Адаптивное поведение агента: акцептор результатов действий и эфферентный синтез
Особенности поведенческого акта на стадиях эфферентного синтеза и оценки результатов. Построение модели достижения цели акцептором результата действий (АРД). Уточнение модели достижения цели. Алгоритм построения и использования модели достижения цели АРД.
Рубрика | Менеджмент и трудовые отношения |
Вид | статья |
Язык | русский |
Дата добавления | 29.06.2017 |
Размер файла | 2,1 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Адаптивное поведение агента: акцептор результатов действий и эфферентный синтез
С.В. Астанин, Н.К. Жуковская
Введение
Одним из направлений исследований в области многоагентных систем является исследование архитектур агентов, как программных систем, которые удовлетворяют определенным свойствам [1].
В зависимости от наличия этих свойств различают разные типы агентов. В частности, используют «слабое» и «сильное» определение интеллектуального агента. В первом случае интеллектуальный агент, как программно-аппаратная система, должен обладать следующими свойствами: автономностью, общественным поведением, реактивностью, про-активностью. Сильное определение дополнительно к этим свойствам предполагает наличие таких «ментальных свойств», как знания, убеждения, желания, намерения, цели, обязательства и др. На сегодня формализация ментальных понятий основана на использовании различных логик исследований в рамках искусственного интеллекта. В частности, в основу архитектуры ART положена теория адаптивного резонанса Гроссберга [2].
Архитектура CERA-CRANIUM использует теорию сознания [3].
Архитектура Chrest является примером исследовательской архитектуры для выяснения роли перцептивных механизмов в общем мыслительном процессе [4].
Вместе с тем, архитектура агента должна демонстрировать реализацию разных свойств в их определенной взаимосвязи. Одной из концепций, позволяющих перейти к построению подобной архитектуры, является концепция функциональных систем, разработанная А.П. Анохиным. Согласно этой концепции поведенческий акт состоит из следующих стадий: афферентного синтеза, принятия решений, акцептора результата действий, эфферентного синтеза, формирования действия и оценки достигнутого результата [5].
На завершающем этапе поведенческого акта важнейшая роль принадлежит акцептору результата действия (АРД), как механизму предвидения будущих результатов действий, выбору действий, оценки полученных результатов и изменения тактики и стратегии поведения в зависимости от оценки (рис.1).
Рис.1. Особенности поведенческого акта на стадиях эфферентного синтеза и оценки результатов
поведенческий акцептор алгоритм акт
В соответствии с данной схемой функционирование АРД начинается с построения модели цели, позволяющей уточнить оптимальный план конкретными решениями и оценками, как результатов, так и рисков, связанных с реализацией решений в зависимости от имеющихся ресурсов. На основе анализа ограничений на ресурсы и рисков определяется оптимальная стратегия достижения цели, которой стремиться придерживаться агент. После первого действия (решения) сравнивается полученный результат с ожидаемым результатом. В случае их совпадения выбирается следующее действие согласно оптимальной стратегии. В случае несовпадения осуществляется коррекция модели достижения цели с изменением оптимальной стратегии. Подобный характер поведения агента в динамической среде отмечается в [6].
Целью настоящей работы является формализация механизмов эфферентного синтеза и АРД.
1. Построение модели достижения цели акцептором результата действий
Если на стадии афферентного синтеза решается задача формирования всех возможных планов действий агента, то на стадии принятия решений решается задача выбора одного плана, оптимального с точки зрения определенных критериев. В обоих случаях речь идет об обобщенных, не конкретизированных, планах. Перед переходом к конкретным действиям АРД необходимо конкретизировать выбранный план действий с учетом собственного состояния, изменения состояния среды после принятия решений, неопределенностей и рисков реализации действий. Такой конкретизированный план назовем моделью достижения цели. Как и раннее, предполагаем, что поведенческий акт агента определен не на одном действии, а на совокупности действий. Иными словами поведенческий акт представляет собой процесс, связанный с решением многошаговой задачи. Однако суть модели достижения цели проще пояснить на примере одношаговой задачи.
Часто кошки любят сидеть на подоконнике, наблюдая ситуацию за окном. В данном случае доминирующей потребностью может быть любопытство и желание оказаться за пределами квартиры. На стадии афферентного синтеза может быть построено множество планов, связанных с разными окнами квартиры. Предположим, что на этапе принятия решений выбран план, предполагающий расположение кошки на определенном подоконнике. Если кошка находится около нужного окна, то она решет одношаговую задачу (выбранный план) с одним действием - прыжок. Казалось бы реализации выбранного плана действий достаточно для реализации цели. Однако опыт и инстинкт подсказывают, что на подоконнике могут оказаться посторонние предметы, разлита вода и т.п. Поэтому АРД конкретизирует выбранный план, например, за счет использования правил:
Если на любимом месте - кастрюля, то действие - прыжок в правую сторону;
Если любимое место занято, то отказ от цели;
Если любимое место вне видимости, но на этом месте может быть вода, то действие - прыжок и отход в сторону.
Такая конкретизация плана связана не с планированием, а с моделированием возможных ситуаций и реализацией плана действий на основе их анализа.
Пусть X=<x0, X1, …, Xi, …, Xn> - последовательный дискретный процесс решения задачи, причем Xi={Xi,1, …, Xi,k}, - возможные результаты реализации i-го этапа при использовании действий Ui-1, x0 - начальное состояние задачи (рис.2).
Рис.2. Многошаговый процесс решения задачи
Модель достижения цели Xn представляет собой множество путей из вершины x0 в вершины Xn. При построении модели необходимо учитывать следующие обстоятельства:
- зависимость результатов i-го шага от результатов (i-1)-шага;
- наблюдения и измерения агента приблизительны и субъективны;
- результаты действий неоднозначны в силу отсутствия полной картины внешней среды.
Данные обстоятельства позволяют использовать, при построении модели достижения цели, мягкие вычисления на основе нечеткой логики. При этом, предполагается поведение агента при следующих допущениях:
- известны нечеткие матрицы переходов от одного этапа к другому этапу при использовании одного из действий M(Xi-1, Xi)/Ui-1, ;
- агенту известны нечеткие предпочтения выбора действий в каждом из состояний в виде вектора µ(x0, U0) и матриц M(Xi, Ui);
- известен прогноз получения возможных результатов X1 при применении различных действий U0 в начальном состоянии x0;
- на финальном множестве Xn задана нечеткая цель µ(Xn).
Построение модели осуществляется на основе решения следующей системы уравнений [7]:
.(1)
Для определения соответствия результата и действия будем использовать следующее условие (Ui)(Xi)/Ui-1. Это условие позволяет сопоставить конкретному результату Xi, характеризуемому нечеткой оценкой (Xi)/Ui-1, действие Ui, предпочтение которого (Ui) близко по значению этой оценке.
Результаты построений наглядно представимы в виде нечеткого ориентированного графа G=(X, M), где M={G(Xi-1, Xi)} - множество принадлежностей элементов Xi-1Xi. Пример моделирования изображен на рисунке 3.
Размещено на http://www.allbest.ru/
Здесь, дуги маркируются как действиями, так и нечеткими оценками их предпочтения.
2. Механизм эфферентного синтеза
Основным назначением механизма эфферентного синтеза является выделение оптимальной стратегии поведения, исходя из анализа текущей обстановки и имеющейся модели достижения цели. Адекватным подходом для решения такой задачи является метод нечеткого динамического программирования Беллмана-Заде [8]. Данный метод основан на нечетких оценках цели и ограничений. Рассмотрим финальное множество Xn и в зависимости от его оценок µ(Xn) выделим классы возможных стратегий агента. В первую очередь, нас будут интересовать стратегии агента, позволяющие достичь конечного результата, который характеризуется оценкой равной max{µ(Xn)}. На (n-1)-м шаге выделим результаты, переход из которых в целевые состояния n-го шага характеризуется использованием действий с оценкой равной
,(2)
где - результаты n-го шага.
Далее (2) применяется для каждого этапа решения задачи, вплоть до состояния x0. В результате получим путь на графе, позволяющий достичь конечного результата с оценкой равной max{µ(Xn)}. Аналогично можно выделить стратегии агента и для других результатов . В общем случае будем иметь q взвешенных путей от x0 до : , где rw, w= - число результатов на w-м этапе решения задачи.
Задание на множестве Xn нечеткой цели характеризует различную для агента ценность конечных результатов. Пусть размерность Xn равна h. Тогда , а есть функция принадлежности результата нечеткой цели. В этом случае каждая стратегия из класса k характеризуется оценкой вида [7]:
.(3)
Стратегия с оценкой равной определяет такое поведение агента, которое позволяет достичь предпочитаемой цели и удовлетворяет ограничениям, связанных с выбором действий.
3. Уточнение модели достижения цели
Стратегия, характеризуемая оценкой может соответствовать не максимальному конечному результату, а ее выбор определен имеющимися, на момент анализа, ограничениями. В ходе решения задачи ограничения могут измениться как лучшую, так и в худшую, стороны. Реакцией агента на подобные изменения может быть переосмысление предпочтений и выбор действий, которые не соответствуют зафиксированной оптимальной стратегии. В этом случае требуется уточнение модели достижения цели. Уточнение модели возможно на основе следующих способов:
- изменения предпочтений агента;
- изменения исходных матриц переходов и выходов;
- использования механизмом эфферентного синтеза смешанных стратегий.
Первые два способа предполагают построение новых моделей достижения цели, что для ряда задач может быть неэффективно с точки зрения выделенных ресурсов, либо требуемой скорости реакции на текущую ситуацию. В этой связи рассмотрим реализацию последнего способа, который предполагает адаптивное поведение агента, ориентированного только на конечный результат с максимальной функцией принадлежности.
Под смешанной стратегией понимается стратегия, образованная частями стратегий из классов k. Однако, не для любого этапа решения задачи возможен синтез такой стратегии. Для определения такой возможности в [9] введен коэффициент свободы выбора (КСВ), позволяющий качественно оценить уровень возможности агента в выборе альтернативных действий. Под КСВ понимается отношение числа допустимых стратегий из класса , характеризуемых оценкой к общему числу стратегий из этого же класса. Уточнение модели достижения цели, на основе КСВ, заключается в следующих шагах:
- выбором тех действий, которые являются составными частями допустимых стратегий с большими значениями КСВ (больше 0,5) или, по крайней мере, значениями КСВ неравными или близкими нулю;
- в случае отсутствия предыдущей возможности использовать смешанную стратегию, которая имеет меньшие возможности в реализации оптимальной стратегии, но остается допустимой по отношению к достижению ожидаемого результата.
Общий алгоритм построения и использования модели достижения цели АРД состоит в следующем:
1. Определение исходных параметров предварительной модели достижения цели:
- число этапов решение задачи n;
- результаты каждого этапа;
- действия, которые можно реализовать на каждом этапе;
- матрицы переходов M(Xi-1, Xi)/Ui-1, .
2. Задание исходных данных:
- функция принадлежности цели решения задачи ;
- нечеткие предпочтения использования действий ;
- при необходимости функции выходов модели, которые позволят фиксировать возможные затраты для достижения результата на определенном этапе решения задачи при выборе конкретного действия .
3. Построение модели:
- для каждого i-го этапа решаются уравнения (1) для действий с вычислением оценок предпочтений выбора результатов и действий следующего (i+1)-го этапа;
- определяются соответствия результата и действия на основе условия (Ui)(Xi)/Ui-1.
- на основе предпочтений соответствий «действие» - «результат действия» формируется нечеткий ориентированный граф, дуги которого маркируются конкретным действием с нечеткими оценками переходов от вершины к вершине, а также оценками затрат (при необходимости) на реализацию соответствующих действий (рис.3);
4. Определение возможных стратегий поведения агента и классов стратегий, упорядоченных по убыванию относительно функций принадлежности .
5. Выделение оптимальной стратегии поведения, исходя из критерия ;
6. Переход к смешанной стратегии, в случае отклонения от оптимальной стратегии.
Заключение
Рассмотренный подход позволяет реализовать процедуры самоорганизации поведения на стадиях эфферентного синтеза и оценки результатов действий интеллектуального агента. Особенность самоорганизации состоит в возможности коррекции первоначально построенного плана действий, в зависимости от достигнутых результатов действий.
За рамками данной работы остались вопросы, связанные с реализацией таких механизмов АРД как передача полномочий по реализации отдельных этапов решения задачи другим агентам [10, 11].
Работа выполнена при финансовой поддержке РФФИ (проект №12-01-00766-a)
Литература
1. Городецкий В.И., Грушинский М.С., Хабалов А.В. Многоагентные системы (обзор)//Новости искусственного интеллекта, №2, 1998.- С.64-117.
2. Grossberg S. Competitive Learning: From Interactive Activation to Adaptive Resonance, Cognitive Science 11, 1987, pp. 29-63
3. Arrabales R, Ledezma A. and Sanchis A. CERA-CRANIUM: A Test Bed for Machine Consciousness Research/International Workshop on Machine Consciousness 2009. Hong Kong. June 2009, pp.1-20.
4. Gobet F., & Lane P. The CHREST architecture of cognition: The role of perception in general intelligence. In E. Baum, M. Hutter, &E. Kitzelmann (Eds.), Third conference on artificial general intelligence (AGI'10). Amsterdam, The Netherlands: Atlantis Press, 2010, pp.7-12
5. Анохин П. К. Теория функциональной системы//Успехи физиол. наук". Т.1, № 1, 1970.-С.19-54.
6. Funke, J. Complex problem solving: A case for complex cognition?//Cognitive Processing, 11(2), 2010, pp.133-142.
7. Астанин С.В. Автоматные модели поведения стратегического управления// Изв.ТРТУ. Интеллектуальные САПР. - Таганрог: Изд. ТРТУ, 1997.-С.176-178
8. Беллман Р, Заде Л. Принятие решений в расплывчатых условиях В сб.: Вопросы анализа и процедуры принятия решений.-М: Мир, 1976.-С.172-215.
9. Астанин С.В. Сопровождение процесса обучения на основе нечеткого моделирования//Открытое образование, №5, 2000.-С.37-44
10. Астанин С.В., Драгныш Н.В., Жуковская Н.К. Вложенные метаграфы как модели сложных объектов [Электронный ресурс]// «Инженерный вестник Дона», 2012, №4. - Режим доступа ivdon.ru/magazine/archive/n4p2y2012/1434э
11. Жуковская Н.К. Согласование интересов в иерархических системах [Электронный ресурс]// «Инженерный вестник Дона», 2011, №4. - Режим доступа ivdon.ru/magazine/archive/n4y2011/584э
Размещено на Allbest.ru
...Подобные документы
Решение по строительству стоянки для автомобилей. Цель и назначение решения. Входы, ресурсы и затраты. Программы, подпрограммы и работы. Исполнители, руководители и лица, принимающие решение. Условия достижения целей. Критерии оценки достижения цели.
контрольная работа [66,1 K], добавлен 15.01.2009Процесс управления, управленческие решения их значение и функции. Сочетание формального и неформального аспектов в разработке решений. Регламентируемая последовательность действий для достижения поставленной цели. Элемент множества возможных альтернатив.
курсовая работа [52,0 K], добавлен 25.05.2009Анализ внутренней и внешней среды предприятия. Определение критериев достижения цели, выбор альтернативы. Разработка модели решения задачи по принятию управленческих решений в условиях неопределённости на примере Машиностроительного предприятия "Нефмаш".
курсовая работа [46,2 K], добавлен 04.03.2013Планирование – это процесс выбора целей и решений, необходимых для их достижения. Стратегическое планирование – набор действий и решений, предпринятых руководителем, ведущих к разработке стратегий, предназначенных для достижения поставленных целей.
контрольная работа [128,8 K], добавлен 02.12.2008Характеристика организации, структуры управления, особенностей работы. Миссия и цели ПАО "Фармстандарт". Организационная структура предприятия. Построение корпоративной модели компетенции. Методы, использованные для оценки корпоративных компетенций.
курсовая работа [172,8 K], добавлен 02.06.2016Цели, этапы формирования производственной стратегии предприятия - действий по созданию продукта организации, которая предусматривает использование и развитие всех ее производственных мощностей в целях достижения стратегического конкурентного преимущества.
курсовая работа [376,8 K], добавлен 15.05.2011Теория достижения и особенности синергетического закона. Синергетический эффект и признаки достижения синергии ОАО "Казаньоргсинтез". Базисная модель, описывающая процесс достижения целей. Синергетический эффект на основе метода сравнительных оценок.
курсовая работа [672,3 K], добавлен 28.12.2014Практические советы "правильной постановки цели", следуя которым, Вам любое дело будет "по плечу и по зубам". Правильность формулирования желаемого, порядок составления планов. Способы преодоления препятствий. Критерии успеха и достижения мечты.
презентация [1,0 M], добавлен 18.12.2013Формирование стратегии управления инновациями на производстве предприятия ЗАО "СТД" Краснодонского молокозавода. Общая характеристика и миссия предприятия. SWOT-анализ: сущность, правила и процедуры. Основные цели и пути достижения желаемого результата.
курсовая работа [76,8 K], добавлен 12.01.2009Методы моделирования систем управления. Сущность неоклассической модели, профессиональной модели и модели принятия решений. Характерные черты и свойства цели. Анализ средств и целей в процессе решения проблем. Логика как инструмент и метод исследования.
контрольная работа [22,6 K], добавлен 25.11.2008Значимость информационных систем в межорганизационном взаимодействии предприятий в границах цепочки поставок. Построение модели, которая учитывает основные источники достижения конкурентоспособности, создание дифференцированного продукта и интеграция.
реферат [698,7 K], добавлен 02.11.2010Теории и модели мотивации, ее связь с процессом стимулирования труда персонала. Анализ системы мотивации труда в салоне "Gloria Jeans". Метод экспертных оценок для сбора и анализа информации по проблеме мотивации труда персонала. Анализ ответов экспертов.
курсовая работа [127,1 K], добавлен 19.02.2015Изучение сущности и содержания управленческих решений - результата анализа, прогнозирования, оптимизации, экономического обоснования и выбора альтернативы для достижения конкретной цели менеджмента. Жизненный цикл принятия решений в ООО "Лукойл-Коми".
курсовая работа [433,4 K], добавлен 08.02.2011Основные источники мотивации трудового поведения работника. Влияние оценки вероятности достижения целей на формирование мотивов труда, особенности их классификации. Цели стимулирования трудовой активности как способа управления трудовыми ресурсами.
контрольная работа [14,9 K], добавлен 01.10.2014Самооценка организации является всесторонним и систематическим анализом деятельности организации и результатов по отношению к системе менеджмента качества или модели совершенства (модели премии по качеству). Модели самооценки и их преимущества.
реферат [1,3 M], добавлен 23.04.2008Основные функции организации как группы людей, деятельность которых сознательно координируется для достижения общей цели. Ситуационный подход. Особенности использования внутренних и внешних переменных. Организация как открытая управленческая система.
реферат [41,4 K], добавлен 24.06.2019Описание предметной области, построение дерева целей. Расчёт коэффициентов относительной важности, оценки вариантов решений. Построение сетевого графика реализации мероприятия. Перечень работ, на основании выделенных мероприятий во всех деревьях.
курсовая работа [1,3 M], добавлен 07.10.2013Мотивационное воздействие для достижения цели. Распределение ролей в группе. Виды руководства в процессе управления персоналом. Этические нормы служебных отношений. Зависимость этических отношений от личных качеств руководителя. Этика делового совещания.
реферат [88,8 K], добавлен 06.11.2008Определение стратегии компании как образа организационных действий и управляющих подходов, используемых для достижения целей фирмы. Виды и оценка корпоративных (портфельных) стратегий: диверсификации, ликвидации и реструктуризации, минимизации издержек.
курсовая работа [331,2 K], добавлен 26.05.2012Понятия миссии и цели организации, их значение, характеристики, формулирование и свойства. Цель как исходная точка планирования деятельности предприятия. Миссия и цель организации на примере ОАО "Транснефть". Ключевые условия достижения компании.
контрольная работа [21,0 K], добавлен 23.04.2012