Time series prediction using reinforcement learning

Learning technique was studied and applied to the embedding dimension and time delay estimation to the benchmark nonlinear time series and the stock market prediction problem. The methodology of reinforcement learning application was proposed and applied.

Рубрика Менеджмент и трудовые отношения
Вид дипломная работа
Язык английский
Дата добавления 07.12.2019
Размер файла 3,5 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

prediction reinforcement learning

Bibliography

[1] Velicer, Wayne & Fava, Joseph. (2003). Time Series Analysis. 10.1002/0471264385.wei0223

[2] V. Gorbachuk and A. Gasanov, "Regression analysis of time series vs cross section data," 2012 IV International Conference "Problems of Cybernetics and Informatics" (PCI), Baku, 2012, pp. 1-3.

doi: 10.1109/ICPCI.2012.6486414

[3] A. Geetha and G. M. Nasira, "Time series modeling and forecasting: Tropical cyclone prediction using ARIMA model," 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi, 2016, pp. 3080-3086.

[4] A. Garcia-Pedrero and P. Gomez-Gil, "Time series forecasting using recurrent neural networks and wavelet reconstructed signals," 2010 20th International Conference on Electronics Communications and Computers (CONIELECOMP), Cholula, 2010, pp. 169-173.

[5] Zonghua Liu, “Chaotic Time Series Analysis,” Mathematical Problems in Engineering, vol. 2010, Article ID 720190, 31 pages, 2010. https://doi.org/10.1155/2010/720190.

[6] Li, Tien-Yien, and James A. Yorke. “Period Three Implies Chaos.” The American Mathematical Monthly, vol. 82, no. 10, 1975, pp. 985-992. JSTOR, www.jstor.org/stable/2318254.

[7] Boeing, G. Visual Analysis of Nonlinear Dynamical Systems: Chaos, Fractals, Self-Similarity and the Limits of Prediction. Systems 2016, 4, 37.

[8] E. Ott, Chaos in Dynamical Systems, Cambridge University, Cambridge, UK, 1993.

[9] F. Takens, “Detecting strange attractors in turbulence,” in Dynamical Systems and Turbulence , Warwick 1980 (Coventry, 1979/1980), D. A. Rand and L.-S. Young, Eds., vol. 898 of Lecture Notes in Mathematics, pp. 366-381, Springer, London, UK, 1981.

[10] Ma, H., Leng, S. & Chen, L. Sci. China Math. (2018) 61: 403. https://doi.org/10.1007/s11425-017-9177-0

[11] C. G. Schroer, T. Sauer, E. Ott, and J. A. Yorke, “Predicting chaos most of the time from embeddings with self-intersections,” Physical Review Letters, vol. 80, no. 7, pp. 1410-1413, 1998.

[12] Matthew B. Kennel and Reggie Brown and Henry D. I. Abarbanel. 1992. Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A, 45(6), pages 3403-3411.

[13] W. Liebert and K. Pawelzik and H. G. Schuster. 1991. Optimal embeddings of chaotic attractors from topological considerations. Europhysics Letters, 14(6), pages 521-526.

[14] A. M. Fraser and H. L. Swinney, “Independent coordinates for strange attractors from mutual information,” Physical Review A, vol. 33, no. 2, pp. 1134-1140, 1986.

[15] H. Kantz and T. Schreiber, Nonlinear Time Series Analysis, Cambridge University, Cambridge, UK, 2000

[16] J. M. Martinerie, A. M. Albano, A. I. Mees, and P. E. Rapp, “Mutual information, strange attractors, and the optimal estimation of dimension,” Physical Review A, vol. 45, no. 10, pp. 7058-7064, 1992.

[17] "Notation for ARIMA Models". Time Series Forecasting System. SAS Institute.

[18] J. Contreras, R. Espinola, F. J. Nogales and A. J. Conejo, "ARIMA models to predict next-day electricity prices," in IEEE Transactions on Power Systems, vol. 18, no. 3, pp. 1014-1020, Aug. 2003.

doi: 10.1109/TPWRS.2002.804943

[19] Fan J, Yao Q (2003) Nonlinear time series: nonparametric and parametric methods. Springer, NewYork

[20] Taylor, S.J., and Letham, B., 2017a. Forecasting at scale. The American Statistician. doi:10.1080/00031305.2017.1380080

[21] An End-to-End Project on Time Series Analysis and Forecasting with Python // Towards Data Science URL: https://towardsdatascience.com/an-end-to-end-project-on-time-series-analysis-and-forecasting-with-python-4835e6bf050b

[22] Velez, Jorge & Correa, Juan & Marmolejo-Ramos, Fernando. (2015). A new approach to the Box-Cox transformation. Frontiers in Applied Mathematics and Statistics. 1. 10.3389/fams.2015.00012.

[23] Felix A Gers, Nicol N Schraudolph, and JЁurgen Schmidhuber. Learning precise timing with lstm recurrent networks. Journal of machine learning research, 3(Aug):115-143, 2002

[24] Pankaj Malhotra, Lovekesh Vig, Gautam Shroff, and Puneet Agarwal. Long short term memory networks for anomaly detection in time series. In Proceedings, page 89. Presses universitaires de Louvain, 2015.

[25] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

[26] K. Arulkumaran, M. P. Deisenroth, M. Brundage and A. A. Bharath, "Deep Reinforcement Learning: A Brief Survey," in IEEE Signal Processing Magazine, vol. 34, no. 6, pp. 26-38, Nov. 2017.

doi: 10.1109/MSP.2017.2743240

[27] Y. Li, "Reinforcement learning algorithms for semi-Markov decision processes with average reward," Proceedings of 2012 9th IEEE International Conference on Networking, Sensing and Control, Beijing, 2012, pp. 157-162.

doi: 10.1109/ICNSC.2012.6204909

[28] W. Huang and W. B. Haskell, "Risk-aware Q-learning for Markov decision processes," 2017 IEEE 56th Annual Conference on Decision and Control (CDC), Melbourne, VIC, 2017, pp. 4928-4933.

doi: 10.1109/CDC.2017.8264388

[29] W. G. Macready and D. H. Wolpert, "Bandit problems and the exploration/exploitation tradeoff," in IEEE Transactions on Evolutionary Computation, vol. 2, no. 1, pp. 2-22, April 1998.

doi: 10.1109/4235.728210

[30] E. Alba and B. Dorronsoro, "The exploration/exploitation tradeoff in dynamic cellular genetic algorithms," in IEEE Transactions on Evolutionary Computation, vol. 9, no. 2, pp. 126-142, April 2005.

doi: 10.1109/TEVC.2005.843751

[31] P. V. R. Ferreira et al., "Multi-objective reinforcement learning-based deep neural networks for cognitive space communications," 2017 Cognitive Communications for Aerospace Applications Workshop (CCAA), Cleveland, OH, 2017, pp. 1-8.

doi: 10.1109/CCAAW.2017.8001880

[32] A. L. Samuel, "Some Studies in Machine Learning Using the Game of Checkers," in IBM Journal of Research and Development, vol. 3, no. 3, pp. 210-229, July 1959.

doi: 10.1147/rd.33.0210

[33] Sutton, R. S., and Barto, A. G. 2018. Reinforcement Learning: An Introduction. MIT Press

[34] D. Pandey and P. Pandey, "Approximate Q-Learning: An Introduction," 2010 Second International Conference on Machine Learning and Computing, Bangalore, 2010, pp. 317-320.

doi: 10.1109/ICMLC.2010.38

[35] H. Huang, M. Lin and Q. Zhang, "Double-Q Learning-Based DVFS for Multi-core Real-Time Systems," 2017 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), Exeter, 2017, pp. 522-529.

doi: 10.1109/iThings-GreenCom-CPSCom-SmartData.2017.83

[36] Zhang, Zongzhang & Pan, Zhiyuan & Kochenderfer, Mykel. (2017). Weighted Double Q-learning. 3455-3461. 10.24963/ijcai.2017/483.

[37] Reynolds, Stuart. (2001). Optimistic Initial Q-values and the max Operator.

[38] Shaikh, Yusuf Hanif & Khan, A & I. IQBAL, M & H. BEHERE, S & P. BAGARE, S. (2008). Sunspots data analysis using time series. Fractals-complex Geometry Patterns and Scaling in Nature and Society - FRACTALS. 16. 10.1142/S0218348X08004009

[39] WDC-SILSO, Royal Observatory of Belgium, Brussels. URL: http://www.sidc.be/silso/

[40] Clette, Frйdйric & Svalgaard, Leif & Vaquero, Josй & W. Cliver, Edward. (2014). Revisiting the Sunspot Number. Space Science Reviews. 186. 10.1007/s11214-014-0074-2.

[41] Davis, George & E. Lowell, Walter. (2018). Sunspot data and human longevity. Data in Brief. 21. 10.1016/j.dib.2018.10.168.

[42] Gkana, A & Zachilas, Loukas. (2015). Sunspot numbers: Data analysis, predictions and economic impacts. Journal of Engineering Science and Technology Review. 8. 79-85. 10.25103/jestr.081.14

[43] Rashidi, Parviz & Mozayani, Nasser & Jahed Motlagh, M.R.. (2008). A genetic-based input variable selection algorithm using mutual information and wavelet network for time series prediction. 2133 - 2137. 10.1109/ICSMC.2008.4811607.

[44] Samin, Reza Ezuan & Kasmani, Ruhaila & Khamis, Azme & Isa, Syahirbanun. (2010). Forecasting Sunspot Numbers with Recurrent Neural Networks (RNN) Using 'Sunspot Neural Forecaster' System. Advances in Computing, Control, and Telecommunication Technologies, International Conference on. 10-14. 10.1109/ACT.2010.50.

[45] Alpha Vebtage API documentation URL: https://www.alphavantage.co/documentation/

[46] Pessoa, Tiago & Medeiros, Raul & Nepomuceno, Thiago & Bian, Gui-Bin & Albuquerque, V.H.C. & Filho, Pedro Pedrosa. (2018). Performance Analysis of Google Colaboratory as a Tool for Accelerating Deep Learning Applications. IEEE Access. PP. 1-1. 10.1109/ACCESS.2018.2874767.

[47] Liu, F & Ng, Geok & Quek, Chai. (2007). RLDDE: A novel reinforcement learning-based dimension and delay estimator for neural networks in time series prediction. Neurocomputing. 70. 1331-1341. 10.1016/j.neucom.2006.09.002 Ma, Xin & Wu, Wenqing & Zeng, Bo & Wang, Yong & Wu, Xinxing. (2018). The conformable fractional grey system

Размещено на Allbest.ru

...

Подобные документы

  • Изучение сущности логистики - стратегического управления (менеджмента) материальными потоками в процессе закупки, снабжения, перевозки и хранения материалов, деталей и готовой продукции. Суть, преимущества, проблемы и недостатки концепции just-in-time.

    реферат [30,3 K], добавлен 09.04.2011

  • Теоретические аспекты применения системы Just-in-Time, ее основные элементы, которые требуются для эффективной работы. Пример практического применения системы в американской компании Harley-Davidson. Концепция эффективной реакции на запросы потребителей.

    реферат [26,5 K], добавлен 04.02.2011

  • Основные идеи и концепции логистического принципа just in time ("точно в срок"). Характеристика общих черт логистической системы, ее конечные цели. Проектирование и производство в системе JIT. Микрологистические схемы, основанные на концепции JIT.

    курсовая работа [50,6 K], добавлен 06.12.2011

  • Organizational legal form. Full-time workers and out of staff workers. SWOT analyze of the company. Ways of motivation of employees. The planned market share. Discount and advertizing. Potential buyers. Name and logo of the company, the Mission.

    курсовая работа [1,7 M], добавлен 15.06.2013

  • Analysis of the peculiarities of the mobile applications market. The specifics of the process of mobile application development. Systematization of the main project management methodologies. Decision of the problems of use of the classical methodologies.

    контрольная работа [1,4 M], добавлен 14.02.2016

  • Time-менеджмент как мероприятия, направленные на повышение эффективности использования рабочего времени руководителя. Анализ данного показателя на предприятии ООО "Хьюмэн Ресурс ЕКБ", направления его оптимизации и повышения практической продуктивности.

    дипломная работа [233,4 K], добавлен 17.05.2011

  • Программное обеспечение календарного планирования и контроля. Системы календарного планирования проектов и их возможности. Особенности календарного планирования с помощью программных средств Microsoft Project и Time Line, их преимущества и недостатки.

    курсовая работа [600,2 K], добавлен 18.03.2014

  • Основные логистические концепции и системы. Микрологистические системы: KanBan, Just-in-time, MRP-1,MRP-2. Краткое описание коммерческой деятельности ООО "Самсон-К". Разработка логистической стратегии компании на основе микрологистической концепции.

    дипломная работа [3,3 M], добавлен 22.12.2012

  • Logistics as a part of the supply chain process and storage of goods, services. Logistics software from enterprise resource planning. Physical distribution of transportation management systems. Real-time system with leading-edge proprietary technology.

    контрольная работа [15,1 K], добавлен 18.07.2009

  • Толкающая система управления материальными потоками. Тянущая система управления материальными потоками. Логистическая концепция RP. Логистическая концепция "just-in-time". Системы KANBAN, ORT. Управление запасами на предприятии с помощью анализа XYZ.

    курсовая работа [57,9 K], добавлен 18.11.2005

  • Origins of and reasons for product placement: history of product placement in the cinema, sponsored shows. Factors that can influence the cost of a placement. Branded entertainment in all its forms: series and television programs, novels and plays.

    курсовая работа [42,1 K], добавлен 16.10.2013

  • Factors that ensure company’s global competitiveness. Definition of mergers and acquisitions and their types. Motives and drawbacks M and A deals. The suggestions on making the Disney’s company the world leader in entertainment market using M&A strategy.

    дипломная работа [353,6 K], добавлен 27.01.2016

  • Critical literature review. Apparel industry overview: Porter’s Five Forces framework, PESTLE, competitors analysis, key success factors of the industry. Bershka’s business model. Integration-responsiveness framework. Critical evaluation of chosen issue.

    контрольная работа [29,1 K], добавлен 04.10.2014

  • History of development the world leader in the production of soft drinks company "Coca-Cola". Success factors of the company, its competitors on the world market, target audience. Description of the ongoing war company the Coca-Cola brand Pepsi.

    контрольная работа [17,0 K], добавлен 27.05.2015

  • Value and probability weighting function. Tournament games as special settings for a competition between individuals. Model: competitive environment, application of prospect theory. Experiment: design, conducting. Analysis of experiment results.

    курсовая работа [1,9 M], добавлен 20.03.2016

  • The concept of transnational companies. Finding ways to improve production efficiency. International money and capital markets. The difference between Eurodollar deposits and ordinary deposit in the United States. The budget in multinational companies.

    курсовая работа [34,2 K], добавлен 13.04.2013

  • Improving the business processes of customer relationship management through automation. Solutions the problem of the absence of automation of customer related business processes. Develop templates to support ongoing processes of customer relationships.

    реферат [173,6 K], добавлен 14.02.2016

  • When we have time for leisure, we usually need something that can amuse and entertain us. Some people find that collecting stamps, badges, model cars, planes or ships, bottles, or antiques are relaxing hobbies. Free time is organized in many schools.

    сочинение [5,2 K], добавлен 04.02.2009

  • Principles of learning and language learning. Components of communicative competence. Differences between children and adults in language learning. The Direct Method as an important method of teaching speaking. Giving motivation to learn a language.

    курсовая работа [66,2 K], добавлен 22.12.2011

  • Понятие компонентов как определенного типа объектов, их свойства и функции. Режимы создания: Design-time и Run-time, их сравнительная характеристика, условия и возможности использования, преимущества и недостатки. Контролеры за объектами, их значение.

    презентация [1,3 M], добавлен 27.10.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.