном аспекте исходят из представления о наличных экономических ресурсах и накопленном научном потенциале. Здесь должна быть сформулирована обоснованная гипотеза развития комплекса организационных параметров науки, дана вероятностная оценка рекомендуемой схеме распределения ресурсов и перспективам роста научного потенциала на прогнозируемый период.

Рассмотренные этапы научно-технического развития, как правило, выступают комплексно и находятся во взаимосвязи.

Статистические методы прогнозирования

Статистические методы прогнозирования охватывают разработку, изучение и применение современных математико-статистических методов прогнозирования на основе объективных данных (в том числе непараметрических методов наименьших квадратов с оцениванием точности прогноза, адаптивных методов, методов авторегрессии и других); развитие теории и практики вероятностно-статистического моделирования экспертных методов прогнозирования, в том числе методов анализа субъективных экспертных оценок на основе статистики нечисловых данных; разработку, изучение и применение методов прогнозирования в условиях риска и комбинированных методов прогнозирования с использованием совместно экономико-математических и эконометрических (как математико-статистических, так и экспертных) моделей. Научная база статистических методов прогнозирования -- прикладная статистика и теория принятия решений. Простейшие методы восстановления используемых для прогнозирования зависимостей исходят из заданного временного ряда, то есть функции, определенной в конечном числе точек на оси времени. При этом временной ряд часто рассматривается в рамках той или иной вероятностной модели, вводятся другие факторы (независимые переменные) помимо времени, напр., объем денежной массы. Временной ряд может быть многомерным. Основные решаемые задачи -- интерполяция и экстраполяция.

Метод наименьших квадратов в простейшем случае (линейная функция от одного фактора) был разработан К. Гауссом в 1794--1795 гг. Могут оказаться полезными предварительные преобразования переменных, например, логарифмирование. Наиболее часто используется метод наименьших квадратов при нескольких факторах.

Метод наименьших модулей, сплайны и другие методы экстраполяции применяются реже, хотя их статистические свойства зачастую лучше. Накоплен опыт прогнозирования индекса инфляции и стоимости потребительской корзины. Оказалось полезным преобразование (логарифмирование) переменной -- текущего индекса инфляции. Оценивание точности прогноза (в частности, с помощью доверительных интервалов) -- необходимая часть процедуры прогнозирования. Обычно используют вероятностно-статистические модели восстановления зависимости, напр., строят наилучший прогноз по методу максимального правдоподобия. Разработаны параметрические (обычно на основе модели нормальных ошибок) и непараметрические оценки точности прогноза и доверительные границы для него (на основе Центральной Предельной Теоремы теории вероятностей). Так, предложены непараметрические методы доверительного оценивания точки наложения (встречи) двух временных рядов для оценки динамики технического уровня собственной продукции и продукции конкурентов, представленной на мировом рынке. Применяются также эвристические приемы, не основанные на вероятностно статистической теории: метод скользящих средних, метод экспоненциального сглаживания.

Многомерная регрессия, в том числе с использованием непараметрических оценок плотности распределения, -- основной на настоящий момент статистический аппарат прогнозирования. Подчеркнем, что нереалистическое предположение о нормальности погрешностей измерений и отклонений от линии (поверхности) регрессии использовать не обязательно. Однако для отказа от предположения нормальности необходимо опереться на иной математический аппарат, основанный на многомерной Центральной Предельной Теореме теории вероятностей, технологии линеаризации и наследования сходимости. Он позволяет проводить точечное и интервальное оценивание параметров, проверять значимость их отличия от ноля в непараметрической постановке, строить доверительные границы для прогноза. Весьма важна проблема проверки адекватности модели, а также проблема отбора факторов. Априорный список факторов, оказывающих влияние на отклик, обычно весьма обширен. Его желательно сократить, и отдельное направление современных исследований посвящено методам отбора «информативного множества признаков». Однако эта проблема пока еще окончательно нерешена. Проявляются необычные эффекты. Так, установлено, что обычно используемые оценки степени полинома имеют в асимптотике геометрическое распределение. Перспективны непараметрические методы оценивания плотности вероятности и их применение для восстановления регрессионной зависимости произвольного вида. Наиболее общие результаты в этой области получены с помощью подходов статистики нечисловых данных. К современным статистическим методам прогнозирования относятся также модели авторегрессии, модель Бокса Дженкинса, системы эконометрических уравнений, основанные как на параметрических, так и на непараметрических подходах. Для установления возможности применения асимптотических результатов при конечных (т.н. «малых») объемах выборок полезны компьютерные статистические технологии. Они позволяют также строить различные имитационные модели. Отметим полезность методов размножения данных (бутстрепметодов). Системы прогнозирования с интенсивным использованием компьютеров объединяют различные методы прогнозирования в рамках единого автоматизированного рабочего места прогнозиста.

Прогнозирование на основе данных, имеющих нечисловую природу, например, прогнозирование качественных признаков основано на результатах статистики нечисловых данных. Весьма перспективными для прогнозирования представляются регрессионный анализ на основе интервальных данных, включающий, в частности, определение и расчет рационального объема выборки, а также регрессионный анализ нечетких данных. Общая постановка регрессионного анализа в рамках статистики нечисловых данных и ее частные случаи -- дисперсионный анализ и дискриминантный анализ (распознавание образов с учителем), -- давая единый подход к формально различным методам, полезны при программной реализации современных статистических методах прогнозирования. Основные процедуры обработки прогностических экспертных оценок -- проверка согласованности, кластер анализ и нахождение группового мнения.

Проверка согласованности мнений экспертов, выраженных ранжировками, проводится с помощью коэффициентов ранговой корреляции Кендалла и Спирмена, коэффициента ранговой конкордации Кендалла и Смита. Используются параметрические модели парных сравнений -- Терстоуна, БредлиТерриЛьюса -- и непараметрические модели теории люсианов. Полезна процедура согласования ранжировок и классификаций путем построения согласующих бинарных отношений. При отсутствии согласованности разбиение мнений экспертов на группы сходных между собой проводят методом ближайшего соседа или другими методами кластерного анализа (автоматического построения классификаций, распознавания образов без учителя). Классификация люсианов осуществляется на основе вероятностно-статистической модели. Используют также различные методы построения итогового мнения комиссии экспертов. Своей простотой выделяются методы средних арифметических и медиан рангов. Компьютерное моделирование позволило установить ряд свойств медианы Кемени, часто рекомендуемой для использования в качестве итогового (обобщенного, среднего) мнения комиссии экспертов в случае, когда их оценки даны в виде ранжировки.

Интерпретация закона больших чисел для нечисловых данных в терминах теории экспертного опроса такова: итоговое мнение устойчиво, т.е. мало меняется при изменении состава экспертной комиссии, и при росте числа экспертов приближается к «истине». При этом предполагается, что ответы экспертов можно рассматривать как результаты измерений с ошибками, все они -- независимые одинаково распределенные случайные элементы, вероятность принятия определенного значения убывает по мере удаления от некоторого центра -- «истины», а общее количество экспертов достаточно велико. В конкретных задачах прогнозирования необходимо провести классификацию рисков, поставить задачу оценивания конкретного риска, провести структуризацию риска, в частности, построить деревья причин (в другой терминологии, деревья отказов) и деревья последствий (деревья событий).

Центральной задачей является построение групповых и обобщенных показателей, например, показателей конкурентоспособности и качества. Риски необходимо учитывать при прогнозировании экономических последствий принимаемых решений, поведения потребителей и конкурентного окружения, внешнеэкономических условий и макроэкономического развития России, экологического состояния окружающей среды, безопасности технологий, экологической опасности промышленных и иных объектов. Современные компьютерные технологии прогнозирования основаны на интерактивных Статистические методы прогнозирования и использовании баз эконометрических данных, имитационных (в том числе на основе применения метода статистических испытаний) и экономико-математических динамических моделей, сочетающих экспертные, математико-статистические и моделирующие блоки.

Экспертные методы прогнозирования

Эксперт - квалифицированный специалист, привлекаемый для формирования оценок относительно объекта прогнозирования. Экспертная группа - коллектив экспертов, сформированный по определенным правилам. Суждение эксперта или экспертной группы относительно поставленной задачи прогноза называется экспертной оценкой; в первом случае используется термин «индивидуальная экспертная (прогнозная) оценка», а во втором - «коллективная экспертная (прогнозная) оценка». Способность эксперта создавать на базе профессиональных знаний, интуиции и опыта достоверные оценки относительно объекта прогнозирования характеризует его компетентность. Последняя имеет количественную меру, называемую коэффициентом компетентности. То же справедливо и в отношении экспертной группы: компетентность экспертной группы - это ее способность создавать достоверные оценки относительно объекта прогнозирования, адекватные мнению генеральной совокупности экспертов; количественная мера компетентности экспертной группы определяется на основе обобщения коэффициентов компетентности отдельных экспертов, входящих в группу.

Экспертный метод прогнозирования - метод прогнозирования, базирующийся на экспертной информации. В теоретическом аспекте правомерность использования экспертного метода подтверждается тем, что методологически правильно полученные экспертные суждения удовлетворяют двум общепринятым в науке критериям достоверности любого нового знания: точности и воспроизводимости результата. В таблице даны наименования и краткие характеристики основных экспертных методов, используемых при разработке социально-экономических прогнозов.

Анализ временных рядов

Цели, методы и этапы анализа временных рядов

Практическое изучение временного ряда предполагает выявление свойств ряда и получение выводов о вероятностном механизме, порождающем этот ряд. Основные цели при изучении временного ряда следующие:

- описание характерных особенностей ряда в сжатой форме;

- построение модели временного ряда;

- предсказание будущих значений на основе прошлых наблюдений;

- управление процессом, порождающим временной ряд, путем выборки сигналов, предупреждающих о грядущих неблагоприятных событиях.

Достижение поставленных целей возможно далеко не всегда как из-за недостатка исходных данных (недостаточная длительность наблюдения), так из-за изменчивости со временем статистической структуры ряда.

Перечисленные цели диктуют в значительной мере, последовательность этапов анализа временных рядов:

графическое представление и описание поведения ряда;

выделение и исключение закономерных, неслучайных составляющих ряда, зависящих от времени;

исследование случайной составляющей временного ряда, оставшейся после удаления закономерной составляющей;

построение (подбор) математической модели для описания случайной составляющей и проверка ее адекватности;

прогнозирование будущих значений ряда.

При анализе временных рядов используются различные методы, наиболее распространенными из которых являются :

корреляционный анализ, используемый для выявления характерных особенностей ряда (периодичностей, тенденций и т. д.);

спектральный анализ, позволяющий находить периодические составляющие временного ряда;

методы сглаживания и фильтрации, предназначенные для преобразования временных рядов с целью удаления высокочастотных и сезонных колебаний;

модели авторегрессии и скользящего среднего для исследование случайной составляющей временного ряда ;

методы прогнозирования.

Структурные компоненты временного ряда

Как уже отмечалось, в модели временного ряда принято выделять две основные составляющие : детерминированную и случайную (рис.1). Под детерминированной составляющей временного ряда понимают числовую последовательность , элементы которой вычисляются по определенному правилу как функция времени t. Исключив детерминированную составляющую из данных, мы получим колеблющийся вокруг нуля ряд, который может в одном предельном случае представлять чисто случайные скачки, а в другом - плавное колебательное движение. В большинстве случаев будет нечто среднее: некоторая иррегулярность и определенный систематический эффект, обусловленный зависимостью последовательных членов ряда.

В свою очередь, детерминированная составляющая может содержать следующие структурные компоненты:

- тренд g, представляющий собой плавное изменение процесса во времени и обусловленный действием долговременных факторов. В качестве примера таких факторов в экономике можно назвать : а) изменение демографических характеристик популяции (численности, возрастной структуры); б) технологическое и экономическое развитие; в) рост потребления.

- сезонный эффект s, связанный с наличием факторов, действующих циклически с заранее известной периодичностью. Ряд в этом случае имеет иерархическую шкалу времени (например, внутри года есть сезоны, связанные с временами года, кварталы, месяцы) и в одноименных точках ряда имеют место сходные эффекты.

(рис. 1)

Размещено на Allbest.ru

...

Подобные документы

  • Сущность экономического прогнозирования, характеристика основных форм предвидения. Предвидение внутренних и внешних условий деятельности. Виды прогнозов и технология прогнозирования. Методы прогнозирования: экспертные, статистические, комбинированные.

    курсовая работа [479,1 K], добавлен 22.12.2009

  • Изучение методов прогнозирования развития: экстраполяции, балансового, нормативного и программно-целевого метода. Исследование организации работы эксперта, формирования анкет и таблиц экспертных оценок. Анализ математико-статистические моделей прогноза.

    контрольная работа [70,7 K], добавлен 19.06.2011

  • Понятие, функции и методы прогнозирования – научно-обоснованного суждения о возможных состояниях объекта в будущем, об альтернативных путях и сроках их достижения. Классификация методов прогнозирования: социосинергетика, "коллективная генерация идей".

    курсовая работа [51,1 K], добавлен 10.03.2011

  • Сущность основных понятий в области прогнозирования. Признаки классификации, виды прогнозов и их характеристика. Экстраполятивный и альтернативный подходы. Статистический и экспертный методы, их разновидности. Содержание и этапы разработки плана сбыта.

    реферат [463,4 K], добавлен 25.01.2010

  • Сущность и структура системы социально-экономического прогнозирования, виды прогнозов и возможности их применения для предприятия. Мероприятия по планированию деятельности предприятия, их уровни и назначение. Экспертные методы, пути прогнозирования.

    реферат [26,5 K], добавлен 27.06.2010

  • Суть форсайта как метода долгосрочного прогнозирования. Методы прогнозирования, применяемые в форсайтах. Критические технологии, экспертные панели. Особенности корпоративного форсайта. Применение метода корпоративных технологических "дорожных карт".

    курсовая работа [64,5 K], добавлен 26.11.2014

  • Знакомство с основными проблемами прогнозирования, способы решения. Сглаживающие модели прогнозирования. Анализ подходов искусственного интеллекта: биологическая аналогия, архитектура сети, гибридные методы. Работа программы по прогнозу нейронных сетей.

    дипломная работа [1,1 M], добавлен 27.06.2012

  • Методы прогнозирования, используемые в инновационном менеджменте. Шкалы и методы измерений в экспертном оценивании. Организация и проведение экспертизы. Получение обобщенной оценки на основе индивидуальных оценок экспертов, согласованность мнений.

    курсовая работа [115,8 K], добавлен 07.05.2013

  • Понятие и содержание процесса прогнозирования трудовых ресурсов на современном предприятии, его значение в деятельности и используемые методики. Практический пример прогнозирования, его главные этапы и специфика, инструментарий и выполняемые функции.

    курсовая работа [116,9 K], добавлен 24.12.2011

  • Понятия прогнозирования и планирования. Почему прогнозировать сложно. Различные виды неопределенностей. Критерии классификации планирования. Основные техники и виды планирования. Основные методы прогнозирования. Планирование как управленческое решение.

    презентация [672,9 K], добавлен 01.09.2016

  • Сущность и роль прогнозирования производственно-хозяйственной деятельности предприятия в системе планирования. Анализ практического использования на предприятии качественных методов прогнозирования в принятии управленческих решений, оценка эффективности.

    дипломная работа [764,5 K], добавлен 26.12.2010

  • Стадии и процедура банкротства, финансовое оздоровление и конкурсное производство. Качественные и количественные методы прогнозирования, пятифакторная модель Альтмана. Антикризисное управление на предприятии: анализ, планирование, организация и контроль.

    курсовая работа [57,8 K], добавлен 06.03.2011

  • Цели и задачи прогнозирования объемов сбыта, его роль в составлении финансового плана и бюджета компании. Данные, используемые для прогнозирования, выбор периода агрегации данных. Исследование различных методов прогнозирования и их экономический смысл.

    реферат [23,3 K], добавлен 18.12.2010

  • Теоретические основы прогнозирования и его основные методы, этапы и типы прогнозов. Методы прогнозирования деловой среды. Анализ практического использования метода "дерева" решений в принятии управленческих решений на примере компании "Чита-Спецстрой".

    курсовая работа [318,7 K], добавлен 05.05.2011

  • Фактографические методы прогнозирования. Виды опросов: о намерениях фирм-покупателей инвестиционных товаров и планах будущих вложений со стороны производителей. Практическое использование методов экспертных оценок. Способ построения прогнозного сценария.

    курсовая работа [145,0 K], добавлен 28.01.2014

  • Понятие качества и основные критерии, оценивающие его, методы прогнозирования параметров в условиях предприятия. Анализ деятельности ОАО "Нижнекамский хлебокомбинат" и политики в области качества, рекомендации по совершенствованию процесса управления.

    дипломная работа [296,1 K], добавлен 14.04.2014

  • Эволюция, понятие и сущность прогнозирования и планирования деятельности предприятия. Структура экономического предвидения. Отличительные черты метода сценариев, а также технологического, экспертного, изыскательского, нормативного метода прогнозирования.

    реферат [89,3 K], добавлен 15.04.2011

  • Наиболее популярные методы прогнозирования в логистике. Прогноз текущего расхода деталей на складе. Определение рейтинга поставщика методом экспертных оценок. Задача выбора поставщика с учетом динамики показателей его работы. Динамика задержек поставок.

    курсовая работа [376,0 K], добавлен 17.12.2013

  • Понятие и сущность прогнозирования, основные формы и методы реализации данного процесса в современных организациях. Выбор прогнозирования производства конкурентоспособной продукции. Исследование и оценка эффективности прогнозов и пути ее повышения.

    курсовая работа [70,0 K], добавлен 25.08.2013

  • Методы прогнозирования при разработке управленческих решений. Роль прогнозирования в региональных социально-экономических управленческих процессах. Пути совершенствования планово-прогностической деятельности в управлении устойчивым развитием региона.

    курсовая работа [112,8 K], добавлен 10.04.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.