Повышение качества моделей "Knowledge management" путем разделения классов на типичную и нетипичную части
Анализ подхода к повышению адекватности семантических информационных моделей управления знаниями после прохождения моделируемым объектом точки бифуркации (смене периода эргодичности), Реализация в универсальной когнитивной аналитической системы "Эйдос".
Рубрика | Менеджмент и трудовые отношения |
Вид | статья |
Язык | русский |
Дата добавления | 26.04.2017 |
Размер файла | 263,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Кубанский государственный аграрный университет
Повышение качества моделей "Knowledge management" путем разделения классов на типичную и нетипичную части
Луценко Евгений Вениаминович
д. э. н., к. т. н., профессор
Лебедев Евгений Александрович
аспирант
Лаптев Владимир Николаевич
к. т. н., доцент
Краснодар, Россия
В статье рассмотрен подход к повышению адекватности семантических информационных моделей управления знаниями после прохождения моделируемым объектом точки бифуркации (смене периода эргодичности), реализованный в универсальной когнитивной аналитической системы "Эйдос"
Ключевые слова: СИСТЕМНЫЙ ПОДХОД, СИСТЕМНО-КОГНИТИВНЫЙ АНАЛИЗ, АГРОПРОМЫШЛЕННЫЙ ХОЛДИНГ, УПРАВЛЕНИЕ, ПРОГНОЗИРОВАНИЕ, СЕМАНТИЧЕСКАЯ ИНФОРМАЦИОННАЯ МОДЕЛЬ, МЕНЕДЖМЕНТ ЗНАНИЙ
Актуальность. В соответствии с концепцией автоматизированного системно-когнитивного анализа (АСК-анализа) [1] развитие открытых систем (ОС) осуществляется путем чередования детерминистских (устойчивых) и бифуркационных (неустойчивых) их состояний. В бифуркационных состояниях (бифуркация от лат. bi - двойной и furca - развилка, т.е. означает развилку или раздвоение надвое) закономерности развития ОС изменяются качественно, т.е. система переходит в новый период эргодичности. В точках бифуркации определяются или формируются новые закономерности, определяющие поведение ОС в следующем детерминистском периоде, на котором эти закономерности изменяются лишь количественно. По сути, в каждой точке бифуркации (неустойчивого, неравновесного состояния ОС) формируется новый тип ее поведения, который реализуются в следующем за этой точкой детерминистской (устойчивой, упорядоченной) ветвью жизненного цикла системы (ЖЦС). Поведение - целостный, определенным образом организованный процесс, направленный не только на уравновешивание ОС с внешней средой (ее функционирование), с которой она обменивается энергией, веществом и информацией, но и на адаптацию (ее развитие через приспособление) к изменениям окружающего мира. Приспособительный характер поведения ОС связан, как с изменением ее внутренних процессов (наличием устойчивых и неустойчивых ее состояний), так и с постоянным изменением внешней среды. Адаптация как закон определяют развитие ОС в бифуркационных (неравновесных) и функционирование в детерминистских (равновесных) состояниях. Другими словами мы имеем ситуацию, когда неравновесность (в точках бифуркации) служит источником упорядоченности (для детерминистских периодов). При этом неравновесность играет роль некоторого возмущения (флуктуации), временно препятствующего возникновению структуры ОС, отождествляемой с упорядоченностью в ее равновесном состоянии. Особенности разных флуктуации способствуют возникновению процесса самоорганизации в неравновесных системах, т.к. в этом случае возникают те или иные неустойчивости, которые через механизм обратных связей ОС вызывающие усиление некоторых из возмущений. Это приводят к эволюции ОС (возникновению и совершенствованию структурной упорядоченности) путем их развитии от диссипативных структур к упорядоченности через флуктуации [2, 3].
Управление ОС, т.е. своевременный перевод в нужное для ее выживания состояние, основано на правильном выборе и эффективном использовании при принятии решений моделей этих состояний. Выбор конкретной модели связан с правильной идентификацией текущего состояния (путем сравнения модели этого состояния /типичного или нетипичного/ с устойчивыми /типичными/ моделями-эталонами, хранящихся в памяти ОС). Эффективность ее реализации прямо связана с четкой совместной работой функциональных элементов (ФЭ), которые задействованы в организационной структуре исполнительных органов, адекватной выбранной модели. Критерием эффективной работы такой оргструктуры является достижение ею требуемого конечного результата - "эффекта системы", обеспечивающего выживание ОС в текущей ситуации. Следовательно, без гармоничного взаимодействия механизма моделирования (построения и совершенствования моделей состояний ОС) и механизма четкой реализации его результатов (конкретных типичных моделей-эталонов), ни о каком устойчивом управлении функционированием и развитием ОС говорить нельзя. На детерминистской (устойчивой, типичной) ветви ЖЦС закон функционирования ОС не изменяется и лицо принимающее решение (ЛПР) вправе использовать модель-эталон и соответствующую ей оргструктуру установленные и опробованные на этапе проектирования и проверки системы управления. Чаще всего так и делается в системах автоматического управления (САУ), где техническая система качественно не изменяется в течение всего ЖЦС.
Однако, для реальных социально-экономических организаций - типичных ОС - имеет место постоянное изменение режимов их функционирования и развития. Эволюция ОС связана с адаптацией их поведения к изменениям внешней среды, а также с ее растущими потребностями. При этом модели состояния ОС теряют свою адекватность (становятся нетипичными) при прохождении точек бифуркации. Это приводит к потере адекватности управленческих решений, до тех пор, пока для нетипичной (неустойчивой) модели в точке бифуркации не будет создана соответствующая оргструктура исполнительных органов ОС, превращающая ее в очередную типичную модель-эталон. Очевидно, что для выживания ОС в течение всего ЖЦС в точках бифуркаций необходимо, на базе имеющихся в памяти моделей-эталонов, конструирование (синтез) новых и при необходимости модернизация старых моделей-эталонов, обеспечивающих совпадение одной из них с моделью текущего состояния ОС в очередной точке бифуркации.
На базе этой новой или модернизированной модели-эталона (сконструированной с учетом уже успешно "работающих" моделей) необходимо:
информационная модель управление знание
а) выявить и отладить конкретную оргструктуру исполнительных органов, обеспечивающую требуемый "эффект системы" при ее реализации и
б) добиться гармоничной работы механизмов идентификации и реализации этой модели на уровне автоматизма, обеспечивающего должную конкурентоспособность ОС на рынке труда и услуг.
Заметим, что под знаниями мы понимаем систему моделей-эталонов, наделенных человеком конкретным содержанием (смыслом) и успешно "работающих" в различных предметных областях. Они ценны тем, что на их базе в каждой предметной области требуется установить только соответствующие им оргструктуры, состоящие из функциональных элементов успешно работающих в этих сферах человеческой деятельности.
Только после этого новая (модернизированная) модель-эталон как ступенька познания становится типовой и в дальнейшем используется ЛПР стандартным образом, т.е. как обычно при принятии им управленческих решений на детерминистской ветви ЖЦС [3-5].
Для реализации описанной процедуры управления развитием ОС в цикл управления ими необходимо обязательно включать этапы:
конструирования новых и/или модернизации старых моделей-эталонов (ступенек познания);
формального поиска оргструктуры, соответствующей конкретной новой (модернизированной) модели-эталону и
отладки взаимодействия новой (модернизированной) модели /ступеньки познания/ и адекватной ей оргструктуры исполнительных органов ОС /механизма практической реализации знания в конкретной предметной области/.
Не трудно заметить, что эти этапы, связанны с познанием особенностей эволюции конкретной ОС и управления этим процессом с применением систем искусственного интеллекта.
В АСК-анализе для управления процессом развития знаний или управления моделированием эволюции ОС конкретного типа, применяются так называемые семантические /смысловые, содержательные/ информационные модели (СИМ). В них в качестве термина, описывающего содержательные типовые модели-состояния и/или нетиповые /типовые/ модели текущего состояния ОС, используется понятие классы. Именно они используются для выявления "работающих" моделей-эталонов, т.е. знаний. В качестве исходных функциональных элементов, из которых конструируются СИМ, используются факторы (характеристики СИМ) и их значения. В силу того, что факторы и их значения описываются числами, они трактуются как параметры, т.е. числовые показатели, принимающие конкретные значения из строго определенных для них числовых интервалов [1, 6]. В системе "Эйдос" - программном инструментарии АСК-анализа - классы (состояния ОС) и параметры кодируются цифрами и, следовательно, могут быть представлены, как числовыми, так и интервальными или текстовыми (лингвистическими) переменными [4, 5].
Классы - это состояния ОС. Эти состояния описываются одними и теми числом параметров, но различными конкретными наборами значений каждого из них. Следовательно, их можно интерпретировать в качестве различных классов, ибо их содержание отличается качественно, не смотря на одинаковое количество описывающих их параметров. Необходимо особо подчеркнуть, что, вообще говоря, в точке бифуркации конструкции (профили) из одних и тех же параметров, отражающие разные состояния ОС различны. При этом текущее состояния ОС изменяется, но при этом содержит в себе состояния, описываемые с некоторой погрешностью уже ранее "работающими" типовыми моделями-эталонами. И эти состояния знакомыми ЛПР. Таким образом, после прохождения очередной точки бифуркации, могут возникать ситуации, в которых модель текущего состояния ОС может незначительно или существенно отличаться от уже успешно используемых ЛПР моделей-эталонов. В такой ситуации неразличимы системы детерминации одних и тех же классов - состояний объекта управления [5]. Это приводит к повышению вариабельности объектов внутри классов по признакам, "размыванию" классов, появлению "нетипичных", плохо идентифицируемых объектов и понижению адекватности модели и вырабатываемых на ее основе прогнозов и управленческих решений.
Другими словами в соответствии с теоретической концепцией Системно-когнитивного анализа (СК-анализ) [1] развитие систем осуществляется путем чередования детерминистских и бифуркационных периодов (состояний). В бифуркационном состоянии закономерности развития системы изменяются качественно, т.е. по сути, определяются или формируются новые закономерности, определяющие поведение системы в следующем детерминистском периоде, на котором эти закономерности изменяются лишь количественно. По сути, в точке бифуркации принимаются решения, которые исполняются или реализуются в следующем за этой точкой детерминистском периоде, т.е. как закон определяют развитие системы в этом периоде. Таким образом, детерминистские периоды представляют собой периоды эргодичности, когда закон развития системы не изменяется, а состояния бифуркации - точки нарушения эргодичности, т.е. смены одного периода эргодичности другим, изменения самого закона развития системы.
Управление системами основано на использовании их моделей для принятия управленческих решений, направленных на сохранение состояния системы, на достижение целевого состояния системы, или на изменение этого состояния по заранее заданному закону. Если закон развития системы не изменяется, то для управления ей может быть использована модель, созданная на этапе проектирования и создания системы управления. Чаше всего так и делается в технических автоматизированных и автоматических системах управления, в которых объект управления не изменяется качественно в процессе управления.
Однако когда объект управления изменяется качественно в процессе управления или является активным [1, 4] (люди и организации), такой подход, как правило, неприемлем, т.к. модель теряет адекватность при переходе объекта управления через точку бифуркации, что приводит к потере адекватности управленческих решений. Поэтому для сохранения адекватности модели объекта управления необходима ее периодическая адаптация или даже пересинтез непосредственно в самом цикле управления [1, 4, 5]. С этой целью в цикл управления в автоматизированных системах управления активными объектами включаются этапы когнитивной структуризации и формализации предметной области, адаптации и пересинтеза модели, т.е. этапы, связанные с познанием объекта управления с применением систем искусственного интеллекта.
В семантических информационных моделях СК-анализа для управления знаниями (выявления знаний из эмпирических данных и их использования для прогнозирования и поддержки принятия решений) применяется подход, основанный на представлении целевых и нежелательных состояний объекта управления в виде классов, а системы детерминации этих состояний - в виде факторов и их значений [1, 4]. При этом в инструментарии СК-анализа - системе "Эйдос", как классы, так и значения факторов могут быть представлены как числовыми, так и интервальными или текстовыми (лингвистическими) переменными [1, 4].
Итак, классы - это состояния объекта управления, детерминируемые различными системами факторов. Необходимо особо подчеркнуть, что, вообще говоря, в точке бифуркации системы детерминации всех классов изменяются. При этом часто встречается ситуация, когда после точки бифуркации сам набор классов изменяется, однако в нем могут оставаться и некоторые классы из предыдущей модели, но с другой или изменившейся системой детерминации. Таким образом, после прохождения объектом управления точки бифуркации могут возникать различные системы детерминации одних и тех же классов - состояний объекта управления [4]. Это приводит к повышению вариабельности объектов внутри классов по признакам, "размыванию" классов, появлению "нетипичных", плохо идентифицируемых объектов и понижению адекватности модели и вырабатываемых на ее основе прогнозов и управленческих решений.
Формулировка проблемы
Если объекты, относящиеся к конкретному типичному классу, обладают незначительной вариабельностью по признакам, то обобщенный образ класса получается четким и хорошо идентифицируемым. Если же эта вариабельность объекта высока, то класс получается аморфным, расплывчатым и плохо идентифицируемым. В этом случае объекты, в действительности, принадлежащие к данному классу, иногда не относятся системой к нему, т.е. рассматриваются как нетипичные. Это приводит к понижению адекватности обобщенной модели и вырабатываемых на ее основе прогнозов и управленческих решений.
Решение проблемы в системе "Эйдос".
В универсальной когнитивной аналитической системе "Эйдос" [3-5, 12] (в режиме _34 [12]) реализован эффективный итерационный алгоритм, в котором на основе текущих нетипичных состояний ОС создаются новые типичные модели-состояния с тем же названием, что и исходный, но с указанием номера итерации, на которой они получены автоматически. В результате работы указанного режима работы системы "Эйдос" классы (состояния ОС) с высокой внутренней вариабельностью входящих в нетипичное состояние разбиваются на подклассы с низкой внутренней вариабельностью. Вследствие этого достоверность модели-эталона быстро возрастает, причем особенно резко по ранее плохо идентифицируемым состояния (классам).
Алгоритм разделения классов (состояний ОС) на типичную и нетипичную части
Шаг 1-й. Скопировать текущую директорию с системой в новую директорию с именем: ITER_##, где: ## - номер итерации, сделать эту директорию текущей и дальнейшие шаги выполнять в ней.
Шаг 2-й. Начало цикла по состояниям ОС в обучающей выборке.
Шаг 3-й. Сформировать массив кодов состояний ОС (ее классов), к которым относится текущее состояние ОС, а также массив кодов его признаков (для распознавания).
Шаг 4-й. Провести распознавание текущего состояния ОС только по тем классам, к которым оно в действительности относится.
Шаг 5-й. Если при распознавании текущего состояния ОС оно не было отнесено СИМ к некоторым из моделям-эталонам, к которым оно в действительности относится, то разделить эти модели-эталоны (классы) на типичную и нетипичную части. Соответственно, перекодировать и текущее состояние ОС обучающей выборки данной модели-эталона, но только в том случае, если этот класс еще не был разделен на данной итерации, а если был - то просто перекодировать текущее состояние ОС, отнеся ее к этому классу (т.е. каждую модель-эталон разделять не более 1-го раза за проход всех моделей-эталонов).
Шаг 6-й. Конец цикла по состояниям ОС обучающей выборки. Если не сработал критерий остановки, то переход на шаг 1, иначе - на 7. Критерии остановки: достоверность СИМ не изменилась; достоверность модели достигла 100%; выполнено заданное количество итераций.
Шаг 7-й. Выход из цикла итераций и рисование NCD-дерева разделения классов.
Некоторые примеры
В работах [8-10] описаны результаты применения рассмотренного алгоритма для повышения адекватности СИМ в различных предметных областях: социологии; психологии; экономике; геофизике и климатологии.
Эти примеры из разных предметных областей подтвердили высокую эффективность алгоритма разделения состояний ОС (классов) на типичную и нетипичную части. Тем самым подтверждена эффективность описанного выше метода повышения адекватности СИМ при управлении развитием знаний.
Пример бинарного дерева классов (NCD-дерева), обеспечивающего разделение состояний ОС (классов) для случайной СИМ приведен на рисунке 1.
Обращает на себя внимание такая особенность данного метода, как очень быстрое повышение адекватности СИМ буквально уже на первых итерациях. Из приведенного NCD-дерева видно также, что различные классы претерпевают разное количество разделений: классы с низкой вариабельностью входящих в них состояний ОС по признакам разделяются значительно меньшее количество раз, чем классы с высокой внутренней вариабельностью.
Рисунок 1 - NCD-дерево разделения классов для случайной семантической информационной модели
Жизненный цикл приложения управления развитием знаний
Следуя работе [7] приведем этапы жизненного цикла применения автоматизированных технологий развития знаний в управлении:
Этап 1-й: разработка интеллектуальной оболочки:
технико-экономическое обоснование (ТЭО) экономической (или иной) целесообразности разработки;
разработка технического задания (ТЗ) на разработку: функциональное определение требований к интеллектуальной оболочке;
разработка технического проекта (ТП): логическое проектирование, т.е. разработка математической модели и реализующие ее методики численных расчетов (структур данных и алгоритмов);
разработка рабочего проекта (РП): разработка и отладка программного обеспечения интеллектуальной оболочки.
Этап 2-й: накопление эмпирических данных в базах данных (мониторинг).
Этап 3-й: осмысление данных, генерация информации и наполнение информационных баз: анализ данных и выявление событий в данных, выявление причинно-следственных связей между событиями.
Рисунок 2 - Иерархическая структура обработки информации
Этап 4-й: оценка полезности информации, выявление знаний и наполнение баз знаний: определение степени полезности знаний для достижения целей, т.е. синтез когнитивной модели (модели знаний) (рисунок 2):
Этап 5-й: экспериментальная эксплуатация интеллектуального приложения путем решения задач прогнозирования и принятия решений, но без реального применения их результатов на практике (до тех пор, пока руководство не убедится в эффективности интеллектуального приложения и не примет решение о передаче его в реальную эксплуатацию).
Этап 6-й: реальная (промышленная) эксплуатация интеллектуального приложения путем решения задач прогнозирования и принятия решений.
Этап 7-й: адаптация (количественное изменение) когнитивной модели с использованием новых данных, информации и знаний, полученных в ходе эксплуатации на 6-м этапе.
Этап 8-й: пересинтез (качественное изменение) когнитивной модели с использованием новых данных, информации и знаний, полученных в ходе эксплуатации на 5-м этапе.
Этап 9-й: количественная модификация и доработка интеллектуальной оболочки в том же инструментарии, в котором она была первоначально разработана на 1-м этапе.
Этап 10-й: качественно новая постановка и разработка новой интеллектуальной оболочки в новом инструментарии.
Кратко поясним содержание 7-го и 8-го этапов (рисунок 2).
1. Состояние объекта управления входит в обучающую выборку и достоверно идентифицируется (внутренняя валидность, в адаптации нет необходимости).
2. Состояние объекта управления не входит в обучающую выборку, но входит в исходную генеральную совокупность, по отношению к которой эта выборка репрезентативна, и достоверно идентифицируется (внешняя валидность, добавление объекта к обучающей выборке и адаптация модели приводит к количественному уточнению смысла признаков и образов классов).
Рисунок 3 - Смысл адаптации и пересинтеза когнитивной модели
3. Состояние объекта управления не входит в исходную генеральную совокупность и идентифицируется недостоверно (внешняя валидность, добавление объекта к обучающей выборке и пересинтез модели приводит к учету в ней новых классов и признаков, к качественному изменению смысла признаков и образов классов, исходная генеральная совокупность расширяется).
Выводы
Использование алгоритма разделения состояний ОС (классов) на типичную и нетипичную части позволяет системе "Эйдос" обеспечить высокую эффективность идентификации текущих состояний ОС. Алгоритм четко относит текущее состояние ОС либо к устойчивым моделям-эталонам (присущих детерминированным ветвях), либо к неустойчивым состояниям (присущих точкам бифуркции), а затем обеспечивает быстрый поиск новой или модернизацию старой модели-эталона. Это способствует существенному повышению адекватности семантических информационных моделей управления развитием знаний.
Список литературы
1. Луценко Е.В. Автоматизированный системно-когнитивный анализ в управлении активными объектами (системная теория информации и ее применение в исследовании экономических, социально-психологических, технологических и организационно-технических систем): Монография (научное издание). - Краснодар: КубГАУ. 2002. - 605 с.
2. Гленедорф П., Пригожин И. Термодинамическая теория структуры, устойчивости и флуктуаций. - М.: Мир, 1973. - 382 с.
3. Николис Г., Пригожин И. Самоорганизация в неравновесных системах: От диссипативных структур к упорядоченности через флуктуации. - М.: Мир, 1979. - 512с.
4. Луценко Е.В., Коржаков В.Е., Лаптев В.Н. Теоретические основы и технология применения системно-когнитивного анализа в автоматизированных системах обработки информации и управления (АСОИУ) (на примере АСУ вузом): Под науч. ред. д. э. н., проф. Е.В. Луценко. Монография (научное издание). - Майкоп: АГУ. 2009. - 536 с.
5. Луценко Е.В. Автоматизированный системный анализ как средство пересинтеза модели активного объекта управления при прохождения им точки бифуркации / Е.В. Луценко, В.Н. Лаптев // Научный журнал КубГАУ [Электронный ресурс]. - Краснодар: КубГАУ, 2007. - №06 (30). - Шифр Информрегистра: 0420700012\0105. - Режим доступа: http://ej. kubagro.ru/2007/06/pdf/10. pdf
6. Луценко Е.В., Лойко В.И., Семантические информационные модели управления агропромышленным комплексом: Монография (научное издание). - Краснодар: КубГАУ. 2005. - 480с.
7. Луценко Е.В. Автоматизированные технологии управления знаниями в агропромышленном холдинге / Е.В. Луценко, В.И. Лойко, О.А. Макаревич // Научный журнал КубГАУ [Электронный ресурс]. - Краснодар: КубГАУ, 2009. - №08 (52). - Режим доступа: http://ej. kubagro.ru/2009/08/pdf/07. pdf
8. Луценко Е.В. Повышение адекватности спектрального анализа личности по астросоциотипам путем их разделения на типичную и нетипичную части / Е.В. Луценко, А.П. Трунев // Научный журнал КубГАУ [Электронный ресурс]. - Краснодар: КубГАУ, 2008. - №02 (36). - Шифр Информрегистра: 0420800012\0017. - Режим доступа: http://ej. kubagro.ru/2008/02/pdf/10. pdf
9. Наприев И.Л., Луценко Е.В., Чистилин А.Н. Образ-Я и стилевые особенности деятельности сотрудников органов внутренних дел в экстремальных условиях: Монография (научное издание). - Краснодар: КубГАУ. 2008. - 262с.
10. Лебедев Е.А. Исследование достоверности оптимизированной модели скоринга путем прогнозирования кредитных историй заемщиков, данные которых не использовались при синтезе модели / Е.А. Лебедев // Научный журнал КубГАУ [Электронный ресурс]. - Краснодар: КубГАУ, 2007. - №06 (30). - Шифр Информрегистра: 0420700012\0107. - Режим доступа: http://ej. kubagro.ru/2007/06/pdf/16. pdf
11. Трунев А.П. Прогнозирование сейсмической активности и климата на основе семантических информационных моделей / А.П. Трунев, Е.В. Луценко // Научный журнал КубГАУ [Электронный ресурс]. - Краснодар: КубГАУ, 2009. - №09 (53). - Режим доступа: http://ej. kubagro.ru/2009/09/pdf/09. pdf
12. Луценко Е.В. Универсальная когнитивная аналитическая система "ЭЙДОС". Пат. № 2003610986 РФ. Заяв. № 2003610510 РФ. Опубл. от 22.04.2003.
13. Луценко Е.В., Лебедев Е.А. Подсистема автоматического формирования двоичного дерева классов семантической информационной модели (Подсистема "Эйдос-Tree"). Пат. № 2008610096 РФ. Заяв. № 2007613721 РФ. Опубл. от 09.01.2008.
14. Луценко Е.В., Лаптев В.Н. Адаптивная автоматизированная система управления "Эйдос-АСА" (Система "Эйдос-АСА"). Пат. № 2008610098 РФ. Заяв. № 2007613722 РФ. Опубл. от 09.01.2008.
15. Сайт: http://lc. kubagro.ru/
Размещено на Allbest.ru
...Подобные документы
Характеристика основных моделей управления: англо-американская, немецкая, российская. Сравнительный анализ моделей корпоративного управления. Признаки основных моделей корпоративного управления в деятельности ОАО "Новосибирский завод химконцентратов".
курсовая работа [33,2 K], добавлен 26.03.2011Теоретический опыт науки управления. Процесс исследования систем управления. Виды познавательных моделей реальности. Загадка системного подхода и его теоретическая и практическая экспансия. Связь познавательных моделей реальности и системного подхода.
реферат [29,2 K], добавлен 20.07.2009Власть, основанная на вознаграждении или примере, ее характерные черты. Реализация функций и принципов управления, осуществляемая путем применения различных методов. Повышение эффективности системы управления ОАО "Русал" путем введения системы мотивации.
курсовая работа [44,4 K], добавлен 16.10.2016Типология работников и особенности их поведения. Основы синергетической теории управления. Анализ ведущего мотивационного фактора и возможностей его использования в управлении персоналом. Синергетический анализ моделей взаимодействия людей в организации.
научная работа [892,2 K], добавлен 13.07.2013Целенаправленное управление знаниями с целью оптимизации операционной деятельности в компаниях. Характеристика и особенности основных стратегий управления знаниями - кодификации и персонификации. Зарубежный опыт системы практического управления знаниями.
реферат [212,7 K], добавлен 14.11.2011Роль запасов и управления запасами для предприятий. Анализ существующих моделей, методов, концепций, информационные технологий в сфере управления запасами. Совершенствование моделей расчета в управлении поставками при расчете оптимального размера заказа.
контрольная работа [271,5 K], добавлен 08.01.2017Понятие и система управления знаниями, особенности ее содержания и основные методические подходы. Требования к методике оценки знаний, системе используемых показателей. Характеристика корпоративной системы управления знаниями в ООО "Рога и Копыта".
курсовая работа [247,1 K], добавлен 07.12.2012Теоретические аспекты применения современных моделей управления на предприятии, недостатки и преимущества. Краткая характеристика деятельности ООО "Твин Фуд". Обоснование экономической эффективности рекомендаций по совершенствованию моделей управления.
дипломная работа [282,5 K], добавлен 03.06.2014Исследование иерархичности организационных систем управления (ОСУ), их виды и классификация. Особенности иерархической упорядоченности с точки зрения полезности их использования в качестве моделей системного анализа. Анализ системы связей в ОСУ.
контрольная работа [174,6 K], добавлен 16.06.2010Обзор национальных моделей менеджмента. Принципы построения менеджмента в Японии. Японские методы управления производством. Суть американской модели менеджмента. Западноевропейская модель управления. Применение национальных моделей менеджмента в России.
курсовая работа [52,6 K], добавлен 02.05.2012Оценка качества продукции согласно требованиям международных стандартов. Анализ системы управления качеством на предприятии. Повышение конкурентоспособности продукции путем совершенствования технологических процессов и внедрения нового оборудования.
дипломная работа [120,2 K], добавлен 28.09.2012Информация как предмет массового потребления у населения. Роль знания и информации в современном обществе. Категория "управление знаниями". Явные и неявные знания с позиции их носителей. Анализ управления знаниями на практике в Российской Федерации.
курсовая работа [38,3 K], добавлен 03.06.2011Теоретические и методологические основы управления качеством. Роль системы менеджмента качества в повышении конкурентоспособности предприятия или бизнеса. Реализация процессного подхода системы качества. Планирование жизненного цикла оказываемых услуг.
дипломная работа [450,4 K], добавлен 18.10.2010Теоретическое изучение системы организации сервиса на предприятии. Анализ качества обслуживания на торговом предприятии ООО "Олив’е". Оценка проблем управления кадрами и разработка рекомендаций по повышению качества обслуживания клиентов в организации.
дипломная работа [420,6 K], добавлен 21.01.2015Составление проекта по методологии Oracle (комплекс методологий "Oracle Method") и по стандарту PMBOK (Project Management Body of Knowledge). Сравнение проектов, выявление их достоинств и недостатков, преимущественные сферы использования каждого.
контрольная работа [2,8 M], добавлен 28.05.2014Понятие и роль качества транспортного обслуживания. Основы маркетингового подхода к качеству транспортного обслуживания. Анализ оценки показателей качества обслуживания клиентов. Разработка рекомендаций по повышению качества обслуживания грузовладельцев.
дипломная работа [1,3 M], добавлен 14.06.2022Глобализация экономики и интеграция национальных моделей менеджмента. Повышение профессионализации управления. Усиление социальной ответственности бизнеса, роли и значимости культурно-этического ресурса в системе управления. Менеджерский анализ фирмы.
курсовая работа [519,7 K], добавлен 07.12.2012Анализ системы тотального контроля качества, ориентированной на потребителя продукции и на массовое и сознательное вовлечение руководителей и работников фирмы-изготовителя в работу по повышению качества выпускаемых изделий. Документация систем качества.
реферат [456,6 K], добавлен 27.01.2011Рассмотрение концепции Customer Relationship Management по управлению взаимоотношениями с клиентами. Возможности CRM-систем, их влияние на эффективность бизнеса. Разработка, реализация и стоимость проекта внедрения CRM-системы для ЗАО "Сибтехнология".
дипломная работа [5,5 M], добавлен 15.09.2012Определение всеобщего управления качеством. Основные положения концепции Total Quality Management (TQM). Определение коэффициента весомости показателей качества экспертным методом. Расчёт затрат и экономического эффекта от повышения качества продукции.
контрольная работа [54,4 K], добавлен 14.04.2013