Научно-техническое предложение по разработке информационной системы управления риском в сложных проектах, программах и технических системах

Выявление, идентификация, анализ, оценка, разработка методов реагирования на риски на протяжении жизненного цикла проекта. Рассмотрение количественных методов анализа риска в проектах. Моделирование и анализ надежности в сложных технических системах.

Рубрика Менеджмент и трудовые отношения
Вид статья
Язык русский
Дата добавления 08.12.2018
Размер файла 41,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Научно-техническое предложение по разработке информационной системы управления риском в сложных проектах, программах и технических системах

канд. техн. наук Топка Владимир Владимирович

Управление проектами сформировалось в последние десятилетия и стало общепризнанной методологией осуществления проектов и превратилось в неотъемлемую часть ведения бизнеса и общечеловеческой культуры. Управление проектами является новой развивающейся областью знаний и практики в управлении, имеющей жизненно важное постоянно возрастающее значение в развитии экономики и общества.

Методология управления проектами - это методология организации, планирования, руководства, координации трудовых, финансовых, и материально - технических ресурсов, направленных на эффективное достижение его целей путём применения современных методов, техники и технологий управления, для достижения определённых результатов по составу и объёму работ, стоимости, времени и качеству. Группа взаимосвязанных проектов, образующих комплекс экономических, социальных, технических, производственных и научно - исследовательских мероприятий, объединённых общей целью представляет собой программу.

Раздел управления проектами, включающий в себя выявление, идентификацию, анализ, оценку, разработку методов реагирования на риски на протяжении жизненного цикла проекта называется управлением рисками в проекте. Процесс управления рисками проекта включает уточнение источников рисков и рисковых событий, оценку неопределённости и вероятности появления рисковых событий - моделирование рисков, выбор методов, оценки рисков, определение вероятности появления рисковых событий, допустимой степени риска и величины возможного ущерба. Методы управления рисками проекта в настоящее время, как правило, не формализованы, а опираются лишь на качественный анализ. Мировой уровень исследований в области моделирования рисков в проектах и программах в настоящее время сводится, в основном, к балльным экспертным оценкам, расчётам точки безубыточности, определению наиболее чувствительных параметров проекта и имитационному моделированию.

Количественный анализ рисков, изложенный в работах авторов из США таких, как R.D.Archibald, J.R.Schuyler, D.T.Hulett включает экспертный анализ рисков, анализ сценариев развития проекта, показателей чувствительности, предельного уровня, методы аналогов, построения деревьев решений, имитационного моделирования, подходы на основе нечетких множеств. При имитационном моделировании проектных рисков выбирают вероятностное распределение для переменных проекта, так для времени окончания работы - это подтвержденная статистическими данными одна из функций нормально распределенных величин - -распределение, затем между переменными проекта устанавливается коэффициент корреляции и после генерирования случайных сценариев получают результат имитационного моделирования.

Наиболее содержательным из количественных методов анализа риска является формализованный вероятностный анализ, на основании как статистической так и нестатистической, т.е. субъективной вероятности. Количественная характеристика проекта, связывающая, вероятность его реализации со временем - продолжительностью его работ и их календарным планом, стоимостью - затратами и бюджетом проекта, а также ресурсами, характеризующими процесс выполнения проекта называется надёжностью проекта. риск проект надежность технический

Результаты полученные при использовании коммерческих программ, таких как Monte Carlo for Primavera, CASPAR, Risk-Master, Risk +, - Risk реализующие метод Монте Карло, показывают, что кумулятивная ( накопленная) вероятность объема складируемых ресурсов достаточного для выполнения проекта или подпроекта и кумулятивная вероятность отрезка времени достаточного для его выполнения, может быть аппроксимирована распределением Вейбулла с показателем степени большим единицы. Такое же распределение широко используется в теории надежности для моделирования функции распределения времени безотказной работы элементов различных технических систем.

Моделирование и анализ надёжности в сложных технических системах исследовались в работах таких известных авторов как Ю.Н.Кофанов, И.А.Рябинин, Б.В.Гнеденко, Ю.К.Беляев, И.А.Ушаков, Б.Г.Волик, Г.Г.Малинецкий.

Анализ надежности системы предполагает идентификацию объекта и цели анализа; определение исходных данных; качественный анализ; количественный анализ, который включает построение математической модели надежности элементов и системы по рассматриваемым показателям надежности, получение количественных показателей путем расчета и моделирования; оценка возможности оптимизации характеристик системы; анализ важности отказов и чувствительности; повышение избыточности; резервирование; совершенствование обслуживания и ремонта.

Для моделирования отказов в технических системах применяются соответствующие распределения вероятностей. Среди них можно указать экспоненциальное распределение для систем не подверженных старению и износу; диффузионное монотонное распределение для систем, преобладающим механизмом отказов которых являются процессы изнашивания, усталости и коррозии; диффузионное немонотонное распределение для электронных схем и систем, состоящих из радиоэлектронных и механических элементов, основным механизмом отказов которых являются процессы старения, электропроцессы и процессы усталости; логарифмически нормальное распределение для систем, для которых основным видом разрушений является усталость, обусловленная периодическими нагрузками.

Обширный класс технических систем представляют системы с взаимно независимыми отказами, когда отказ любого элемента системы рассматривается как отказ всей системы. Многие такие устройства содержат значительное число одинаковых или близких по конструкции элементов находящихся в примерно одинаковых эксплуатационных условиях. Если повторяющиеся в одной технической системе элементы являются определяющими по отношению к времени безотказной работы всей системы и случайные изменения параметров этих элементов есть слабо связанные случайные процессы, а параметры функций распределения времени безотказной работы при переходе от элемента к элементу несколько колеблются, то при достаточно большом числе элементов распределение времени безотказной работы хорошо аппроксимируется функцией распределения, которая в математической статистике принято называть распределением третьего типа для крайних членов последовательности независимых величин.

Это распределение известно как распределение Вейбулла, по имени шведского ученого W.Weibull, который предложил его в 1939 г., а математическое рассмотрение было выполнено Б.В.Гнеденко в 1941 г. Распределение Вейбулла хорошо описывает распределение времени безотказной работы многих элементов радиоэлектронной аппаратуры, в случае если отказ этих элементов рассматривается как выход какого-либо их параметра за установленные пределы. Вероятностные и статистические методы применяются также при моделировании надежности и риска сложных проектов, долгосрочных программ и их портфелей. Поэтому для количественного анализа надежности как в технических системах машиностроения, радиоэлектроники, приборостроения, энергетики, так и для управления риском в сложных крупномасштабных проектах и долгосрочных целевых программах может быть использовано описание одномерной случайной величины в виде распределения Вейбулла и на этой основе построена комплексная математическая модель для указанных областей приложения.

Разработанная модель управления инновационным проектом позволяет описать множество всех работ проекта в пространстве трех переменных: ресурсы-продолжительность-риск и включает:

Обобщение распределения Вейбулла для двумерной случайной величины.

Построение агрегированной функции надежности проекта, представленного сетевой моделью с произвольной детерминированной структурой, которая взвешена двумерным распределением Вейбулла.

Построение обобщенной сетевой модели проекта, в которой технологические связи дополнены неявными (перекрестными) связями в виде логистических функций.

Построение вероятностной модели управления портфелем проектов.

Построение трехуровневой схемы взаимодействия нелинейных динамических моделей для корпоративного, перспективного отраслевого и производственного планирования.

Программную реализацию численных алгоритмов оптимизации риска, стоимости и продолжительности в разработанных нелинейных динамических моделях.

В данной системе моделей разработанные алгоритмы календарного, ресурсно-стоимостного планирования и управления риском работают с одной базой данных и для каждой работы проекта сообщают ее вектор ресурсов, все временные параметры и соответствующую данным ресурсам и продолжительности вероятность успешного выполнения работы.

Разработанная комплексная система математических моделей, снабженная соответствующими исходными данными о параметрах и допустимых значениях переменных вместе с разработанными оптимизационными алгоритмами совместного ресурсно-календарно-надежностного планирования представляет собой информационную систему для целей управления риском в сложных крупномасштабных проектах и долгосрочных целевых программах, а также для количественного анализа надежности в технических системах машиностроения, радиоэлектроники, приборостроения и энергетики.

Согласно разработанной методике, инновационный проект представляется в виде двухуровневой схемы, на верхнем уровне которой - уровне проекта - представлена функциональная модель проекта заданного технологической сетью, которая взвешена распределением Вейбулла. И на этом уровне рассматриваются задачи оптимизационного синтеза проекта. А на нижнем уровне, соответствующем отдельным работам - узлам или элементам технической системы, осуществляется моделирование их надежностных характеристик на основе использования функции распределения Вейбулла.

Программная система реализована на базе комплексной функционально-календарной модели. Назначение функциональной модели проекта - предоставить пользователю удобный графический интерфейс для формирования структуры проекта и связей между работами, а календарной модели - предоставление возможности календарного и ресурсного планирования и контроля состояния проекта.

Функциональная модель проекта предназначена для:

формирования структуры и содержания существующих работ и мероприятий в проекте;

нахождения взаимосвязей работ проекта.

В основу функциональной модели легли расширенные стандарты серии IDEF, а календарной модели - диаграмма Гантта, широко используемая в различных программных пакетах, хорошо зарекомендовавшая себя на практике и ставшая стандартом для систем календарного планирования.

Календарная модель предназначена для:

назначения даты начала и окончания работ и их продолжительности;

визуализации последовательности работ во времени;

сравнения запланированных сроков завершения работ с фактическими сроками;

указания контрольных точек и критических участков;

выявления временных резервов;

наблюдения за перекрытиями и разрывами между зависимыми работами;

распределения ресурсов и их эффективного использования;

контроля за ходом выполнения проекта.

Функциональная модель проекта формируется на основе структуры технологической сети G (I,R), логических связей R между работами I и установления функциональных зависимостей параметров проекта - стоимости C, продолжительности T и риска Q=1-P от множества факторов влияющих на данные параметры проекта. Достаточно обобщенной характеристикой этих факторов, влияющих на вероятность выполнения разработки инновационного проекта в определенный срок может служить объем u складируемых ресурсов, выделяемых на ее выполнение. При этом может быть возможность установления зависимости между объемом u данных ресурсов и определяемой ими нестатистической вероятностью технического успеха разработки p, которая также зависит и от характеристики разработки - некоторого параметра b : p=p(u,b). Под указанной вероятностью технического успеха работы подразумевается степень достижения заданных технических характеристик образца. В качестве функции распределения вероятности технического успеха разработки используется распределение Вейбулла. Это позволяет затем построить и агрегированную функцию вероятности технического успеха всего проекта P=P(pi),iI . На этой основе строится формализованная модель проектного риска Q=1-P, которая включает функциональные зависимости вероятности технического успеха проекта - P=P(pi (ui,bi)), его продолжительности - T=T(ti(ui,ai,di)) и стоимости - C=C(ui,ci) от переменной ui - величины складируемого ресурса, выделяемого на выполнение i-той работы, а также параметров ai,bi,ci,di. Данная математическая модель, снабженная соответствующими исходными данными о параметрах и допустимых значениях переменных позволяет построить информационную систему управления риском в инновационных проектах.

Календарная модель проекта позволяет осуществлять формирование оптимального расписания работ и оптимального ресурсно - стоимостного плана. При этом результирующий план строится в виде блок - схемы, в которой работы представлены и описаны в узлах I сети - блоках, а ориентированные дуги R указывают источник необходимой информации и ее содержание, результат работы и куда он передается. В плане представлены исполнители, материально - технические и финансовые ресурсы, необходимые для выполнения данной работы, указываются условия выполнения работ, ограничения и основные требования обусловленные другими работами, а также предусмотрена возможность сравнения полученных результатов с требованиями задания, обеспечение внесения изменений и повторение расчетов в зависимости от полученной информации.

Для работы системы на основе обработки прошлых данных, нормативно - справочной информации и экспертных оценок производится ее настройка. Затем в инструментальном комплексе системы инициируется одна из трех однокритериальных задач параметрического программирования - управления проектом по критерию минимума стоимости С, продолжительности T или риска Q, в которых один из указанных параметров проекта служит целевой функцией задачи оптимального распределения складируемых ресурсов, а оставшиеся два - берутся в качестве ограничений.

Для решения сформированной однокритериальной задачи математического программирования из библиотеки процедур вызывается один из алгоритмов нелинейной или дискретной оптимизации, который при полученных значениях параметров модели позволяет получить оптимальное решение задачи распределения складируемых ресурсов по заданному критерию.

Решение повторяется при различных значениях показателей проекта, образуя параметрическое семейство показателей проекта. Полученный вектор оптимальных значений ресурсов u*, векторы продолжительности t* и вероятности успеха p* позволяют представить оптимальный календарный план - расписание работ в виде диаграммы Гантта, ресурсно - стоимостной план, вместе с оптимизированной величиной возможного риска, соответствующего данным календарного плана. Разрабатываемая система позволяет формировать оптимальный ресурсно - стоимостной план и оптимальное расписание в зависимости от допустимого риска выполнения проекта, а также минимизировать допустимые проектные риски при заданной стоимости работ и их продолжительности.

Информационная система управления риском инновационного проекта или программы состоит из модуля формирования функциональной модели проекта, инструментального комплекса - программы «Планировщик», снабженного библиотекой оптимизационных процедур, редактора календарной модели и генератора отчетов.

Модули календарного и ресурсно-стоимостного планирования обеспечивают основной набор функциональных возможностей и состоят из следующих средств:

Средство построения план-графика проекта включает в себя следующие функции:

а) планирования структуры и последовательности работ, используя функциональную модель описания проекта (план-график), включая наименование работ, кодирования работ и их типизацию;

б) многоуровневое представление проекта в виде структуры декомпозиции работ - WBS и организационной иерархической структуры- OBS;

в) описание связей между работами (назначение предшествующих работ, типы связей, допустимые типы задержек или перекрытий);

г) назначение входных и выходных данных, а также ограничений и управления;

д) оценка корректности построения план-графика.

Средство описания временных характеристик работ включает:

а) определение сроков начала и окончания работы, с учетом максимальной и минимальной длительности работы, назначение вех проекта, описание резервов времени, привязка длительности работ к объему назначенных ресурсов и автоматический пересчет сроков;

б) поддержка календаря проекта (минимальный шаг календаря, наличие праздников в календаре, возможность задавать различные рабочие дни для различных недель, а также обычные рабочие часы);

в) создание диаграммы Гантта (отображение критического пути, расчетных и фактических дат начала и окончания работ, резервов работ, текущей даты, составных работ, возможность изменения временной шкалы).

Средство поддержки информации о ресурсах и затратах по процессу проектирования и их назначения отдельным работам:

а) ведение списка наличных ресурсов различных типов - пула ресурсов, номенклатуры материалов и статей затрат, поддержка ресурсов с фиксированной и с переменной стоимостью (зависящей от длительности использования) на основании древовидной модели ресурсов;

б) назначение ресурсов на работы и поддержка диаграмм распределения ресурсов во времени;

в) календарное планирование при ограниченных ресурсах; выделение перегруженных ресурсов и использующих их работ, разрешение ресурсных конфликтов, выбор ресурсов для выравнивания и автоматическое или командное выравнивание; планирование на основе статических и динамических приоритетов работ, ограничений по времени или ограничений на ресурсы;

г) поддержка информации о требуемых и доступных объемах ресурса.

Средство регистрации изменений в процессе проектирования аппаратуры.

Средства контроля над ходом выполнения проекта:

а) отслеживание состояния работ процесса проектирования (фиксация плановых показателей проекта и поддержка фактических показателей, расчет процента завершения).

б) контроль над фактическим использованием ресурсов (плановое и фактическое количество, стоимость ресурса и объем работ, а также расчет количества и стоимости ресурсов, требуемых для завершения работы).

в) контроль и управление проектом по методике освоенного объема -EVMS;

г) организационно-экономический анализ состояния проекта: анализ нормы отдачи, нормы амортизации, чистый дисконтированный доход, внутренняя норма доходности, индекс доходности, рентабельность инвестиций, срок окупаемости, коммерческая рентабельность, учет ставки налога на прибыль, на имущество, НДС, единый социальный налог;

д) хранение, анализ и использование в дальнейшем опыта реализованных проектов.

6.Средства создания отчетов включают:

а) отчеты по анализу фактического состояния выполнения работ проекта и сравнения с запланированным;

б) отчеты по потреблению ресурсов и их наличии;

г) отчеты по затратам (могут включать: стоимость отдельных задач, детализацию стоимости задач по ресурсам, стоимость ресурса по задачам, запланированную и фактическую стоимость);

д) отчеты по денежным потокам;

е) функции подготовки отчетов к печати (предварительный просмотр и многостраничная печать).

7.Средства работы с несколькими проектами (мультипроектное и совместное ресурсное планирование, объединение и связь проектов).

Разработанные программные средства календарного и ресурсно-стоимостного планирования вошли в состав системы АСОНИКА. Автоматизированная Система Обеспечения Надежности и Качества Аппаратуры -АСОНИКА разработана коллективом специалистов под руководством академика РАЕН и МАИ, лауреата премии Правительства РФ, доктора технических наук, профессора Ю.Н.Кофанова.

Она позволяет осуществлять вычислительные эксперименты на математических моделях радиоэлектронных средств. Применение данной системы при проектировании и технической экспертизе аппаратного комплекса АСУ Вооруженных Сил, системы управления РК «Тополь-М», космических аппаратов «Метеор», «Ямал», Sesat, самолетов Су-27, МиГ-29 позволило снизить трудоемкость проведения проектных исследований до 35-40%, повысить надежность разрабатываемых образцов за счет своевременного выявления и устранения предпосылок к отказам, связанных с нерациональными схемными и конструктивными решениями сэкономить средства за счет сокращения объемов работ по созданию и исследованию макетов, на 10-15% снизить объемы всех видов испытаний. Программная система АСОНИКА включает такие системы как АСОНИКА-Э (электрические схемы), АСОНИКА-ТМ (тепловые и механические воздействия), подсистема комплексного моделирования электрических, тепловых, механических, аэродинамических и физических процессов в радиоэлектронных средствах - «Пилот», АСОНИКА-К (надежность и качество), АСОНИКА-Д (диагностическое моделирование), АСОНИКА-У (управление проектированием), послужившей прототипом последующей системы - DISUPIR - Диалоговая Интеллектуализированная Система Управления и Проектирования Исследований и Разработок.

Согласно разработанной методологии информационная система сообщает пользователю следующие данные.

На стадии планирования:

Даты, стоимости и потребности проекта в материалах, которые будут соблюдаться с заданными вероятностями (оптимистическая, пессимистическая, наиболее вероятная оценка).

Вероятности успеха - вероятности достижения поставленных целей - директивных сроков завершения и бюджетов проекта и его фаз (оптимистическая, пессимистическая, наиболее вероятная оценка).

Резервы по времени, срокам и материалам, которые следует предусмотреть на операциях проекта, чтобы обеспечить заданную вероятность достижения поставленных целей проекта.

В процессе исполнения проекта:

Текущие вероятности достижения поставленных целей.

Тренды вероятностей успеха, которые определяют необходимость применения корректирующих воздействий.

Влияние корректирующих воздействий на вероятности успеха проекта.

В процессе планирования менеджер проекта сопоставляет вероятности успеха с экономической и временной целесообразностью реализации проекта. В процессе исполнения менеджер проекта контролирует текущие вероятности успеха проекта и их тренды. Эта информация позволяет вовремя принимать решения о необходимости корректирующих воздействий.

При этом в отличие от имитационного моделирования риска проекта, реализованного в имеющихся коммерческих системах управления проектами Microsoft Office Project 2003,Time Line 6.5, Spider Project, программных продуктах семейств Open Plan, Primavera, Artemis Views разработанная информационная система позволяет описать проект в пространстве трех переменных, получить оценку риска проекта в результате решения оптимизационных задач и согласованную тройку показателей проекта: стоимость - продолжительность- риск.

Для управления портфелем проектов информационная система использует Автоматизированную Систему Экспертного Оценивания.

Система АСЭО на основании корректных процедур обработки экспертной информации при неполных данных, учета индивидуальных мнений эксперта о критериях и разработанных алгоритмах дискретной оптимизации позволяет формировать оптимизированный по всем трем показателям портфель проектов.

АСЭО применялась при проведении конкурса проектов претендующих на финансирование в Минпромышленности, Минтопэнерго, Миннауки, при разработке системы оценки бизнес- планов на базе методики UNIDO, на ее основе разработана автоматизированная система аккредитации высших и средних учебных заведений, которая принята в качестве базовой в РФ.

Система АСЭО поддерживает следующие базы данных:

Базу данных об объектах;

Базу данных об экспертах;

Модуль предварительного анализа объектов;

Модуль многокритериального оценивания с предоставлением возможности каждому эксперту использовать собственную систему предпочтений;

Модуль стратификации объектов;

Модуль определения согласованной коллективной экспертной оценки.

Литература

1. Управление проектами: Основы профессиональных знаний. Национальные требования к компетентности специалистов. М.: Изд-во “Консалтинговое Агенство “КУБС Групп - Кооперация, Бизнес- Сервис”, 2001. 265 с.

2. Дитхелм Г. Управление проектами. В 2т.: Пер. с нем. СПб.: Издательский дом “Бизнес - пресса”, 2003. 258 с.

3. Грей К, Ларсен Э. Управление проектами. Пер. с англ. М.: «Дело и Сервис». 2003.

4. Арчибальд Р. Управление высокотехнологичными программами и проектами. М.: ДМК-Пресс. 2002.

5. Кофанов Ю.Н. Теоретические основы конструирования, технологии и надежности радиоэлектронных средств. М.: Радио и связь, 1991. 360 с.

6. V.V.Topka. A New Critical Path Method - Linear Relations. Proceedings of 17-th World Congress on Project Management, June 4-6, 2003,Moscow.

7. V.V.Topka. A Network Project Duration's Minimization in the Subjective Probability Model. Proceedings of International Network Optimization Conference, October 27- 29,2003,Evry/Paris.

8. Топка В.В. Вероятностное моделирование в управлении проектами. М., 1995 (Препринт / Институт проблем управления).

9. ЛитвакБ.Г. Экспертная информация. Методы получения и анализа. М.: Радио и связь, 1982.

Размещено на Allbest.ru

...

Подобные документы

  • Понятие, сущность и виды рисков, причины их возникновения в предпринимательской деятельности. Показатели риска и методы его оценки. Анализ системы управления риском в ООО "Миэльстрой Сибирь", выявление основных проблем, способов и методов их устранения.

    курсовая работа [1,4 M], добавлен 22.01.2013

  • Описание алгоритма анализа материальных ресурсов по методу ABC и XYZ, особенности применения указанных методов для анализа ассортимента товаров компании. Условия использования и оценка практической эффективности. Составление матриц и анализ результатов.

    курсовая работа [65,1 K], добавлен 04.05.2015

  • Инвестиционная деятельность и различные виды рисков. Инвестиционные риски: сущность и классификация. Сравнительный анализ инструментов и методов управления процентным риском. Процесс регулирования инвестиционных рисков. Оценка уровня риска доходов.

    курсовая работа [53,4 K], добавлен 18.12.2009

  • Актуальные проблемы ресурсного планирования в управлении проектами и причины их возникновения. Анализ результатов формализованного опроса (анкетирования) на предмет выявления применимости методов ресурсного планирования, выявление связей и зависимостей.

    дипломная работа [2,5 M], добавлен 11.02.2017

  • Количественный и качественный анализ и оценка рисков. Теоретический анализ инструментов мониторинга рисков проекта, видов и алгоритмов внедрения ключевых индикаторов в систему риск-менеджмента. Классификация и особенности рисков в нефтегазовых проектах.

    дипломная работа [804,8 K], добавлен 21.11.2019

  • Понятие риска как возможности возникновения неблагоприятной ситуации или неудачного исхода деятельности. Анализ системы управления рисками, его принципов и методов. Концептуальные подходы к управлению риском, его этапы. Концепции приемлемого риска.

    реферат [268,0 K], добавлен 24.05.2015

  • Системный анализ – методология исследования сложных технических, природных и социальных систем, решение сложных проблем произвольной природы: история развития и становления. Характеристика задач, назначение и формализация цели, выбор критерия решения.

    реферат [32,5 K], добавлен 11.01.2012

  • Стадии жизненного цикла информационной системы (ИС). Проблемы спирального цикла. Проблемы внедрения при использовании итерационной модели жизненного цикла. Положительные стороны применения каскадного подхода. Поэтапная модель с промежуточным контролем.

    лабораторная работа [52,9 K], добавлен 02.02.2015

  • Стратегическое значение современных методов и средств управления проектами. Характеристика основных методов управления проектами. Фазы жизненного цикла проекта. Фаза разработки коммерческого предложения. Формальное и детальное планирование проекта.

    контрольная работа [30,3 K], добавлен 04.02.2010

  • Эволюция теорий мотивации персонала. Методы стимулирования трудовых ресурсов. Анализ существующей в институте экономической мотивации научно-технических работников. Разработка системы оплаты труда, дополнительных льгот и нематериального вознаграждения.

    дипломная работа [190,5 K], добавлен 27.11.2012

  • Общие сведения об инвестиционных проектах. Рассмотрение плюсов и минусов создания предприятия по производству масляных фильтров для автомобилей и размещения денежных средств на сберегательном депозите в банке. Анализ данных проектов в условиях риска.

    курсовая работа [156,5 K], добавлен 01.06.2015

  • Возникновение кибернетики, моделирования; формирование количественной школы управления: направления, основные тенденции развития, представители. Применение количественных методов для решения задачи оптимизации процесса принятия управленческих решений.

    реферат [24,0 K], добавлен 18.02.2012

  • Понятие жизненного цикла организации. Организационная диагностика с помощью специальных методов. Критерии при выборе типа управления. Основные модели жизненного цикла организации: Ларри Грейнера, Ицхака Адизеса. Риски и их влияние на организацию.

    курсовая работа [254,9 K], добавлен 15.05.2014

  • Общее понятие о жизненном цикле проекта. Основные процессы управления проектом. Анализ жизненного цикла и процессов нефтегазового проекта на примере проекта деятельности ОАО "ЛУКОЙЛ". Оценка фазы жизненного цикла проекта и рекомендации по управлению ним.

    курсовая работа [566,3 K], добавлен 13.01.2014

  • Теоретическое исследование основ организации системы управления предприятием. Анализ применения экономических, психологических и административных методов управления. Разработка проекта мероприятий по совершенствованию методов управления на ЗАО "СтримТВ".

    дипломная работа [329,3 K], добавлен 01.05.2011

  • Понятие, сущность, классификация, основные, функции и характеристики риска. Оценка степени рисков с помощью методов качественного и количественного анализа. Организация системы управления рисками на предприятии (на примере таможенной организации).

    курсовая работа [3,2 M], добавлен 15.05.2014

  • Субъекты и объекты управления риском и их функции, рисковые вложения капитала и экономические отношения между хозяйствующими субъектами в процессе реализации риска. Прямая инспекция как метод выявления риска, характеристика методов воздействия на риск.

    реферат [144,7 K], добавлен 14.11.2010

  • Определение понятий, классификации и виды исследований систем управления. Совершенствование организации, ее структуры, методов и моделей управления. Развитие средств автоматизации. Моделирование ситуаций принятия решений в организационных системах.

    курсовая работа [48,0 K], добавлен 19.08.2013

  • Планирование управления рисками проекта. Идентификация, качественная и количественная оценка рисков. Планирование реагирования на риски, мониторинг и контроль. Факторы внешней среды. Активы организационного процесса. Распределение ролей и ответственности.

    реферат [468,0 K], добавлен 29.01.2015

  • Понятие и концепции моделей жизненного цикла организаций. Стратегии управления организацией на этапах жизненного цикла. Проблема формирования критериев определения стадии жизненного цикла. Возникновение, развитие, стагнация, возрождение организации.

    курсовая работа [1,1 M], добавлен 02.12.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.