Conceptual model of the management optimization problem
The application the system principle of decomposition simplifies the algorithmization of the model, preserving the condition of optimality. The versatility of the system approach to building models of management tasks lies in the combination of methods.
Рубрика | Менеджмент и трудовые отношения |
Вид | статья |
Язык | английский |
Дата добавления | 26.12.2023 |
Размер файла | 22,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Conceptual model of the management optimization problem
Debela Iryna
Candidate of Agricultural Sciences, Associate Professor, Kherson State Agrarian and Economic University (Kherson / Kropyvnytskyi)
Conceptual model of the management optimization problem
The decision-making process, algorithmically, is a sequence of steps to achieve the goal of management - choosing the optimal strategy from a set of possible alternatives. From a mathematical point of view, the decision-making process is a stochastic, partially deterministic multi-criteria optimization problem. Application of a single algorithm to models of various control problems is not possible for many reasons. First, the difficulty in choosing modeling tools - it is not possible to apply known optimization schemes, due to the non-determinism of the input parameters, the lack of their numerical estimates, or identifiers of the defining characteristics of the control object. Secondly, the multiplicity of criteria for choosing alternatives. Mathematical theory ensures the adequacy of the solution according to the single criterion of optimality. If there are several selection ratios from a set of alternatives, then the search for an optimal solution cannot be formalized only by mathematical operators. The application of the systematic principle of decomposition simplifies the algorithmization of the model, preserving, the condition of optimality at each control step. The versatility of the system approach to building models of management tasks lies precisely in the combination of various methods of scientific knowledge.
Key words: adequacy, algorithm, decomposition, model, system analysis, parameters, specification.
КОНЦЕПТУАЛЬНА МОДЕЛЬ ЗАДАЧІ ОПТИМІЗАЦІЇ УПРАВЛІННЯ
Дебела І.М.
Херсонський державний аграрно-економічний університет (м. Херсон / м. Кропивницький)
Моделювання процесу прийняття рішень в управлінні підприємством досить складна наукоємна задача. Якість моделей, залежить від можливостей формалізованого опису станів системи управління, що є результатом комплексного впливу факторів різної природи та зовнішніх чинників, які змінюють внутрішню структуру об'єкта управління та впливають на ефективність прийняття рішень. Процес прийняття рішення, алгоритмічно, є послідовністю кроків досягнення мети управління - вибору оптимальної стратегії з множини можливих альтернатив.. З математичної точки зору процес прийняття рішення - стохастична, частково детермінована багатокритеріальна задача оптимізації. Застосування єдиного алгоритму до моделей різних задач управління не можлива з багатьох причин. По-перше, складність у виборі засобів моделювання - не можливо застосувати відомі схеми оптимізації, через не детермінованість вхідних параметрів, відсутність їх числових оцінок, або ідентифікаторів визначальних характеристик об'єкта управління. По-друге, не однозначність, або множинність критерію вибору альтернатив. Математична теорія забезпечує адекватність рішення за єдиним критерієм оптимальності. Якщо відношень вибору з множини альтернатив декілька, то пошук оптимального рішення не можна формалізувати тільки математичними операторами. Застосування системного принципу декомпозиції спрощує алгоритмізацію моделі, зберігаючи умову оптимальності на кожному кроці управління. Універсальність системного підходу для побудови моделей задач управління полягає саме в об'єднанні різних методів наукового пізнання. Адекватність моделі, як алгоритму вибору із множини альтернатив, залежить від якості параметричної бази моделі - інформації достатньої для прийняття рішення. У свою чергу, параметри моделі визначається постановкою задачі. Чітке формулювання умови задачі визначає склад параметричної бази та специфікацію моделі прийняття рішення. У статті досліджуються способи поєднання математичних алгоритмів та методів системного аналізу для побудови концептуальної моделі прийняття управлінських рішень.
Ключові слова: адекватність, алгоритм, декомпозиція, модель, системний аналіз, параметри, специфікація.
Formulation of the problem. Modeling the decision-making process in enterprise management is a rather complex and scientific task. The quality of the models depends on the possibilities of a formalized description of the states of the management system, and is the result of the complex influence of factors of various nature that change the internal structure of the management object and affect the effectiveness of decision-making. The complexity of the algorithmization of management decision-making models in conditions of uncertainty and conflicts, which is associated with the impossibility of quantitative assessment of parameters and dynamic changes in the structure of the model, stimulates the search for new conceptual decision-making algorithms that will allow the company to adapt to changes in the economic environment. The article examines ways of applying mathematical tools and methods of system analysis to the construction of a conceptual model of management decision-making.
Analysis of recent research and publications. The quality of a management model depends on the completeness and degree of formalization of the data that describe the characteristic and situational parameters of the object being managed, that is, on the initial conditions of the decision-making task. Regarding initial conditions, the decision-making process can be divided into two classes of problems [1]: decomposition management algorithmization
- decision-making under conditions of complete determinism, where the input data are known with precision according to the parameters of the model;
- decision-making under conditions of uncertainty, where it is not possible to describe the model parameters even with relative characteristics such as weighting coefficients of their significance in the decision-making process.
Decision-making under conditions of risk can be considered as a partial case of the second class of problems, where uncertainty can be assessed as a numerical value - the level of risk. In such cases, although the model parameters may be uncertain, a quantitative assessment of the risk level can be made [2].
Algorithms for second-class problems are weakly formalized, and methods of systems analysis are typically used for their description [5-7]. The main advantages of systems analysis methods, compared to other partially formalized modeling approaches, lie in representing the managed object as a complex emergent system, which allows for the application of decomposition methods to study its integral characteristics [8; 9]. The adequacy of the system model is substantiated at each step of decision-making algorithm construction, starting from the formation of the model's parametric base, description of quality evaluation criteria for decisions, and further selection of modeling methods to obtain decision alternatives, among which the optimal one is chosen [10]. Systems analysis can be conducted even at the level of logic or rational thinking. Systems analysis is considered a scientific method only when a scientific approach based on quantitative assessments is used at all stages.
Presentation of the main research material. In the theory of management, the fundamental principle is that a decision is justified if there is a possibility to choose alternative options [11]. As a consequence of this axiom, there is a sequence of stages in the decision-making process. The first stage is the process of forming a set of alternatives. Successful completion of this stage ensures that all possible alternatives will be considered in the choice. The second stage involves defining criteria for evaluating the quality of the decision, which are aligned with the management objectives. The choice presupposes the existence of a criterion for assessing the quality of the alternative - the management operator. Therefore, the concept of management can be formulated as an optimization process of decision-making to achieve defined goals, under certain conditions - the states of the managed object and the operators that transition the object from one state to another.
The successful formulation and solution of an optimization problem depend equally on two conditions:
- how well the set of alternatives is described;
- the determinacy of the criterion for evaluating the alternatives.
The measure of description of alternatives implies not only the formalization of parameters for each individual alternative but also a complete enumeration of all possible options. In the mathematical formulation of the optimization problem, the set of alternatives X = {Xi}, (i = 1 n) is considered complete if it is a subset of a broader (not necessarily formalized) set - the space Q. Additionally, a "membership function" must be described, which is an algorithm that determines the relationship of each element in the space Q to the set of alternatives X = {Xj, i = 1 n. The practical implementation of these requirements is achieved by constraining the space Q to a time interval for decision-making and using statistical assessments of the elements X.
Different formal schemes are used to describe the criterion F(X) for selecting the "best" alternative among the possible alternatives [12]. The specification of the selection criterion on the set of alternatives is acceptable for modeling if it can be evaluated using quantitative characteristics, at least in the form of ranks.
The mathematical theory provides a good approximation of optimization models only when the objective function is unambiguously defined. Several mathematical methods [1; 3; 11] have been developed to enable multi-criteria optimization, although mathematicians do not provide definitive recommendations. In such cases, the search for the optimal solution is based on the personal judgments of experts, specialists from different fields of knowledge, and decision-makers, using methods of system analysis. The essence of the systems approach lies in representing the management object as a complex system, combining formal modeling methods with non-formalized expert knowledge. Therefore, it is widely applied to management problems that cannot be solved using available mathematical methods.
Let us consider that the set of alternatives X is limited, and the elements of the set X t are effectively described (unambiguously defined, enumerated, or predicted) within the time interval of management T e[t0;t]: X(t)є[X(t0);X(t)]. Let's examine the characteristics of decision-making models based on the quality of input data - the set of alternatives and selection criteria.
1. Deterministic model: The set of alternatives is unambiguously described in terms of parameters, and the optimization criterion is specified as an objective function. The optimization model follows a classical, linear mathematical programming scheme. In practical implementation, such a model is generally not adequate to reality. However, in system analysis, the mathematical apparatus is used not as a means but as an auxiliary tool in the decision-making process. The analysis of the linear optimization result is used to refine the problem, adjust the problem conditions, determine the direction of additional alternative search, and clarify the selection criteria.
2. Partially deterministic model: There are two possible ways to describe the input data.
Decision-making under uncertain selection criteria: The set of alternatives is deterministic, meaning the numerical characteristics are determined with precision for each individual alternative. However, the optimality criterion is not uniquely defined, or the number of partial optimization criteria, their interrelationships, and their degree of influence on the result are not specified. The model structure may have a "weak" specification. The selection is made based on the analysis of trends in previous periods or as a result of predictive calculations, exhaustive enumeration of the alternative set, where each alternative, with some probability, can be an optimal solution. The final choice is made by the decision-maker.
2.2. In decision-making under risk conditions, the criterion assessments are determined and formalized, but the set of alternatives is non-deterministic, with some model parameters being random variables. We have a stochastic model with parameter dependencies described by probability distributions. Such situations arise in real economic systems. The set X = {Xi}, (i = 1 n) of alternatives represents n-states of the management system under new economic conditions - states affected by risks and parametric uncertainty. Parametric uncertainty can be addressed by limiting the range of possible parameter values. The bounds of the interval are specified by approximate values or qualitative characteristics. The distribution of parameter values within the interval is determined using statistical analysis methods, such as probability distribution functions. Decisions are made based on the criterion of expected value, which effectively corresponds to the extremum value of a utility function (maximum expected profit or minimum expected costs).
3. Anon-deterministic stochastic model. Decision-making under uncertainty requires implementing alternative solutions for a set of random natural states. The optimality criterion can be specified by a payment matrix Knxm = K (Xt; Sj). The elements of the matrix are considered as assessments of individual alternative Xt for a specific natural state Sj. The natural states Sj, (j = 0 m), are random variables with unknown distributions. Limited information about the system states within a time interval complicates the modeling process and is one of the sources of uncertainty in decision-making models. Statistical analysis tools yield good results for parameter estimation and structure selection in stochastic models [12]. Using the system decomposition principle simplifies the modeling process. The initial problem is divided into p stages corresponding to the natural states Sr At each stage, the optimal decision is determined based on the evaluation of alternatives using a partial optimality criterion. The decision-making process algorithm under uncertainty, based on system analysis methods, includes tools that gradually form the model, justifying its adequacy at each step: initially, in the selection of the parametric base, then in formulating the optimality criteria, and subsequently in selecting the model specification and analyzing alternative solutions to choose the best one.
Conclusions
The main reasons for seeking new decision-making model concepts can be highlighted. Firstly, the complexity of selecting modeling tools - it is impossible to apply familiar optimization schemes due to the non-deterministic nature of input parameters, the absence of their numerical assessments, or identifiers of defining characteristics of the control object. Secondly, the ambiguity or multiplicity of alternative selection criteria. Mathematical theory ensures the adequacy of a decision based on a single optimality criterion. However, if there are multiple choice relationships among alternative options, the search for an optimal decision cannot be formalized solely through mathematical operators. The universality of a systemic approach to building control problem models lies precisely in the integration of various methods of scientific knowledge. The adequacy of a model as an algorithm for selecting from a set of alternatives depends on the quality of its parametric basis, which is information sufficient for decision-making. In turn, the parameters of the model are determined by the problem formulation. A clear formulation of the problem condition determines the composition of the parametric basis and the specification of the decision-making model.
References
1. Lavrov E.A. (ed.) (2017) Matematychni metody doslidzhennya operacij [Mathematical methods of operations research]. Sumy: Sumy State University.
2. Debela I.M (2021) Stoxastychna model optymizaciyi upravlinnya ryzykamy [Stochastic risk management optimization model]. Market infrastructure, vol. 54, pp. 267-271. DOI: https://doi.org/ 10.32843/infrastruct54-42
3. Vitlinskyi V.V., Nakonechnyi S.I., Tereshchenko T.O. (2001) Matematychne programuvannya [Mathematical programming]. Kyiv: KNEU.
4. Mitsa O.V, Laver VO. (2021) Systemnyj analiz [System analysis]. Uzhgorod: PE Autodor-Shark.
5. Varenko V.M. (ed.) (2013) Systemnyj analiz informacijnyx procesiv [System analysis of information processes]. Kyiv: University "Ukraine".
6. Soroka K.O. (2004) Osnovy teoriyi system i systemnogo analizu [Fundamentals of systems theory and system analysis]. Kharkiv: KhNAMG.
7. Katrenko A.V, Pasichnyk V.V (2020) Pryjnyattya rishen: teoriya ta praktyka [Decision making: theory and practice]. Lviv: New World - 2000.
8. Ladanyuk A.P. (ed.) (2019) Metody suchasnoyi teoriyi upravlinnya [Methods of modern management theory]. Kyiv: Lira-K. Available at: http://pdf.lib.vntu.edu.ua/books/2019/Ladanuk_2019_368.pdf (accessed 02 June 2023).
9. Butko M.P. (ed.) (2015) Teoriya pryjnyattya rishen [Decision making theory]. Kyiv: Center for Educational Literature.
10. Gruzina I.A. (ed.) (2021) Teoriia upravlinnia [Management theory]. Kharkiv: KHNEU named after S. Kuznetsa. Available at: http://repository.hneu.edu.ua/bitstream/123456789/27798/1/2021 (accessed 06 June 2023).
11. Kuperman VV (2011) Metody bagatokryterialnoyi optymizaciyi vyrobnychoyi program [Methods of multi-criteria optimization of the production program]. Bulletin of ZHTU. Economy, management and administration, vol. 3, no. 57, pp. 302-307. DOI: https://doi.org/10.26642/jen- 2011-3(57)-302-307
12. Debela I.M. (2021) Formalizovanyj algorytm optymizaciyi procesu pryjnyattya rishennya v umovax stoxastychnoyi nevyznachenosti [A formalized algorithm for optimizing the decision-making process under conditions of stochastic uncertainty]. Market infrastructure, vol. 55, pp. 199-202. DOI: https://doi.org/10.32843/infrastruct54-42
13. Список використаних джерел:
14. Лавров Є.А. та ін. Математичні методи дослідження операцій: підручник. Суми: Сумський державний університет, 2017. 212 с.
15. Дебела І.М. Стохастична модель оптимізації управління ризиками. Інфраструктура ринку. 2021. Випуск 54. С. 267-271. DOI: https://doi.org/10.32843/infrastruct54-42
16. Вітлінський В.В., Наконечний С.І., Терещенко Т.О. Математичне програмування: навчальний посібник. Київ: КНЕУ, 2001. 248 с.
17. Міца О.В., Лавер В.О. Системний аналіз: навчальний посібник. Ужгород: НН Аутодор- Шарк, 2021. 63 с.
18. Варенко В.М. та ін. Системний аналіз інформаційних процесів: навчальний посібник. Київ: Університет "Україна", 2013. 203 с.
19. Сорока К.О. Основи теорії систем і системного аналізу: навчальний посібник. Харків: ХНАМГ, 2004. 291 с.
20. Катренко А.В., Насічник В.В. Прийняття рішень: теорія та практика: підручник. Львів: Новий Світ - 2000, 2020. 447 с.
21. Ладанюк А.Н. та ін. Методи сучасної теорії управління. Київ: Ліра-К, 2019. С. 368. URL: http://pdf.lib.vntu.edu.ua/books/2019/Ladanuk_2019_368.pdf (дата звернення: 02.06.2023).
22. Бутко М.Н. та ін. Теорія прийняття рішень. Київ: Центр учбової літератури, 2015. 360 с.
23. Грузіна І.А. та ін. Теорія управління: навчальний посібник. Харків: ХНЕУ ім. С. Кузнеця, 2021. 138 с. URL: http://repository.hneu.edu.ua/bitstream/123456789/27798/1/2021 (дата звернення: 06.06.2023).
24. Куперман В.В. Методи багатокритеріальної оптимізації виробничої програми. Вісник ЖДТУ. Економіка, управління та адміністрування. 2011. Вип. 3. № 57. С. 302-307. DOI: https://doi.org/10.26642/jen-2011-3(57)-302-307.
25. Дебела І.М. Формалізований алгоритм оптимізації процесу прийняття рішення в умовах стохастичної невизначеності. Інфраструктура ринку. 2021. Вип. 55. С. 199-202. DOI: https://doi.org/10.32843/infrastruct54-42
Размещено на Allbest.ru
...Подобные документы
Analysis of the peculiarities of the mobile applications market. The specifics of the process of mobile application development. Systematization of the main project management methodologies. Decision of the problems of use of the classical methodologies.
контрольная работа [1,4 M], добавлен 14.02.2016Company’s representative of small business. Development a project management system in the small business, considering its specifics and promoting its development. Specifics of project management. Problems and structure of the enterprises of business.
реферат [120,6 K], добавлен 14.02.2016Types of the software for project management. The reasonability for usage of outsourcing in the implementation of information systems. The efficiency of outsourcing during the process of creating basic project plan of information system implementation.
реферат [566,4 K], добавлен 14.02.2016About cross-cultural management. Differences in cross-cultural management. Differences in methods of doing business. The globalization of the world economy and the role of cross-cultural relations. Cross-cultural issues in International Management.
контрольная работа [156,7 K], добавлен 14.04.2014Logistics as a part of the supply chain process and storage of goods, services. Logistics software from enterprise resource planning. Physical distribution of transportation management systems. Real-time system with leading-edge proprietary technology.
контрольная работа [15,1 K], добавлен 18.07.2009The impact of management and leadership styles on strategic decisions. Creating a leadership strategy that supports organizational direction. Appropriate methods to review current leadership requirements. Plan for the development of future situations.
курсовая работа [36,2 K], добавлен 20.05.2015Leaders are those who can make others perform tasks without being coerced through force or formal authority. Conflict Management Styles. Teambuilding is essential in the workplace and highly desirable skills to possess when seeking a new job, promotion.
реферат [23,7 K], добавлен 04.01.2016Investigation of the subjective approach in optimization of real business process. Software development of subject-oriented business process management systems, their modeling and perfection. Implementing subject approach, analysis of practical results.
контрольная работа [18,6 K], добавлен 14.02.2016Definition of management. The aim of all managers. Their levels: executives, mid-managers and supervisors. The content and value of basic components of management: planning, organizing, coordinating, staffing, directing, controlling and evaluating.
презентация [414,2 K], добавлен 16.12.2014The concept and features of bankruptcy. Methods prevent bankruptcy of Russian small businesses. General characteristics of crisis management. Calculating the probability of bankruptcy discriminant function in the example of "Kirov Plant "Mayak".
курсовая работа [74,5 K], добавлен 18.05.2015The primary goals and principles of asset management companies. The return of bank loans. Funds that are used as a working capital. Management perfection by material resources. Planning of purchases of necessary materials. Uses of modern warehouses.
реферат [14,4 K], добавлен 13.05.2013Improving the business processes of customer relationship management through automation. Solutions the problem of the absence of automation of customer related business processes. Develop templates to support ongoing processes of customer relationships.
реферат [173,6 K], добавлен 14.02.2016Milestones and direction of historical development in Germany, its current status and value in the world. The main rules and principles of business negotiations. Etiquette in management of German companies. The approaches to the formation of management.
презентация [7,8 M], добавлен 26.05.2015Описання теоретичних основ складського господарства та системи автоматизованого управління складом - Warehouse Management System (WMS). Організаційно-економічна характеристика об’єкта дослідження. Причини впровадження систем WMS вендорами країн СНД.
дипломная работа [8,2 M], добавлен 05.07.2010Сущность понятия healthcare management, опыт его использования в зарубежных компаниях. Применяемые в данной системе методы и приемы, условия и возможности их использования в отечественных реалиях. Разработка и внедрение программы управления здоровьем.
контрольная работа [32,5 K], добавлен 26.01.2016The audience understand the necessity of activity planning and the benefits acquired through budgeting. The role of the economic planning department. The main characteristics of the existing system of planning. The master budget, the budgeting process.
презентация [1,3 M], добавлен 12.01.2012Selected aspects of stimulation of scientific thinking. Meta-skills. Methods of critical and creative thinking. Analysis of the decision-making methods without use of numerical values of probability (exemplificative of the investment projects).
аттестационная работа [196,7 K], добавлен 15.10.2008Impact of globalization on the way organizations conduct their businesses overseas, in the light of increased outsourcing. The strategies adopted by General Electric. Offshore Outsourcing Business Models. Factors for affect the success of the outsourcing.
реферат [32,3 K], добавлен 13.10.2011Составление проекта по методологии Oracle (комплекс методологий "Oracle Method") и по стандарту PMBOK (Project Management Body of Knowledge). Сравнение проектов, выявление их достоинств и недостатков, преимущественные сферы использования каждого.
контрольная работа [2,8 M], добавлен 28.05.2014Сущность CRM-систем - Customer Relationship Management. Преимущества клиенториентированного подхода к бизнесу. Формы функционирования и классификация CRM-систем. Основные инструменты, которые включает в себя технология управления отношениями с клиентами.
реферат [30,9 K], добавлен 12.01.2011