Процесс переработки нефтяного сырья
Проблема переработки нефтяного сырья, необходимость и характеристика основных процессов его глубокой переработки. Понятие висбрекинга, термического крекинга и коксования. Химизм процесса гидрокрекинга, влияние основных параметров на данный процесс.
Рубрика | Производство и технологии |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 06.12.2012 |
Размер файла | 2,3 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
1. Аналитический обзор состояния проблемы с элементами патентной проработки
1.1 Проблема переработки нефтяного сырья и необходимость его глубокой переработки
Нефть и получаемые на ее основе разнообразные продукты играют заметную роль в топливно-энергетическом балансе любого государства и в жизнедеятельности человека в целом.
Развитие человеческого сообщества определяется техническим прогрессом науки и техники. В свою очередь, разработка и создание новых видов машин и механизмов, новых материалов и продуктов требуют значительного улучшения качества топлив и масел, а также сырья для химической и нефтехимической промышленности. Это накладывает определенный отпечаток на нефтепереработку, развитие которой, начиная с последних десятилетий минувшего столетия, осуществлялось весьма бурными темпами. Появление новых процессов, катализаторов, оборудования, приборов контроля и автоматизации сделало возможным выпускать на нефтеперерабатывающих заводах высококачественную продукцию, удовлетворяющую современным требованиям человеческого общества.
Особенностью современной нефтеперерабатывающей промышленности является тенденция к углублению переработки нефти, что объясняется ограниченностью ее запасов, а также ужесточением экологических требований к нефтепродуктам. Увеличение глубины переработки нефти, а также получение дополнительного количества светлых фракций, по сравнению с потенциалом, можно достичь только при широком использовании термических и термокаталитических процессов.
1.2 Характеристика основных процессов глубокой переработки нефти
В нефтеперерабатывающей промышленности для оценки эффективности использования нефтяного сырья применяют показатель «глубина переработки нефти» (ГПН). Этот показатель представляет собой процент массовый выхода всех нефтепродуктов на нефть (моторных топлив, сырья для нефтехимии, масел, битума, кокса и др.), за исключением выхода топочного мазута и величины безвозвратных потерь. Однако следует отличать понятия глубины переработки нефти от выхода светлых нефтепродуктов (т.е. моторных топлив); последний показатель, как правило, на 15-20% ниже, чем глубина переработки нефти.
Ниже приводятся основные процессы, позволяющие увеличить глубину переработки нефти и выход светлых нефтепродуктов.
1.2.1 Висбрекинг
Висбрекинг - наиболее мягкая форма термического крекинга, представляет собой процесс неглубокого разложения нефтяных остатков (мазутов и гудронов) в относительно мягких условиях (под давлением 1-5 МПа и температуре 430-490°С) с целью снижения вязкости остатков для получения товарного котельного топлива. Процесс эндотермический, осуществляется в жидкой фазе. Возможности висбрекинга по увеличению выработки светлых нефтепродуктов ограничены требованиями к качеству получаемого остатка.
Степень превращения сырья в этом процессе минимальная, отбор светлых нефтепродуктов от гудрона не превышает 5-20%, а от мазута - 16-22%. При этом получается более 75% условно непревращенного остатка - котельного топлива.
Процесс отличается простым технологическим оформлением. В промышленности применяют две разновидности висбрекинга: печной и с использованием выносной реакционной камеры (сокинг-камеры). Печной крекинг представляет собой высокотемпературный процесс с малым временем контакта, а крекинг с сокинг-камерой - низкотемпературный процесс с большим временем контакта. Применение сокинг-камеры повышает селективность процесса, уменьшает расход тепла (65-70% количества тепла, расходуемого при печном висбрекинге), увеличивает глубину превращения сырья, снижает закоксовывание змеевика печи и увеличивает межремонтный пробег. На современных нефтеперерабатывающих заводах висбрекинг позволяет:
- сократить производство тяжелого котельного топлива;
- уменьшить количество прямогонных дистиллятов для разбавления тяжелых, высоковязких остатков (гудронов), используемых в качестве котельного топлива;
- расширить ресурсы сырья для каталитического крекинга и гидрокрекинга;
- выработать дополнительное количество легких и средних дистиллятов, используемых как компоненты моторных и печных топлив.
1.2.2 Термический крекинг
Термический крекинг осуществляется в трубчатой печи под давлением от 2 до 7 МПа и температуре 480-540єС. После сброса давления производится резкое охлаждение продуктов процесса для предотвращения дальнейшего крекинга до кокса и газа. С повышением температуры и времени пребывания сырья в зоне реакции увеличивается коксообразование в змеевиках печи, что ограничивает глубину крекинга и не позволяет достичь максимального выхода светлых нефтепродуктов, поэтому часть крекируемого сырья остается непревращенной. Выход светлых продуктов при крекинге мазута не превышает 27-35% мас. В процессе термического крекинга вакуумного газойля выход светлых нефтепродуктов может достигать 70% мас. на сырье. При термическом крекинге ароматизированных дистиллятных продуктов (тяжелых газойлей каталитического крекинга и коксования) также достигается достаточно высокая степень превращения сырья. Целевой направленностью этого процесса является получение термогазойлевых фракций с температурой н.к. 200-280°С, представляющих собой сырье для производства активного технического углерода (при этом выход светлых нефтепродуктов составляет 47-51% мас.).
В целях обеспечения требуемой глубины превращения на большинстве установок, особенно при переработке тяжелого сырья, предусматриваются специальные реакционные аппараты, в которых сырье выдерживается определенное время при температуре реакции. На современных установках, как правило, применяют крекинг с рециркуляцией.
Недостатком процесса термического крекинга, особенно тяжелых видов сырья, является незначительная конверсия и невысокий выход светлых нефтепродуктов, что связано с коксообразованием в змеевиках печи.
1.2.3 Коксование
Коксование - наиболее глубокая из рассматриваемых форм термического крекинга нефтяных остатков, осуществляемая при низком давлении и температуре 440-560°С. Процесс проводят в направлении концентрирования асфальто-смолистых веществ сырья в твердом продукте - коксе и получения в результате этого более богатых водородом продуктов - бензина и средних дистиллятов. Различают периодическое, замедленное (полунепрерывное) и непрерывное коксование.
Периодическое коксование осуществляется в обогреваемых камерах (периодического действия) для переработки нефтяного сырья с целью получения электродного кокса специального назначения. Процесс отличается низкой производительностью и большой трудоемкостью обслуживания коксовых кубов. Максимальный выход кокса достигает 50% мас. на сырье (выход светлых нефтепродуктов невысокий - до 25% мас. на сырье).
Замедленное (полунепрерывное) коксование проводится в необогреваемых камерах и применяется для переработки нефтяных остатков в светлые нефтепродукты, газойлевые фракции и кокс. Типичные условия процесса замедленного коксования: температура 480-510°С, избыточное давление в реакторе 0,14-0,4 МПа, кратность циркуляции - 0,1:1,1 на свежее сырье.
При переработке малосернистого сырья, а также при использовании термостойкого и ароматизированного сырья (дистиллятного крекинг-остатка термического крекинга вакуумного газойля, тяжелых газойлей каталитического крекинга и коксования) стремятся к получению максимального количества высококачественного кокса. Так, из гудрона малосернистых нефтей получают 25% электродного кокса, а из дистиллятного крекинг-остатка - примерно 38% кокса игольчатой структуры. При переработке сернистого сырья процесс проводят в направлении получения максимального количества жидких продуктов. Выход светлых нефтепродуктов из гудрона сернистых нефтей при давлении 0,1 МПа достигает 47% мас. на сырье, в том числе легкого газойля (фр. 180-350°С) - 35% мас.
Непрерывное коксование (термоконтактный крекинг) применяется для переработки тяжелых видов сырья, в том числе битуминозных нефтей с высоким содержанием металлов и высокой коксуемостью.
Процесс осуществляется при высокой температуре 480-560°С, давлении 0,1-0,2 МПа и в присутствии порошкообразного коксового теплоносителя. В реакторе сырье коксуется на поверхности теплоносителя, нагретого до 600єС. Образующиеся при этом пары охлаждаются в парциальном конденсаторе (скруббере), и сконденсировавшаяся их часть вместе с коксовой пылью возвращается в реактор, а пары более легких фракций поступают на ректификацию. Полученный кокс направляют из реактора в коксонагреватель, откуда мелкие частицы вновь возвращаются в реактор, а крупные выводятся из процесса. Порошкообразный кокс может быть реализован как товарный продукт (выход на сырье при переработке гудрона около 20% мас.) или подвергнут парокислородной газификации с образованием низкокалорийного топливного газа. При двухступенчатой газификации на первой ступени осуществляется паровая газификация и образуется синтез-газ, используемый для дальнейших синтезов.
При термоконтактном крекинге с газификацией образующегося кокса достигается максимальная (из рассматриваемых процессов) степень конверсии сырья в газообразные и жидкие продукты с выходом до 99% мас. на сырье.
1.2.4 Пиролиз
Пиролиз - наиболее жесткая форма термического крекинга нефтяного и газового сырья. Осуществляется данный процесс при температурах от 670°С до 1200-1600°С, давление близко к атмосферному. Цель процесса - получение газообразных непредельных углеводородов, в основном - этилена и пропилена; в качестве побочных продуктов образуются ароматические углеводороды (бензол, толуол, нафталин). В результате, по сравнению с термическим крекингом и коксованием при пиролизе возрастает выход газа с большим содержанием непредельных углеводородов. Сырье пиролиза весьма разнообразно. Пиролизу подвергают газообразные углеводороды (этан, пропан, бутан и их смеси), низкооктановые бензины, нефтяные остатки, и даже нефть. Применение нефтяных остатков в качестве сырья пиролиза пока не нашло широкого применения на практике, т.к. процесс пиролиза сопровождается интенсивным коксообразованием. Пиролиз целесообразно проводить при высокой температуре и малом времени контакта. Например, при пиролизе этана 50% выход этилена достигается при температуре 790°С и времени контакта 1с. Максимальный выход этилена наблюдается при температуре 1000°С и временем контакта 0,01 с. Наиболее распространенным методом пиролиза является пиролиз с внешним обогревом. Основным реакционным аппаратом в этом случае является трубчатая печь. Сырье перемещается в печи по трубам, которые обогреваются за счет тепла сгорания газообразного или жидкого топлива. Для того чтобы избежать чрезмерного образования продуктов уплотнения сырье разбавляют водяным паром до 50% мас. Для удаления образовавшегося кокса печи останавливают и очищают трубы /2/.
1.2.5 Каталитический риформинг
Сущность процесса - ароматизация бензиновых фракций, протекающая в результате преобразования нафтеновых и парафиновых углеводородов в ароматические. Продуктами являются высокооктановый ароматизированный бензин или (после соответствующих операций с целью их извлечения) индивидуальные ароматические углеводороды (бензол, толуол, ксилолы), которые используют в нефтехимической промышленности. Процесс осуществляют на алюмоплатиновых катализаторах (платформинг) при температуре 480-540°С и давлении 2-4 МПа. В более совершенной форме процесса используют платинорениевые и полиметаллические катализаторы при более низком давлении (0,7-1,5 МПа) /3/.
1.2.6 Каталитический крекинг
Основное назначение каталитического крекинга - получение высококачественного бензина; кроме того, получают газ, богатый бутан-бутиленовой фракцией (сырье для производства компонента высокооктановых бензинов), и газойлевые фракции. Сырьем являются фракции 200-500°С, керосино-газойлевые фракции (200-350°С), вакуумный газойль прямой гонки и продукты вторичных процессов - газойли коксования термического крекинга (висбрекинга) и гидрокрекинга. Катализаторы - алюмосиликаты, аморфные или более совершенные - кристаллической структуры (цеолиты). По температурному режиму процесс аналогичен термическому крекингу (470-540°С), но скорость реакций на несколько порядков больше, а качество получаемого бензина гораздо выше. Процесс проводится при небольшом избыточном давлении 0,14-0,18 МПа. Процесс каталитического крекинга осуществляется в системе с непрерывно циркулирующим катализатором (реакторах с кипящим слоем катализатора), который последовательно проходит через зоны каталитического крекинга сырья, десорбции адсорбированных углеводородов, окислительной регенерации. Циркуляция катализатора между реактором и регенератором осуществляется благодаря псевдоожижению катализатора соответствующей газовой фазой. Газовая фаза реактора представлена парами углеводородов и водяным паром, а в регенераторе псевдоожижающей средой являются воздух и газы сгорания. Таким образом, псевдоожижение позволяет горячему регенерированному катализатору контактировать со свежим сырьем, за счет чего происходит испарение жидкого сырья и каталитический крекинг паров сырья до более легких продуктовых углеводородов /4/.
1.2.7 Гидрокрекинг
Гидрокрекинг - глубокое термокаталитическое превращение нефтяного сырья (в основном тяжелых сернистых дистиллятов) для получения бензина, реактивного и дизельного топлив /3/.
Под гидрокрекингом подразумевают глубокое каталитическое превращение нефтяного сырья при высоком парциальном давлении водорода. Гидрокрекингу подвергают в основном тяжелое сырье - тяжелые сернистые газойли, деасфальтизаты гудронов, нефтяные остатки.
Целью процесса является получение светлых нефтепродуктов. В зависимости от расхода водорода и режима можно направить процесс на максимальный выход бензина, реактивного топлива или дизельных фракций. В значительно меньших масштабах гидрокрекинг используют для переработки бензинов с целью получения фракций легких изопарафинов (С5-С6) или газообразных углеводородов (в основном пропана и бутана). Процесс проводится при температурах 340-440°С и давлении 15-17МПа при объемной скорости подачи сырья 0,3-1,0 ч-1, кратности циркуляции водородсодержашего газа 1000-2000 нм3/м3. Этот процесс позволяет вырабатывать до 80% мас. реактивного или 85% мас. летнего дизельного топлива (около 70% мас. зимнего дизельного топлива) с одновременным получением 15-23% бензиновых фракций. Расход водорода при этом составляет 2,5-3,1% мас. на сырье. Соотношение выходов реактивного/дизельного топлив и бензина может изменяться в широких пределах. С увеличением «жесткости» процесса возрастает выход бензиновой фракции, а также газообразных углеводородов (в основном фр. С3-С4). В данном дипломном проекте в качестве процесса, позволяющего углубить переработку нефтяного сырья и увеличить выход светлых нефтепродуктов, выбран процесс гидрокрекинга. Выбор именно этого процесса объясняется следующими преимуществами:
1) гибкостью, т.е. возможностью получения из одного и того же сырья различных целевых продуктов, а также возможностью переработки самых разных видов сырья - от тяжелых бензинов до нефтяных остатков (в том числе и труднокрекируемых);
2) большим выходом жидких продуктов, достигающим в некоторых случаях 120% об.;
3) высоким качеством получаемых продуктов.
Гидрокрекинг является одним из основных гидрогенизационных процессов, позволяющих перерабатывать вакуумные газойли, вторичные продукты каталитических и термоконтактных процессов и остаточные виды сырья, в схемах современных нефтеперерабатывающих заводов топливно-химического профиля. В последние годы этот процесс прочно вошел в технологию переработки нефти и продолжает развиваться.
1.3 Химизм процесса гидрокрекинга
В процессе гидрокрекинга происходит одновременно расщепление и гидрирование сырья. Отличительная черта гидрокрекинга - получение продуктов значительно меньшей молекулярной массы, чем исходное сырье. С этой точки зрения процесс гидрокрекинга имеет много общего с процессом каталитического крекинга, но его основное отличие - присутствие водорода, тормозящее реакции, протекающие по цепному механизму. В результате в продуктах гидрокрекинга практически отсутствуют или содержатся в небольших количествах низшие углеводороды - метан и этан. Гидрокрекингу присущи также все основные реакции процесса гидроочистки /5/.
Важнейшими реакциями гидрокрекинга являются:
- разрыв и насыщение (гидрогенолиз) парафиновых углеводородов по связи С-С;
- гидрирование присутствующих в сырье олефинов и других непредельных соединений;
- гидродеалкилирование и изомеризация;
- гидрирование моно-, би- и полициклических ароматических углеводородов;
- разрыв и насыщение кислородных, сернистых и азотистых соединений по связям С-О, C-S и C-N;
- разложение металлоорганических соединений;
- полимеризация и коксообразование на поверхности и в объеме катализатора.
Превалирующей является реакция гидрогенолиза по связи С-С. Ниже приведены основные реакции, которым подвергаются различные классы углеводородов и неуглеводородных соединений.
Нормальные парафиновые углеводороды претерпевают расщепление и изомеризацию. Реакциям расщепления способствуют температура процесса и характер основы катализатора. Реакции расщепления идут на поверхности и в объеме катализатора. Разрыв по связи С-С происходит в основном посередине молекулы или ближе к середине, в результате чего в продуктах гидрокрекинга содержание углеводородов С1 и С2 (метан, этан) невелико, - превалируют соединения С3, С4 и более тяжелые.
Олефиновые углеводороды, присутствующие в сырье и образующиеся в результате разложения, насыщаются водородом, молекулы которого активируются на поверхности катализатора, превращаясь в протон Н+.
CН3-CН=CН-CН3 + Н2 CН3-CН2-CН2-СН3
бутилен бутан
Ароматические углеводороды при гидрокрекинге парафинов и олефинов не образуются, поскольку реакции конденсации и циклизации в среде водорода под давлением и в присутствии гидрирующих катализаторов подавляются. Все основные реакции гидрокрекинга проходят через образование карбоний-иона - промежуточного углеводородного соединения, обладающего зарядом:
Олефиновые углеводороды изомеризуются легче, чем парафиновые, и обычно изомеризация парафиновых углеводородов проходит через стадию образования олефинов. Непосредственная изомеризация парафиновых углеводородов возможна только в присутствии активных изомеризующих катализаторов, например катализаторов на цеолитной основе.
Моноциклические алкилароматические углеводороды в условиях гидрокрекинга при невысоком давлении до 10 МПа легко отщепляют длинные боковые цепи. Если гидрокрекинг проводят на катализаторе с изомеризующей активностью, одновременно с отщеплением боковых цепей происходит их изомеризация. Короткие боковые цепи более устойчивы. Для отрыва этильных и метильных групп необходимы температуры выше 450°С.
Если гидрокрекинг проводят при давлении 10-15 МПа, наряду с отрывом боковых цепей возможно гидрирование ароматических колец. Ниже приведена схема гидрирования бензольного кольца и последующего разрыва цикла:
Образующиеся изогексаны могут претерпевать дальнейшие превращения - расщепление и изомеризацию. Повышение температуры гидрокрекинга способствует превращению бензольного кольца в изопарафиновые углеводороды.
Гидрирование бициклических ароматических углеводородов проходит через образование гидроароматических соединений, например тетралина. Дальнейшее превращение тетралина идет двумя путями: через образование алкилбензола и через образование декалина в результате гидрирования второго кольца. В первом случае конечным продуктом превращения является бензол, во втором циклогексан. Схема превращения нафталина:
Гидрирование трициклических и полициклических ароматических углеводородов также протекает через образование гидроароматических углеводородов. Прогидрированные кольца расщепляются и изомеризуются. Конечными продуктами распада являются бензол, циклогексан, их производные и изопарафиновые углеводороды. Би-, три- и полициклические углеводороды подвергаются гидрокрекингу при меньшем давлении, чем бензол. Тетралин и декалин образуются при давлении порядка 7 МПа, гидроантрацены - при 5 МПа. Состав конечных продуктов определяется соотношением скоростей отдельных реакций при заданном режиме гидрокрекинга.
Значительные изменения при гидрокрекинге претерпевают сернистые и азотистые соединения и металлоорганические комплексы. Компоненты нефти и нефтепродуктов, содержащие серу, представлены многими классами соединений.
Это в первую очередь меркаптаны RSH, cульфиды RSR, дисульфиды RSSR, тиофаны, тиофены, бензтиофены, дибензтиофены.
Кроме того, в тяжелых фракциях присутствуют высокоароматизированные сернистые соединения более сложных структур:
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Во всех таких соединениях помимо ароматических, нафтеновых колец и гетероциклов могут быть боковые цепи. В молекулах сернистых соединений, нефтяных смол и асфальтенов могут присутствовать кислород и азот.
В условиях гидрокрекинга в первую очередь претерпевают превращение меркаптаны и сульфиды, затем тиофены и бензтиофены. Для удаления более сложных сернистых соединений нужны очень глубокие преобразования молекулы вещества. У меркаптанов, сульфидов и дисульфидов возможна прямая деструкция связи С-S с образованием сероводорода и соответствующего углеводорода, причем соединения алифатического ряда распадаются практически нацело. Ароматические сульфиды, в том числе алкилароматические, также претерпевают полное превращение.
RSH + H2 RH + H2S
RSR + 2H2 2RH + H2S
RSSR + 3H2 2RH + 2H2S
Тиофаны и тиофены распадаются с разрывом кольца, степень их превращения значительно ниже и определяется условиями гидрокрекинга.
Наибольшую трудность при гидроочистке и гидрокрекинге представляет удаление азотистых соединений. Степень удаления азотистых соединений ниже, чем сернистых. В нефтепродуктах присутствуют основные и неосновные азотистые соединения. К сильным основаниям относятся пиридины, пиперидины, хинолины, амины. Соединения слабоосновного характера представлены пирролом и индолом.
Кроме перечисленных, в тяжелых фракциях нефти могут присутствовать соединения типа акридина и карбазола.
Наиболее трудно подвергаются гидрокрекингу соединения, в которых азот содержится в стабильном шестичленном кольце. В процессе гидрокрекинга азотистые соединения частично превращаются в азотсодержащие соединения меньшей молекулярной массы, которые концентрируются в продуктах, особенно в дизельных фракциях.
Азотистые соединения придают нестабильность продуктам гидрокрекинга, в результате чего они быстро ухудшают цвет. Уменьшить содержание азота в продуктах гидрокрекинга можно повышением давления до 15 МПА и выше. Повышение давления и кислотности катализатора способствует разложению и гидрированию азотистых соединений.
Кислородные соединения нефти при гидрокрекинге претерпевают практически полное превращение. При этом образуются соответствующие углеводороды и вода.
Почти полностью происходит гидрогенолиз металлоорганических соединений; однако во всех случаях металлы отлагаются на катализаторе, что необратимо снижает его активность. Скорость гидрогенолиза металлоорганических соединений и полнота удаления различных металлов неодинаковы. Быстрее других металлов и более полно удаляется из нефтепродуктов ванадий, труднее всего удалить натрий. По этому показателю металлы можно расположить в следующий ряд: V>Fe>Ni>Mg>Ca>Cr>Na. С этой точки зрения очень большое значение приобретает обессоливание нефти, от которого зависит содержание в ней натрия. Типичными органически связанными металлами, присутствующими в большинстве сырых нефтей, являются никель и ванадий. В верхней части слоя катализатора обнаруживается железо в виде сульфидов, являющихся продуктами коррозии. Натрий, кальций и магний присутствуют вследствие контакта сырья с соленой водой или с различного рода присадками или добавками.
1.4 Влияние основных параметров на процесс гидрокрекинга
Необходимая степень гидрокрекинга зависит от температуры процесса, парциального давления водорода, конверсии, объемной скорости подачи сырья, кратности циркулирующего водородосодержащего газа к сырью, активности катализатора и качества углеводородного сырья.
1.4.1 Катализатор
Процесс гидрокрекинга нефтяных дистиллятов проводят на полифункциональных катализаторах, обладающих гидрирующе-расщепляющими свойствами.
К промышленным гидрогенизационным катализаторам предъявляют следующие основные требования: стабильность активности селективность действия, термическая стабильность, устойчивость к действию контактных ядов, способность к регенерации без заметного снижения активности /1/.
В качестве катализаторов для гидрогенизационных процессов переработки сернистых нефтепродуктов наиболее отвечающими указанным требованиям являются оксиды и сульфиды элементов VI группы Периодической системы - хрома, молибдена, вольфрама. Их применяют на носителях и без них (например, сернистый вольфрам). Кроме того, широко используют более сложные композиции, включающие элементы VI и VIII групп Периодической системы - хроматы и хромиты никеля, кобальта, железа; молибдаты кобальта, никеля и железа; вольфраматы никеля, кобальта, железа или же их соответствующие сульфпроизводные.
Сульфидные и оксидные катализаторы, содержащие никель, кобальт, молибден, вольфрам, активны при 250-450°С. Эта их характерная особенность и определяет температурный режим процесса.
Сложные катализаторы, такие как алюмокобальтмолибденовые, обладают большей активностью, чем отдельные их составляющие (кобальтовый и молибденовый катализаторы). Одной из причин этого является их взаимное промотирование. Катализаторы устойчивы к действию сернистых соединений и применяются в промышленности на носителях и без них.
Ассортимент современных катализаторов гидрокрекинга весьма широк. Обычно эти катализаторы состоят из следующих трех компонентов: кислотного, дегидро-гидрирующего и связующего, обеспечивающего механическую прочность и пористую структуру.
В качестве кислотного компонента, выполняющего крекирующую и изомеризующую функции, используют твердые кислоты, входящие в состав катализаторов крекинга: цеолиты, алюмосиликаты и оксид алюминия. Для усиления кислотности в катализатор иногда вводят галогены /6/.
Для активирования катализаторов гидрокрекинга используют также разнообразные промоторы: рений, родий, иридий, редкоземельные элементы и др. Функции связующего часто выполняют кислотный компонент (оксид алюминия, алюмосиликаты), а также оксиды кремния, титана, циркония, магний- и цирконийсиликаты.
Сульфиды и оксиды молибдена и вольфрама с промоторами являются бифункциональными катализаторами: они активны как в реакциях гидрирования-дегидрирования (гомолитических), так и гетеролитических реакциях гидрогенолиза гетероатомных соединений нефтяного сырья. Однако каталитическая активность молибдена и вольфрама недостаточна для разрыва углерод-углеродных связей. Поэтому для осуществления реакций крекинга углеводородов необходимо наличие кислотного компонента. Следовательно, катализаторы процессов гидрокрекинга являются по существу трифункциональными, а селективного гидрокрекинга - тетрафункциональными, если учесть их молекулярно-ситовые свойства. Если же кислотный компонент в катализаторах гидрокрекинга представлен цеолитсодержащим алюмосиликатом, следует учитывать и специфические крекирующие свойства составляющих кислотного компонента. Так, на алюмосиликате - крупнопористом носителе - в основном проходят реакции первичного неглубокого крекинга высокомолекулярных углеводородов сырья, в то время как на цеолите - реакции последующего более глубокого превращения с изомеризацией среднемолекулярных углеводородов.
В качестве гидрирующих компонентов катализаторов гидрокрекинга используют металлы платиновой группы в количестве 0,01-6%, 2-10% никеля или 2,5-5% никеля (кобальта) и 5-15% молибдена (вольфрама) в сульфидной форме /7/.
В качестве связующего используют оксид алюминия, алюмосиликаты, оксиды кремния, магния и др. Иногда в состав катализаторов вводят оксиды титана, цинка, гафния, тория и галогены. Содержание цеолита в катализаторе изменяется от 10 до 90%.
Катализаторы гидрокрекинга для производства средних дистиллятов должны обладать умеренными расщепляющими свойствами и высокой гидрирующей активностью, чтобы обеспечить получение качественных реактивных и дизельных топлив.
В настоящее время трудно отдать предпочтение тому или иному типу катализатора гидрокрекинга. Выбор катализатора следует проводить с учетом технологии процесса, качества исходного сырья и требуемого ассортимента целевых продуктов.
Основными промышленными катализаторами гидрокрекинга вакуумного газойля среднедистиллятного направления являются никель (кобальт) - молибденовые (вольфрамовые) композиции. При выборе состава и способа синтеза катализаторов гидрокрекинга этого типа исходят из базовых катализаторов гидроочистки тяжелого нефтяного сырья, увеличивая их расщепляющие свойства по отношению к парафиновым и нафтеновым углеводородам и сохраняя их эффективность в реакциях гидроочистки и гидрирования. Эту задачу решают подбором типа, количества и способов введения модификаторов. В качестве последних используют добавки оксида кремния, аморфных алюмосиликатов, синтетических цеолитов в декатионированной или поливалентной катионной форме и галогенов /8/.
Чтобы максимизировать выход средних дистиллятов катализатор второй ступени должен иметь высокое отношение функций гидрирования к кислотности. Высокое отношение также обязано улучшать свойства продукта, такие как максимальная высота некоптящего пламени для реактивного топлива и цетановое число для дизельного топлива. Аморфные катализаторы и смешанные катализаторы с небольшим содержанием цеолита низкой кислотности используются для этой цели. Аморфные катализаторы используются, когда ДТ является наиболее желаемым продуктом, тогда как катализаторы с цеолитом низкой кислотности используются при необходимости максимизации выхода реактивного топлива.
Аморфные катализаторы обеспечивают большую селективность по выходу среднедистиллятных фракций и более высокую стабильность по выходу и качеству продуктов в течение всего цикла работы, чем цеолитсодержащие. В то же время на цеолитсодержащих катализаторах, по сравнению с аморфными, одна и та же глубина конверсии достигается при более низких температурах (на 20-50°С) или почти в два раза меньшем объеме катализатора.
Практически все перспективные процессы гидрокрекинга разработаны с использованием цеолитсодержащих катализаторов: DHC-8, НС-33, DHC-32. НС-26, DHC-20 (процесс «Юникрекинг»), S-753, S-703 (Шелл); НYС-642 (ФИН); ICR-126, ICR-136, ICR-139, ICR-142, ICR-147, ICR-I50, 1CR-210, ICR-220 (Шеврон), ГКО-1, AHMЦ-1 (ВНИИ НП).
С целью предотвращения дезактивации цеолита в катализаторах гидрокрекинга сырье предварительно подвергают гидроочистке от сернистых, азотистых, смолистых и частично полициклических ароматических соединений в отдельном реакторе или части реактора гидрокрекинга на алюмокобальтмолибденовом или алюмоникельмолибденовом катализаторах, содержание оксидов гидрирующих металлов в которых составляет порядка 20% мас: НС-К, НС-Т, НС-Р, HC-R (Юникрекинг), S-424, S-434, S-444 (Шелл); ICR-132, ICR-134, ICR-154 (Шеврон); HR-343, HR-348 (ФИН); серии ТК-500, 600 (Хальдор Топсё); серии ГП (ВНИИ НП).
Катализаторы выпускаются, в основном, в виде экструдатов или иногда в виде микросфер с размером частиц 1-2 мм.
В процессе гидрокрекинга, направленном на получение реактивного топлива или сырья для производства масел, где требуется глубокое гидрирование ароматических углеводородов, на предварительной стадии предлагаются к использованию полифункциональные катализаторы гидроочистки-гидрирования: S-424 (Шелл), ТК-561 (Хальдор Топсё) или система катализаторов гидроочистки и гидрирования: ГП + НМГ (ВНИИ НП). Катализаторы гидрирования серии НМГ отличаются повышенным (до 70% мас.) содержанием гидрирующих металлов. Катализаторы, содержащие оксиды металлов VI и VIII групп, перед эксплуатацией подвергают сульфидированию.
При гидрокрекинге нефтяных остатков исходное сырье целесообразно подвергнуть предварительной деметаллизации и гидрообессериванию на серо- и азотостойких катализаторах с высокой металлоемкостью и достаточно высокой гидрирующей, но низкой крекирующей активностями.
Для этой цели в наибольшей степени подходят широкопористые катализаторы на основе модифицированного оксида алюминия, содержащего в ряде случаев добавки оксида кремния /1/.
Активность. Под активностью катализатора следует понимать количество превращенного сырья в единицу времени на единицу объема катализатора.
Причины потери активности катализаторов, а, следовательно, и уменьшения глубины гидрокрекинга, могут быть следующие:
повышение температуры - стремление увеличить скорость реакции повышением температуры может привести к нежелательным реакциям, протекание которых трудно контролировать, в результате чего катализатор дезактивируется, при этом снижается выход целевых продуктов за счет образования кокса и газа;
изменение состава катализатора - например, при 760С активная окись никеля на окиси алюминия превращается в неактивный алюмонат никеля, происходит спекание катализатора с уменьшением его активной поверхности;
потеря активного компонента катализатора - при темпеpатуpе около 600С испаряется тpехокись молибдена;
недостаточная скорость десорбции образующихся продуктов с поверхности катализатора при недостаточном парциальном давлении водорода.
Коксообразование. Коксообразование протекает за счет наличия в сырье высокомолекулярных соединений или за счет реакции конденсации многоядерных ароматических соединений с образованием высокомолекулярного кокса с низким содержанием водорода. При нормальном режиме работы высокое парциальное давление водорода и каталитическая активность гидрирования препятствуют процессу коксообразования, обусловленному реакциями конденсации. Образование кокса из высокомолекулярных соединений сырья регулируется качеством сырья. Для определения наличия нежелательных высокомолекулярных углеводородов используется анализ сырья, определяющий содержание углеводородов, нерастворимых в гептане.
Отравление катализатора металлами. Металлоорганические соединения разлагаются и удерживаются на катализаторе. Щелочные металлы могут накапливаться на катализаторе из-за недостаточного обессоливания сырья или из-за контактирования сырья с соленой водой и добавками, эти металлы по отношению к катализатору являются нерегулируемыми ядами. Количество отложений на катализаторе регулируется, ограничивая содержание металлов в нефтяном сырье.
Отравление катализатора аммиаком. Органические азотсодержащие соединения, присутствующие в сырье, превращаются в аммиак. Поскольку аммиак является соединением с основными свойствами, он конкурирует с реагирующими веществами за кислотные участки катализатора и подавляет его активность. Большая часть аммиака удаляется из реакторного блока при помощи промывки продуктов реакции водой и поэтому его влияние на дезактивацию катализатора незначительна. При прекращении подачи промывочной воды аммоний концентрируется в рециркулирующем газе, возвращаемся в реакторы, что приводит к резкой потере каталитической активности. При возобновлении подачи промывочной воды активность восстановится до нормальной.
1.4.2 Конверсия
Конверсия определяется как:
Конверсия, % об. = (СС-БКП/CC)х100,
где СС - расход подачи сырья, м3/час,
БКП - балансовый кубовый продукт из фракционирующей колонны, направляемый за пределы установки.
Конверсия является эффективным показателем жесткости режима. Для получения более высоких значений величины конверсии требуются более жесткие режимы работы и более жесткие рабочие условия необходимы для снижения температуры конца кипения дизельного топлива при постоянной величине конверсии. Обычно конверсия регулируется температурой катализатора и варьируется в пределах от 20 до 100%.
1.4.3 Температура
Количественное значение конверсии, происходящей в реакторах, в значительной степени зависит от температуры катализатора и реагирующих веществ, чем выше температура, тем выше скорость реакции и, следовательно, выше конверсия. В большинстве существующих технологических схем гидрокрекинг проводится в интервале температур 340-440°С.
В начале рабочего цикла устанавливается минимальная температура, обеспечивающая заданную глубину превращения сырья. Правильно выбранный интервал рабочих температур обеспечивает как требуемое качество, так и длительность межрегенерационного пробега и общего срока службы катализатора, температуру необходимо поддерживать возможно низкой, насколько это совместимо с требуемым качеством продукта, чтобы свести к минимуму скорость дезактивации катализатора.
Несвоевременное повышение температуры ускоряет реакции закоксовывания катализатора, не увеличивая существенно глубину превращения, срок службы катализатора при этом значительно сокращается.
Все основные протекающие в процессе гидрокрекинга химические реакции экзотермичны. Поэтому, по мере прохождения сырья и циркуляционного газа по слоям катализатора, температура повышается. Так как существует вероятность того, что в результате реакции выделится больше тепла, чем способны вывести из реактора технологические потоки, контроль прироста температуры должен быть очень тщательным. Выход температуры из-под контроля представляет собой очень опасную ситуацию, так как могут развиться крайне высокие температуры, вызывающие повреждение катализатора или реактора.
1.4.4 Качество сырья
Качество сырья, поступающего на установку, влияет на:
- температуру слоя катализатора;
- количество расходуемого в процессе водорода;
- продолжительность периодов между регенерациями катализатора и качество некоторых продуктов.
Влияние качества сырья на рабочие характеристики процесса очень существенно, особенно в отношении загрязняющих примесей, которые могут значительно снизить срок службы катализатора.
1.4.4.1 Серо- и азотсодержащие соединения
Увеличение содержания органически связанного азота и серосодержащих соединений в сырье приводит к увеличению жесткости рабочих условий. Органические азотсодержащие соединения превращаются в аммиак, который, если допустить его накапливание в циркуляционном газе, конкурирует с углеводородами за активные участки катализатора. По мере увеличения концентрации аммиака это приводит к кажущемуся снижению активности катализатора. Вследствие этого сырье с высоким содержанием органических азотсодержащих соединений перерабатывается с трудом и требует более высоких температур.
1.4.4.2 Содержание водорода
Количество непредельных соединений в сырье влияет на выделение тепла во время реакции и на общий расход водорода на установке, с увеличением непредельных соединений приводит к более высокой теплоте реакции и более высокому расходу водорода. Большие количества непредельных углеводородов могут также вызвать проблемы, связанные с тепловым балансом установки.
1.4.4.3 Интервалы выкипания
Сырьем, загружаемым на установку, является тяжелый вакуумный газойль с температурой выкипания 370°С и выше. Увеличение температуры выкипания делает сырье более трудным для переработки, что означает более высокие температуры катализатора и более короткий срок его службы. Сырье с более высокой температурой конца кипения имеет обычно более высокое содержание серо- и азотсодержащих соединений, что еще более затрудняет его переработку.
1.4.4.4 Крекированные компоненты сырья
Сырье, полученное в результате термического крекинга, также может перерабатываться на установке. Такие крекированные компоненты имеют тенденцию к более высокому содержанию загрязняющих примесей (серы, азота, механических примесей). Они также труднее подвергаются гидрокрекингу из-за более высокого содержания ароматических соединений и углеводородов, из которых могут образоваться полициклические ароматические соединения. Такие соединения делают сырье более трудным для переработки и получения качественной продукции и проявляют повышенную склонность к образованию тяжелых полициклических ароматических соединений. При переработке крекированного сырья также увеличивается расход водорода.
1.4.4.5 Каталитические яды
Содержащиеся в сырье металлорганические соединения разлагаются, а металлы удерживаются катализатором, снижая активность последнего. Так как обычно металлы не удаляются путем окислительной регенерации, активность отравленного металлами катализатора восстановить невозможно. Поэтому содержание металлов в сырье является параметром, который необходимо тщательно контролировать. Типичными металлами, содержащимися в сырьевых газойлях, являются никель, ванадий и мышьяк, а также другие металлы, привносимые в сырье во время предшествующей переработки, или другие загрязняющие примеси (свинец, натрий, кремний, мышьяк). Нафтенаты железа растворяются в нефтепродуктах и, также, являются каталитическими ядами.
1.4.4.6 Регенерируемые загрязняющие примеси катализатора
Несмотря на то, что коксообразование является нормальным механизмом дезактивации и его протекание ожидается, качество сырья может повлиять на скорость коксообразования и при отсутствии контроля может привести к недопустимо короткому сроку службы катализатора между операциями по регенерации.
1.4.5 Давление
Давление процесса гидрокрекинга варьируется в широких пределах - от 5,5 до 20,0 МПа. Повышение давления при неизменных прочих параметрах процесса вызывает изменение степени превращения неуглеводородных компонентов в результате увеличения парциального давления водорода, сырья и содержания жидкого компонента в системах, находящихся при давлениях и температурах соответственно выше и ниже условий начала конденсации.
Первый фактор способствует увеличению степени превращения, второй замедляет протекание реакций. С ростом общего давления в процессе, при прочих равных условиях, растет парциальное давление водорода, что ускоряет реакцию гидрирования и способствует уменьшению возможности отложения кокса на катализаторе. Суммарное влияние парциального давления водорода слагается из раздельных влияний общего давления, концентрации водорода в циркуляционном водородосодержащем газе и отношения водород/углеводородное сырье. Хотя все положительные результаты достигаются за счет увеличения расхода водорода, целесообразно поддерживать и общее давление и содержание водорода в циркуляционном водородосодержащем газе на максимально высоком уровне, насколько это допускается ресурсами свежего водородосодержащего газа и экономическими соображениями.
1.4.6 Объемная скорость
Количество загружаемого в реактор катализатора определяется количеством и качеством проектного сырья и заданной конверсией. Отношение количества подаваемого сырья на количество загруженного катализатора в реактор при фиксированной единице времени называют объемной часовой скоростью. Типичные объемные скорости при гидрокрекинге находятся в пределах 0,5-2,0 ч-1 (для отдельных видов сырья и выше).
При увеличении расхода подачи свежего сырья при постоянном объеме катализатора повышается часовая объемная скорость жидкости, и для сохранения постоянной конверсии потребуется соответствующее повышение температуры катализатора. Повышение температуры катализатора приводит к более быстрому коксообразованию и, следовательно, к сокращению периодов между регенерациями. При работе установки при часовых объемных скоростях, значительно превышающих расчетные, скорость дезактивации катализатора может стать недопустимо высокой.
1.4.7 Соотношение водород/углеводородное сырье
При неизменных температуре, объемной скорости и общем давлении, соотношение водород/углеводородное сырье влияет на долю испаряющегося углеводорода, парциальное давление водорода и продолжительность контакта с катализатором. Каждый из этих факторов в свою очередь влияет на глубину конверсии. В различных технологических схемах гидрокрекинга общий расход водорода может колебаться от 1,5 до 4,0 мас.% на сырье.
В практике соотношение водород/углеводородное сырье или кратность циркуляции выражается отношением объема водорода при нормальных условиях к объему сырья. С точки зрения экономичности процесса заданное соотношение целесообразно поддерживать циркуляцией водородосодержащего газа. Повышение соотношение водород/углеводородное сырье приводит к ускорению прохождения сырья через катализатор и большему поглощению тепла эндотермических реакций.
1.4.8 Парциальное давление водорода
Гидрокрекинг проводится при парциальном давлении водорода 1-2 МПа. Повышение давления, при неизменных параметрах процесса, вызывает изменение степени конверсии углеводородных компонентов в результате увеличения парциального давления водорода и сырья, и содержание жидкого компонента в системах, находящихся при давлениях и соответственно выше и ниже условий начала конденсации.
Первый фактор способствует увеличению степени конверсии, второй замедляет протекание реакций. С ростом общего давления в процессе, при прочих равных условиях, растет парциальное давление водорода, что ускоряет реакции гидрокрекинга и способствует уменьшению возможности отложения кокса на катализаторе. Суммарное влияние парциального давления водорода слагается из раздельных влияний общего давления, концентрации водорода в циркуляционном газе и соотношения водород/углеводородное сырье.
Функцией водорода является промотирование насыщения ароматических соединений и насыщение крекированных углеводородов. Необходимо также подавлять реакции образования кокса. По этой причине продолжительная работа установки при пониженных давлениях в реакторах приведет к усилению дезактивации катализатора и сокращению межрегенерационных циклов.
Отрицательное влияние содержащихся в подпиточном газе азота и метана заключается в снижении парциального давления водорода, избыточные количества азота в подпиточном газе вызывают накопление азота в циркуляционном газе, поскольку азот не конденсируется.
Максимально допустимое содержание СО и СО2 в потоке подпиточного газа, поступающего на установку должно быть не более 20ppm. Более высокое содержание отрицательно влияет на активность катализатора. СО имеет ограниченную растворимость как в углеводородах, так и в воде, и накапливается в циркуляционном газе, СО2 легче растворяется в воде и легко удаляется из системы в сепараторе высокого давления. Как СО2, так и СО оказывают схожее воздействие на катализатор, на активных участках катализатора они превращаются в метан и воду, такая реакция конкурирует с углеводородами за активные участки катализатора.
1.5 Обзор технологических схем гидрокрекинга
Гидрокрекинг характеризуется разнообразием типов и технологических схем:
1) по давлению процесса - гидрокрекинг высокого давления и «мягкий» («легкий») гидрокрекинг;
2) по ведению процесса в реакторе - в стационарном слое катализатора (подавляющее большинство промышленных установок) и в трехфазном кипящем слое с периодической заменой порций катализатора;
3) по технологическим схемам:
- одностадийный однопроходной («на проход»);
- одностадийный с рециркуляцией остатка;
- двухстадийный;
- с параллельной системой.
Выбор технологической схемы зависит от многих факторов. Если требуется получение большого количества легких топливных продуктов за счет глубокого превращения исходного сырья, чаше используется двухступенчатый вариант процесса. В этом случае на 1-й ступени происходит гидрогенизационное облагораживание исходного сырья; на 2-й ступени (после удаления сероводорода, аммиака и легких углеводородов, образующихся на 1-й ступени) протекают основные реакции гидрокрекинга, гидрирования и изомеризации. При менее глубоких формах процесса используют одноступенчатый вариант гидрокрекинга. Одноступенчатый вариант может быть одностадийным или двух(трех)-стадийным. При одностадийной схеме применяют один тип катализатора; при двух(трех)-стадийной схеме используют два(три) типа катализатора, эксплуатируемых при различных параметрах, но в общем токе циркулирующего водородсодержащего газа.
Универсальными в производстве широкого ассортимента нефтепродуктов являются процессы при давлении 15-17 МПа. При варианте максимального производства светлых нефтепродуктов процесс реализуется, как правило, с рециркуляцией фракций гидрогенизата, выкипающих выше пределов кипения целевого топлива. Процесс гидрокрекинга высокого давления - 15-17 МПа проводят при объем- ной скорости подачи сырья 0,3-1,0 ч-1, кратности циркуляции водород-содержашего газа 1000-2000 нм3/м3, интервале температур 340-440°С.
Этот процесс позволяет вырабатывать до 80% мас. реактивного или 85% мас. летнего дизельного топлива (около 70% мас. зимнего дизельного топлива) с одновременным получением 15-23% бензиновых фракций. Расход водорода при этом составляет 2,5-3,1% мас. на сырье. Соотношение выходов реактивного/дизельного топлив и бензина может изменяться в широких пределах. С увеличением «жесткости» процесса возрастает выход бензиновой фракции, а также газообразных углеводородов (в основном фр. С3-С4).
В однопроходном варианте процесса (без рисайкла), в зависимости от качества исходного сырья, обеспечивается получение до 70% моторных топлив. Расход водорода при этом составляет 1,8-2,1% мас. на сырье.
Широкое распространение за рубежом получили процессы с одновременным выводом до 85% реактивного и дизельного топлива, осуществляемые, как правило, с рециркуляцией остатка. В этом случае дизельное топливо имеет утяжеленный фракционный состав (температура выкипания 50% об. порядка 300-310°С).
Процесс «легкого» гидрокрекинга, реализуемый обычно при давлении 5-10 МПа, осуществляется по однопроходной схеме и направлен на производство сырья каталитического крекинга с одновременным получением светлых нефтепродуктов, в основном компонента дизельного топлива. Процесс проводят при объемной скорости подачи сырья 0,6-1,0 ч-1, кратности циркуляции водородсодержащего газа 500-1000 нм3/м3 в интервале температур 380-440°С. Расход водорода в этом процессе составляет 1,1-1,8% мас. на сырье.
Качество продуктов, получаемых при гидрокрекинге высокого давления и «легком» гидрокрекинге, существенно различается. Так, качество реактивного и дизельного топлива от процесса при давлении 15-17 МПа отвечает современным эксплуатационным и экологическим требованиям.
Легкая бензиновая фракция (фр. н.к. - 85°С), состоящая преимущественно из изопарафиновых углеводородов, является компонентом товарного бензина, а тяжелая - малосернистым сырьем каталитического риформинга. Высококипящие фракции могут направляться на производство масел по традиционной схеме.
Качество продуктов легкого гидрокрекинга значительно ниже. Основной продукт - компонент дизельного топлива в зависимости от давления в процессе содержит 0,01-0,10% мас. серы. Однако он характеризуется более высоким содержанием ароматических углеводородов, и, как следствие, - пониженным цетановым числом.
...Подобные документы
Висбрекинг как наиболее мягкая форма термического крекинга, процесс переработки мазутов и гудронов. Основные задачи висбрекинга на современных нефтеперерабатывающих заводах: сокращение производства тяжелого котельного топлива, расширение ресурсов сырья.
курсовая работа [2,5 M], добавлен 04.04.2013Характеристика вакуумных дистилляторов и их применение. Выбор и обоснование поточной схемы глубокой переработки нефти. Расчет основных аппаратов (реактора, колонны разделения продуктов крекинга, емкости орошения) установки каталитического крекинга.
курсовая работа [95,9 K], добавлен 07.11.2013Термические процессы переработки нефтяного сырья, особенности технологии производства игольчатого кокса и установки замедленного коксования. Материальный баланс процесса и тепловой баланс камеры коксования. Автоматический контроль и техника безопасности.
дипломная работа [245,6 K], добавлен 08.04.2012Описание технологической схемы установки каталитического крекинга Г-43-107 (в одном лифт-реакторе). Способы переработки нефтяных фракций. Устройство и принцип действия аппарата. Назначение реактора. Охрана окружающей среды на предприятиях нефтехимии.
курсовая работа [2,3 M], добавлен 12.03.2015Характеристика нефти и ее основных фракций. Выбор поточной схемы глубокой переработки нефти. Расчет реакторного блока, сепараторов, блока стабилизации, теплообменников подогрева сырья. Материальный баланс установок. Охрана окружающей среды на установке.
курсовая работа [446,7 K], добавлен 07.11.2013Назначение и описание процессов переработки нефти, нефтепродуктов и газа. Состав и характеристика сырья и продуктов, технологическая схема с учетом необходимой подготовки сырья (очистка, осушка, очистка от вредных примесей). Режимы и стадии переработки.
контрольная работа [208,4 K], добавлен 11.06.2013Физико-химическая характеристика нефти. Первичные и вторичные процессы переработки нефти, их классификация. Риформинг и гидроочистка нефти. Каталитический крекинг и гидрокрекинг. Коксование и изомеризация нефти. Экстракция ароматики как переработка нефти.
курсовая работа [71,9 K], добавлен 13.06.2012Виды и схемы переработки различных видов древесного сырья: отгонка эфирных масел, внесение отходов в почву без предварительной обработки. Технология переработки отходов фанерного производства: щепа, изготовление полимерных материалов; оборудование.
курсовая работа [1,6 M], добавлен 13.12.2010Применение мембранных процессов для фракционирования и концентрирования молочных продуктов. Схема переработки молока с использованием микро- и нанофильтрации. Регулирование концентрации белка. Электродиализ как способ деминерализации молочного сырья.
курсовая работа [1,1 M], добавлен 01.04.2014Кривая истинных температур кипения нефти и материальный баланс установки первичной переработки нефти. Потенциальное содержание фракций в Васильевской нефти. Характеристика бензина первичной переработки нефти, термического и каталитического крекинга.
лабораторная работа [98,4 K], добавлен 14.11.2010Классификация нефтей и варианты переработки. Физико-химические свойства Тенгинской нефти и ее фракций, влияние основных параметров на процессы дистилляции, ректификации. Топливный вариант переработки нефти, технологические расчеты процесса и аппаратов.
курсовая работа [416,8 K], добавлен 22.10.2011История, состав, сырье и продукция завода. Промышленные процессы гидрооблагораживания дистиллятных фракций. Процессы гидрокрекинга нефтяного сырья. Гидроочистка дизельных топлив. Блок стабилизации и вторичной перегонки бензина установки ЭЛОУ-АВТ-6.
отчет по практике [8,1 M], добавлен 07.09.2014Роль отечественной науки в модернизации технологий переработки углеродного сырья. Технологическая структура нефтеперерабатывающей промышленности. Критические факторы, мотивирующие к созданию новых технологий. Совершенствование выпускаемой продукции.
реферат [25,5 K], добавлен 21.12.2010Основные формы комбинирования в промышленности. Комбинирование на основе комплексной переработки сырья в отраслях и на предприятиях, занятых переработкой органического сырья (нефти, угля, торфа, сланцев). Комбинирование в нефтяной промышленности.
презентация [940,9 K], добавлен 22.03.2011Характеристика нефти, фракций и их применение. Выбор и обоснование поточной схемы глубокой переработки нефти. Расчет материального баланса установки гидроочистки дизельного топлива. Расчет теплообменников разогрева сырья, реакторного блока, сепараторов.
курсовая работа [178,7 K], добавлен 07.11.2013История создания и характеристика ООО КМП "Мясная сказка". Организация переработки мясного сырья. Технология производства пельменей: ассортимент и пищевая ценность; требования к сырью; механизация и автоматизация. Контроль качества готовой продукции.
отчет по практике [2,9 M], добавлен 28.03.2015Характеристика современного состояния нефтегазовой промышленности России. Стадии процесса первичной переработки нефти и вторичная перегонка бензиновой и дизельной фракции. Термические процессы технологии переработки нефти и технология переработки газов.
контрольная работа [25,1 K], добавлен 02.05.2011Свойства и механизм процесса образования кокса, характеристика сырья и продукции. Требования, предъявляемые к нефтяным коксам. Технологическая схема установки замедленного коксования, выбор и обоснование параметров регулирования контроля и сигнализации.
курсовая работа [360,9 K], добавлен 24.11.2014Характеристика и организационная структура ЗАО "Павлодарский НХЗ". Процесс подготовки нефти к переработке: ее сортировка, очистка от примесей, принципы первичной переработки нефти. Устройство и действие ректификационных колонн, их типы, виды подключения.
отчет по практике [59,5 K], добавлен 29.11.2009История развития мясокомбината, характеристика сырьевой базы. Методы обеспечения качества продукции. Охрана труда на предприятии. Характеристика основного производства мясожирового цеха. Технология обработки туш и оборудование цеха для переработки мяса.
отчет по практике [174,1 K], добавлен 28.04.2015