Основы материаловедения

Зеренное строение металлов. Классификация дефектов кристаллического строения. Строение слитка и аморфные сплавы. Электрические свойства проводниковых материалов. Сплавы железа с углеродом. Неорганические стекла. Виды и свойства композиционных материалов.

Рубрика Производство и технологии
Вид курс лекций
Язык русский
Дата добавления 20.12.2012
Размер файла 138,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Оглавление

1. Предмет материаловедения; современная классификация материалов, основные этапы развития материаловедения

2. Зеренное строение металлов. Границы зерен и субзерен

3. Световая микроскопия; количественные характеристики микроструктуры

4. Элементарная ячейка; координационное число; сингония

5. Классификация дефектов кристаллического строения. Точечные дефекты, зависимость их концентрации от температуры. Краевая и винтовая дислокации

6. Диффузия в металлах

7. Фазовые переходы I и II рода

8. Плавление металлов и строение расплавов

9. Кристаллизация металлов; зарождение кристаллов, критический зародыш; гомогенное и гетерогенное зарождение кристаллов; рост кристаллов. Кривые Таммана

10. Строение слитка и аморфные сплавы

11. Модифицирование металлов. Стандартные испытания на растяжение, сжатие, изгиб, твердость, ударную вязкость

12. Фазовые превращения в твердом состоянии

13. Упругая и пластическая деформация металлов

14. Виды разрушения: понятия о вязком и хрупком разрушении

15. Электрические свойства проводниковых материалов

16. Методы определения электрических свойств

17. Теплоемкость и теплопроводность металлов и сплавов

18. Дилатометрия. Магнитные свойства металлов и сплавов. Методы определения

19. Значение механических и физических свойств при эксплуатации изделий . Свойства, как показатели качества материала

20. Типы фаз в металлических сплавах. Правило фаз; правило рычага

21. Твердые растворы замещения и внедрения; промежуточные фазы; сверхструктуры

22. Система с неограниченной растворимостью в жидком и твердом состояниях; системы эвтектического, перитектического и монотектического типа. Системы с полиморфизмом компонентов и эвтектоидным превращением

23. Система с тройной эвтектикой и практически полным отсутствием растворимости компонентов в твердом состоянии; изотермические и политермические сечения

24. Правило рычага и центра тяжести треугольника

25. Зависимость механических и физических свойств от состава в системах различного типа

26. Выбор сплавов для определенного назначения на основе анализа диаграмм состояния

27. Строение и свойства железа; метастабильная и стабильная фазовые диаграммы железо-углерод. Формирование структуры углеродистых сталей. Определение содержания углерода в стали по структуре

28. Конструкционные и инструментальные углеродистые стали. Маркировка, применение

29. Белые, серые, половинчатые, высокопрочные и ковкие чугуны . Формирование микроструктуры, свойства, маркировка и применение

30. Роль термической обработки в повышении качества конструкционных материалов

31. Применение термообработки в технологии производства заготовок и изделий из конструкционных материалов

32. Отжиг 1-го рода. Неравновесная кристаллизация

33. Гомогенизационный отжиг, изменение структуры и свойств при гомогенизационном отжиге. Закалка с полиморфным превращением. Закалка без полиморфного превращения

34. Изменение микроструктуры и механических свойств металлов при нагреве после горячей и холодной обработки давлением

35. Возврат, первичная и собирательная рекристаллизация. Рекристаллизационный отжиг

36. Отжиг II-го рода. Отжиг и нормализация сталей; режимы и назначение отжига и нормализации

37. Отпуск сталей. Превращения в стали при отпуске, изменение микроструктуры и свойств

38. Химико-термическая обработка стали. Назначение, виды и общие закономерности. Диффузионное насыщение сплавов металлами и неметаллами

40. Классификация и маркировка легированных сталей. Влияние легирующих элементов на превращения, микроструктуру и свойства стали; принципы разработки легированных сталей

41. Конструкционные стали: строительные, машиностроительные, высокопрочные. Инструментальные стали: стали для режущего инструмента, подшипниковые, штамповые

42. Нержавеющие, теплостойкие и жаропрочные, хладостойкие, электротехнические и износостойкие стали

43. Маркировка, структура, свойства и области применения цветных металлов и их сплавов

44. Алюминий; влияние примесей на свойства алюминия; деформируемые и литейные алюминиевые сплавы

45. Медь; влияние примесей на свойства меди. Латуни, бронзы, медно-никелевые сплавы

46. Магний и его сплавы

47. Титан и его сплавы

48. Виды композиционных материалов. Строение, свойства, области применения

49. Химический состав, методы получения порошков, свойства и методы их контроля

50. Формование и спекание порошков, области применения

51. Неорганические стекла. Техническая керамика

52. Полимеры, пластмассы

металл сплав стекло материал железо

1. Предмет материаловедения; современная классификация материалов, основные этапы развития материаловедения

Материаловедение изучает состав, структуру, свойства и поведение материалов в зависимости от воздействия окружающей среды. Воздействие бывает тепловым, электрическим, магнитным и т. д. Любой компонент конструкций или сооружений подвергается нагрузкам как со стороны других компонентов, так и со стороны внешней среды.

Классификация материалов: металлические, неметаллические и композиционные материалы. Металлические материалы подразделяются на цветные металлы, порошковые материалы. Неметаллические материалы: резина, стекло, керамика, пластические массы, ситаллы. Композиционные материалы являются составными материалами, в состав которых входят два и более материалов (стеклопластики).

Существует классификация материалов в зависимости от вида полуфабрикатов: листы, порошки, гранулы, волокна, профили и т. д.

Техника создания материалов положена в основу классификации по структуре.

Металлические материалы подразделяются на группы в соответствии с тем компонентом, который лежит в их основе. Материалы черной металлургии: сталь, чугуны, ферросплавы, сплавы, в которых основной компонент - железо. Материалы цветной металлургии: алюминий, медь, цинк, свинец, никель, олово.

Основу современной техники составляют металлы и металлические сплавы. Сегодня металлы являются самым универсальным по применению классом материалов. Для того чтобы повысить качество и надежность изделий, требуются новые материалы. Для решения этих проблем применяются композиционные, полимерные, порошковые материалы.

Металлы - вещества, которые обладают ковкостью, блеском, электропроводностью и теплопроводностью. В технике все металлические материалы называют металлами и делят на две группы.

Простые металлы - металлы, которые имеют небольшое количество примесей других металлов.

Сложные металлы - металлы, которые представляют сочетания простого металла как основы с другими элементами.

Три четверти всех элементов в периодической системе являются металлами.

Материаловедение или наука о материалах получила свое развитие с древнейших времен. Первый этап развития материаловедения начинается со специализированного изготовления керамики. Особый вклад в становление материаловедения в России был сделан М.В. Ломоносовым (1711-1765) и Д.И. Менделеевым (1834-1907). Ломоносов разработал курс по физической химии и химической атомистики, подтвердил теорию об атомно-молекулярном строении вещества. Менделееву принадлежит заслуга разработки периодической системы элементов. Оба ученых немалое внимание уделяли проблеме производства стекла.

В XIX в. вклад в развитие материаловедения внесли Ф.Ю. Левинсон-Лессинг, Е.С. Федоров, В.А. Обручев, А.И. Ферсман, Н.Н. Белелюбский. Начинают производиться новые материалы: портландцемент, новые гипсы, цементные бетоны, полимерные материалы и т. д.

В машиностроении широкое применение получили металлы и сплавы металлов, именно поэтому металловедение является важной частью материаловедения.

Металловедение как наука возникло в России в XIX в, оно является научной основой для разработки новых оптимальных технологических процессов: термической обработки, литья, прокатки штамповки сварки. Сочетание высокой прочности и твердости с хорошей пластичностью, вязкостью и обрабатываемостью, не встречающееся у других материалов, явилось причиной использования металлов в качестве основного конструкционного материала во всех областях техники.

Впервые установил существование связи между строением стали и ее свойствами выдающийся русский ученый П.П. Аносов (1799-1851 гг.), раскрывший давно утраченный секрет изготовления и получения древними мастерами Востока булатной стали, которая идет для производства клинков. Булатная сталь Аносова славилась во всем мире и даже вывозилась за границу. Клинки, которые были изготовлены из этой стали, отличались высокой твердостью и вязкостью. П.П. Аносов считается «зачинателем» производства высококачественной стали, он впервые применил микроскоп для определения строения стали и положил начало изучению закономерной связи между структурой и свойствами сплавов.

Основоположник научного металловедения Д.К. Чернов (1839-1921 гг.), который открыл в 1868 г. фазовые превращения в стали. Открытие Д.К. Черновым критических точек а и b (по современному обозначению А1 и A3) совершило революцию в познании природы металлических сплавов и позволило объяснить ряд «таинственных» явлений, которые происходят при термической обработке сталей.

Огромный вклад в развитие науки о металлах внесли Н.С. Курнаков, А.А. Байков, Н.Т. Гудцов, А.А. Бочнар, Г.В. Курдюмов, С.С. Штейиберг, А.П. Гуляев, а также другие советские ученые.

Большое значение в развитии металловедения и термической обработки имели работы Осмонда (Франция), Зейтца, Бейна и Мейла (США), Таммана и Ганемана (Германия).

В XX веке были достигнуты крупные достижения в теории и практике материаловедения, созданы высокопрочные материалы для инструментов, разработаны композиционные материалы, открыты и использованы свойства полупроводников, совершенствовались способы упрочнения деталей термической и химико-термической обработкой.

2. Зеренное строение металлов. Границы зерен и субзерен

Металлы - это поликристаллические тела, они состоят из мелких кристаллов. Характеризуются металлическими свойствами и составляют 50 % всех химических элементов. Строение металлов и их сплавов кристаллическое.

В процессе кристаллизации кристаллы приобретают неправильную форму. Их называют зернами. Каждое зерно имеет свою ориентировку кристаллической решетки, которая отличается от ориентировки соседних зерен. Размер зерна металла влияет на его механические свойства. Данные свойства, вязкость и пластичность, значительно выше, если металл имеет мелкое зерно.

Поверхности раздела зерен называются границами зерен, которые могут быть: наклонными при расположении оси вращения в той же плоскости, что и граница; кручеными при перпендикулярно расположенной оси к плоскости. Такой кусок металла является поликристаллом. Границы зерен определяются точками соприкосновения смежных кристаллов. О размерах, структуре и характере строения зерен можно судить по изломам металла.

В поликристаллических материалах размер зерен от 1 до 1000 мкм. Зерна разориентированы, повернуты одни относительно других до десятков градусов. Границы являются основным дефектом в металлах. На границах между зернами атомы не имеют правильного расположения. Существует переходная область шириной в несколько атомных диаметров, в которой решетка одного зерна переходит в решетку другого зерна с иной ориентацией. Строение переходного слоя (границы) способствует скоплению в нем дислокаций, так как при переходе через границу ни плоскость скольжения, ни вектор Бюргерса не сохраняются неизменными. Нарушение правильности расположения способствует тому, что на границах зерен повышена концентрация тех примесей, которые понижают поверхностную энергию. Внутри зерен нарушается правильное кристаллическое строение. Границы субзерен менее нарушены.

Все металлы имеют общие свойства: пластичность, высокую тепло- и электропроводность, специфический металлический блеск, повышают электросопротивление с ростом температуры.

Из жидкого расплава вырастает монокристалл, который представляет собой один кристалл. Размеры монокристаллов невелики, их используют в лабораториях для изучения свойств какого-либо вещества. Металлы и сплавы, которые получают в самых обычных условиях, состоят из большого количества кристаллов, они имеют поликристаллическое строение.

Изучение строения металлов с помощью рентгеноструктурного анализа и электронного микроскопа позволило установить, что внутреннее кристаллическое строение зерна не является правильным. В кристаллических решетках реальных металлов имеются различные дефекты (несовершенства), которые нарушают связи между атомами и оказывают влияние на свойства металлов. Все дефекты решетки - это нарушения укладки атомов в решетке.

Расположение атомов в решетке может быть в форме центрированного куба (б- и в-железо, б-титан, хром, молибден, вольфрам, ванадий), куба, грани которого центрированы (г-железо, алюминий, медь, никель, свинец, в-кобальт) или гексагональны, или в форме ячейки (магний, цинк).

Зерна в поликристаллах не являются монолитными, а состоят из отдельных субзерен, которые повернуты одно относительно другого на малый угол. Субзерно является многогранником, в котором содержится либо незначительное количество дислокаций, либо их совсем нет. Основные характеристики субзерен: тип, расположение, строение, плотность дислокаций. Многие дислокации образуются в результате механического сдвига.

Границы субзерен и зерен в металлах разделяют на малоугловые и большеугловые. Малоугловые границы наблюдаются между субзернами и имеют дислокационное строение. Малоугловую границу можно представить с помощью ряда параллельных краевых дислокаций. Образование субзерен с малоугловыми дислокациями называется полигонизацией. Структура большеугловых границ более сложная. Субграницы образованы определенными системами дислокаций. В зависимости от того, какой материал и какое воздействие на него оказывает окружающая среда, находится расположение дислокаций. Если металл мало деформирован, то местом скопления дислокаций являются плоскости скольжения. Если же такие металлы, как алюминий, железо подвергаются сильной деформации, то дислокации представлены в виде сложных сплетений: пространств, сетки.

Структура, в которой субзерна разориентированны друг относительно друга на угол 15-300, является блочной или мозаичной.

Плотность дислокаций в металле повышается при увеличении угла разориентации субзерен и уменьшением их величины. Атомы, расположенные на границах зерен, и атомы на поверхности кристалла из-за нескомпенсированности сил межатомного взаимодействия, имеют более высокую потенциальную энергию, по сравнению с атомами в объеме субзерен. Наличие дислокаций влияет на прочностные качества металлов. По теоретическим подсчетам предел упругости чистых металлов в 1000 раз превышает реальный, а предел упругости стали - в 100 раз.

3. Световая микроскопия; количественные характеристики микроструктуры

Самые разнообразные методы применяются для исследования внутреннего строения сплавов, большинство основано на физических принципах.

Изучение строения металлов начинается с помощью простого и распространенного в научных и заводских лабораториях метода - световой микроскопии (металлографический метод). Впервые исследование металлов при помощи микроскопа осуществил П.П. Аносов. Он занимался изучением булатной стали.

Методом световой микроскопии изучают размеры, форму, расположение зерен, дефекты кристаллического строения (двойники, дислокации), а также он используется для прогнозирования поведения металлов в эксплуатационных условиях.

Все металлы - вещества непрозрачные (для видимого света). Форму кристаллов, их размер и расположение изучают на специально изготавливаемых микрошлифах. В этом случае делают разрез металла в плоскости, интересующей исследователя, полученную плоскость шлифуют и полируют.

Применять можно как грубую, так и тонкую шлифовку, с целью устранения неровностей поверхности шлифа. Шлифовку проводят перед полировкой. Чтобы получить ровную поверхность, необходимо при перемене абразива изменять и направление движения образцов на 90°. Шлифовку следует продолжать вплоть до исчезновения рисок от предыдущей операции. По результатам шлифовки шероховатость поверхности должна быть менее 0,08 мкм.

Полировка осуществляется с целью получения зеркальной поверхности образца. Полировка может быть механической, электрохимической и химико-механической.

Механическая шлифовка осуществляется при помощи станка с вращающимся кругом, который покрыт полировальным материалом. На данный материал наносят абразивные частицы.

Химико-механическая полировка осуществляется при помощи абразивных частиц и химических элементов.

Электрохимическая полировка проводится в ванне с электролитом. Для сглаживания поверхности используется ток.

При механической шлифовке и полировке происходит пластическая деформация поверхности образца. В зависимости от того, какова твердость материала, глубина деформации поверхности может доходить до 25 мкм.

После шлифовки и полировки обрабатываемый образец опускают в воду, затем в спирт, после чего сушат при помощи фильтровальной бумаги.

Чтобы выявить структуру, создают рельеф или окрашивают в разные цвета структурные составляющие, что достигается химическим травлением. При травлении кислота воздействует на границы зерна, потому что имеются места с дефектным строением, которые в травленом шлифе станут углублениями; свет, падая на них, рассеивается и в поле зрения микроскопа они будут казаться темными, а тело зерна - светлым.

Для рассмотрения микрошлифов при исследовании микроструктуры металлов применяют специальные микроскопы, в которых луч от источника света, отражаясь от шлифа, проходит через объектив и окуляр, давая соответствующее увеличение.

Общее увеличение микроскопа приравнивается к произведению увеличений объектива и окуляра.

Под микроскопом на микрошлифе после полирования можно увидеть микротрещины и неметаллические включения (графит в чугунах, оксиды). Для выявления самой микроструктуры металла поверхность шлифа травят, т. е. обрабатывают специальными реактивами, состав которых зависит от состава металла. Выявление микроструктуры при травлении основано на том, что различные фазы протравливаются неодинаково и окрашиваются по-разному. В результате травления микрошлифов чистых металлов можно выявить форму и размеры отдельных зерен. Микроанализ позволяет установить величину, форму и ориентировку зерен, отдельные фазы и структурные составляющие, изменение внутреннего строения металлов и сплавов в зависимости от условий их получения и обработки.

Для того чтобы рассмотреть детали структуры применяют электронный микроскоп, где изображение формируется при помощи потока быстро летящих электронов. Различают прямые и косвенные методы исследования структуры. Косвенные методы основаны на специальной технике приготовления тонких слепков-пленок, которые отображают рельеф травленого шлифа. Исследуя полученную реплику, наблюдают детали структуры, их минимальный размер равен 2-5 нм. Прямые методы позволяют исследовать тонкие металлические фольги толщиной до 300 нм на просвет с помощью электронных микроскопов высокого разрешения (микроскопы УЭМВ-100, УЭМВ-100А, УЭМВ-100В).

Оптический микроскоп не является аппаратом, который может обнаружить кристаллик любого размера.

Количественная металлография сталкивается с определенными трудностями. Так, проблема определения количественных параметров трехмерного объекта путем изучения его двухмерного сечения решается несколькими путями. При помощи сравнительного метода и метода средней длины пересекающего зерно отрезка определяется величина зерен металлов.

Сегодня используется автоматизированная система изучения микрошлифов металлов, которая включает применение микроскопа, видеокамеры, видеобластера и персонального ЭВМ.

4. Элементарная ячейка; координационное число; сингония

Кристаллографические направления и плоскости, анизотропия; межплоскостные расстояния Кристаллическая решетка - упорядоченное расположение атомов. Элементарная ячейка кристалла - минимальный объем кристалла, полностью сохраняющий все его свойства. Атомы в решетке располагаются различно.

Элементарная ячейка повторяется в трех измерениях и образует кристаллическую решетку. Структуру кристалла определяет положение атомов в элементарной ячейке.

Координационное число - общее число нейтральных молекул и ионов, имеющих связь с центральным ионом в комплексе.

1. У элементов четвертой группы ковалентная насыщенная и направленная связь, и у каждого атома четыре соседа. Число ближайших соседей - координационное число. Элементарная решетка - тетраэдр с одним атомом в центре и четырьмя атомами по вершинам.

2. При образовании ионной связи кристаллические решетки более компактны, координационное число достигает 6 из-за ненасыщенности ионной связи. Пример: кристаллическая решетка NaCI - примитивный куб с ионами хлора и натрия в вершинах.

3. Металлические связи делают кристаллические решетки более компактными. Координационные числа достигают значений 8 и 12. В металлических материалах формируются три типа кристаллических решеток: объемноцентрированная кубическая (ОЦК), гранецентрированная кубическая (ГЦК) и гексагональная плотно-упакованная (ГП)

Сингония - одно из подразделений кристаллов по признаку симметрии их элементарной ячейки при одинаковых системах координатных осей. Сингония характеризует симметрию трехмерных структур с трансляционной симметрией в трех направлениях.

Выделяют семь осевых систем в зависимости от длины отрезков, отсекаемых на кристаллографических осях, и взаимного расположения этих осей.

1. Кубическая сингония. Три равновеликие оси пересекаются под прямым углом.

2. Тетрагональная сингония. Два отрезка оси одинаковой длины пересекаются под прямым углом, третья ось перпендикулярна им, и отсекаемый на ней отрезок иной длины.

3. Ромбическая сингония. Три оси разной длины пересекаются под прямыми углами.

4. Моноклинная сингония. Две оси разной длины пересекаются под косым углом, третья ось составляет с ними прямой угол.

5. Триклинная сингония. Три оси разной длины пересекаются под косыми углами.

6. Тригональная сингония. Три отрезка осей равной длины пересекаются в одной плоскости под углом 60 °C, третья ось перпендикулярна этой плоскости, и отсекаемый на ней отрезок имеет иную длину.

7. Гексагональная сингония. Положение осей аналогично их положению в тригональной сингонии.

Упорядоченность расположения атомов в кристаллической решетке позволяет выделить отдельные кристаллографические направления и плоскости.

Кристаллографические направления - прямые лучи, выходящие из любой точки отсчета, вдоль которых располагаются атомы. Точки отсчета - вершины куба. Кристаллографические направления - ребра и диагонали граней куба. Могут быть и другие направления. Кристаллографические плоскости - плоскости, на которых лежат атомы.

Кристаллографические направления и плоскости характеризуются индексами Миллера, которые определяют их различные положения. Параллельные плоскости в кристаллической решетке, построенные идентично, имеют одинаковые индексы. Чтобы индексы получались из простых целых чисел, плоскость можно смещать параллельно. Положение любого узла кристаллической решетки относительно произвольно выбранного начала координат определяют заданием координат х, у, z. Для одной элементарной ячейки эти координаты равны параметрам решетки а, b, с соответственно.

Для определения индекса находят координаты ближайшего к точке отсчета атома, лежащего на этом направлении, выраженные через параметр решетки.

Все физические, включая и прочностные, свойства металлов вдоль различных кристаллографических направлений зависят от числа атомов, расположенных на упомянутых направлениях. В кристаллической решетке на различных направлениях находится разное число атомов. В кристаллических веществах должна наблюдаться анизотропия, т. е. неодинаковость свойств вдоль различных направлений.

Анизотропия - результат упорядоченного расположения атомов в кристаллических телах, проявляется в пределах монокристалла. Реальные металлы - тела поликристаллические, включающие многочисленные зерна, произвольно ориентированные друг к друг своими кристаллографическими направлениями и плоскостями. Анизотропия механических свойств наблюдается при испытании образцов, вырезанных вдоль различных кристаллографических направлений.

Реальные металлы имеют усредненную изотропность и называются квазиизотропными или псевдоизотропными телами

Межплоскостное расстояние - кратчайшее расстояние, разделяющее параллельные и равноотстоящие друг от друга узловые плоскости.

5. Классификация дефектов кристаллического строения. Точечные дефекты, зависимость их концентрации от температуры. Краевая и винтовая дислокации

Монокристалл можно вырастить из жидкого расплава. Монокристалл представляет кусок металла из одного кристалла. Металлы и сплавы, которые получают при обычных условиях, состоят из большого количества кристаллов и имеют поликристаллическое строение. Эти кристаллы называют зернами, и они имеют неправильную форму. Каждое зерно имеет свою ориентировку кристаллической решетки, и она отличается от ориентировки соседних зерен.

Внутреннее кристаллическое строение зерна не является правильным. В кристаллических решетках металлов имеются дефекты (несовершенства), которые нарушают связи между атомами и оказывают влияние на свойства металлов. Все дефекты решетки это нарушения укладки атомов в решетке. Поверхностные несовершенства - границы зерен металла. Различают следующие структурные несовершенства: дефект решетки, точечный, малый, линейный, плоский. Дефекты кристаллов значительно меняют физические, механические, химические, технологические свойства металлов.

К точечным дефектам относятся вакансии (пустые узлы), чужеродные атомы внедрения. Чем выше температура, тем больше дефектов.

Атомы примесей являются одним из самых распространенных несовершенств кристаллической структуры (вакансии, дислоцированные атомы).

Вакансии - это пустой узел кристаллической решетки, который образуется из-за различных причин. Источники вакансий - границы зерен, в которых нарушено правильное расположение атомов. Число вакансий и их концентрация зависят от температуры в обработке. Число вакансий увеличивается с повышением температуры. Одиночные вакансии встречаются при перемещении по кристаллу и объединяются в пары, образуя дивакансии, при этом уменьшается их суммарная поверхность, устойчивость спаренной вакансии возрастает, возможно образование тривакансий и целых цепочек.

Дислоцированные атомы - это атомы, вышедшие из узла кристаллической решетки и занявшие место в междоузлии. Относятся к точечным дефектам.

Примесные атомы занимают в кристаллической решетке место основных атомов или внедряются внутрь ячейки (разновидность точечных дефектов).

Если правильность кристаллического строения вокруг вакансий, дислоцированных атомов и атомов примесей нарушается, то нарушается и уравновешенность силовых полей атомов во всех направлениях. Все изменения составляют не больше нескольких атомных диаметров. Точечные дефекты взаимодействуют друг с другом. Имеет место взаимодействие точечных дефектов и с дефектами линейными - дислокациями.

Линейные дефекты малы в двух измерениях, в третьем они большего размера, который может быть соизмерим с длиной кристалла. К линейным дефектам относятся цепочки вакансий, межузельных атомов и дислокации. Дислокации могут быть достаточно протяженными в одном направлении, и иметь небольшое протяжение в противоположном направлении. От наличия дислокаций напрямую зависят прочность и пластичность металлов.

Линейные несовершенства - дислокации, они являются особым видом несовершенств в кристаллической решетке. Характеристикой дислокационной структуры является плотность дислокаций.

В настоящее время известны различные механизмы образования дислокаций. Дислокации могут возникать при росте зерен, при образовании субзерен. Экспериментально установлено, что границы зерен и блоков имеют большую плотность дислокаций. При кристаллизации из расплава энергетически выгодно, когда зародыш растет с образованием винтовой дислокации на его поверхности. Способствуют образованию дислокаций и сегрегации примесей. В затвердевшем металле дислокации возникают в результате скопления вакансий.

Область несовершенства кристалла вокруг края экстраплоскости называется краевой (линейной) дислокацией. Краевая дислокация представляет быстрозатухающее поле упругих напряжений в кристаллической решетке вокруг края экстраплоскости, которое вызвано тем, что выше этого края параметры решетки несколько сжаты, а ниже соответственно растянуты. В одном измерении протяженность дислокации имеет макроскопический характер (дислокация может обрываться только на границе кристалла - она является границей зоны сдвига). Движение краевой дислокации - консервативное.

Если экстраплоскость находится в верхней части кристалла, то дислокацию называют положительной; если экстраплоскость находится в нижней части кристалла, то ее называют отрицательной.

Винтовые дислокации образуются, если две части кристалла сдвинуты к плоскости скопления вакансий.

Если винтовая дислокация образована вращением по часовой стрелке, то ее называют правой, если вращение против часовой стрелки - левой. Вакансия и межузельные атомы к винтовой дислокации не стекают. Также возможно образование частичных и смешанных дислокаций. Образование дислокаций повышает энергию кристалла.

Дислокации способствуют увеличению внутреннего напряжения в металлах. Применение поляризованного света позволяет выявить поля напряжений, возникающие вокруг дислокаций.

6. Диффузия в металлах

Диффузия - это перенос вещества, обусловленный беспорядочным тепловым движением диффундирующих частиц. При диффузии газа его молекулы меняют направление движения при столкновении с другими молекулами Основными типами движения при диффузии в твердых телах являются случайные периодические скачки атомов из узла кристаллической решетки в соседний узел или вакансию.

Развитие процесса диффузии приводит к образованию диффузионного слоя, под которым понимают слой материала детали у поверхности насыщения, отличающийся от исходного по химическому составу, структуре и свойствам.

Диффузионное движение любого атома - это случайное блуждание из-за большой амплитуды колебаний, которое не зависит ни от движения других атомов, ни от предыдущего движения данного атома. Не зависящие от температуры колебания атомов вокруг положения равновесия обычно происходят с частотой ~1013 с-1

Вопрос определения механизма диффузии является весьма сложным. Большую роль в решении этой проблемы сыграли работы Я.И. Френкеля, в которых показано огромное влияние дефектов кристаллической решетки, в особенности вакансий, на процесс диффузионного перемещения атомов. Наиболее затруднительным является простой обменный механизм диффузии, а наиболее вероятным - вакансионный. Каждому механизму диффузии соответствует определенная энергия активации Q, т. е. величина энергетического барьера, который необходимо преодолеть атому при переходе из одного положения в другое.

Перемещение при краудионном механизме диффузии подобно распространению волны: каждый атом смещается на малую величину, а возмущение распространяется быстро. Для диффузии большое значение имеют вакансии и их ассоциации (бивакансии, комплексы вакансия - атом примеси), а также дефекты, являющиеся их источниками (линейные и поверхностные).

Основным механизмом самодиффузии и диффузии в твердых растворах замещения является вакансионный. В твердых растворах внедрения основным механизмом перемещения примесных атомов небольшого размера является межузельный.

Если два хорошо соединенных между собой куска чистых металлов АиВ длительно отжигать, то будет наблюдаться взаимное проникновение металлов и смещение первоначальной границы раздела, отмеченной инертными метками (оксидными частицами или вольфрамовыми проволочками) на величину Дх, прямо пропорциональную квадратному корню из времени отжига. Если DА > DВ, то компонент А проникает в В с большей скоростью, чем В в А, вследствие этого часть В образца увеличивается в объеме.

Диффузионная металлизация - процесс диффузионного насыщения поверхности изделий металлами или металлоидами. Диффузионное насыщение проводят в порошкообразной смеси, газовой среде или расплавленном металле (если металл имеет низкую температуру плавления).

Борирование - диффузионное насыщение поверхности металлов и сплавов бором для повышения твердости, коррозионной стойкости, износостойкости проводят путем электролиза в расплавленной соли бора. Борирование обеспечивает особенно высокую твердость поверхности, сопротивление износу, повышает коррозионную стойкость и теплостойкость. Борированные стали обладают высокой коррозионной стойкостью в водных растворах соляной, серной и фосфорной кислот. Борирование применяют для чугунных и стальных деталей, работающих в условиях трения в агрессивной среде (в химическом машиностроении).

Хромирование - диффузионное насыщение хромом проводят в порошкообразных смесях хрома или феррохрома с добавками хромистого аммония (1 %) и окиси алюминия (49 %) при температуре 1000…1050 °C с выдержкой 6…12 ч. Хромирование применяют для деталей, которые работают на износ в пароводяных и агрессивных средах (арматура, вентили). При хромировании изделий из малоуглеродистых сталей твердость повышается и приобретается хорошая коррозионная стойкость.

Алитирование - это процесс диффузионного насыщения поверхностного слоя алюминием, проводят в порошкообразных смесях алюминия или в расплавленном алюминии. Цель - получение высокой жаростойкости поверхности стальных деталей. Алитирование проводят в твердых и жидких средах.

Силицирование - диффузионное насыщение кремнием проводят в газовой атмосфере. Насыщенный кремнием слой стальной детали имеет не очень высокую твердость, но высокую коррозионную стойкость и повышенную износостойкость в морской воде, азотной, соляной в серной кислотах. Силицированные детали применяют в химической, целлюлозно-бумажной и нефтяной промышленности. Для повышения жаростойкости силицирование применяют для изделий из сплавов на основе молибдена и вольфрама, обладающих высокой жаропрочностью.

В материаловедении разрабатываются макро- и микроскопические теории диффузии. В макроскопической теории делается акцент на формализме, т. е. на термодинамических силах и параметрах. В микроскопической теории используют механизмы, основанные на теории об атомных скачках.

7. Фазовые переходы I и II рода

Компоненты в жидком состоянии (компоненты А) растворимы неограниченно, компоненты в твердом состоянии (компоненты В) не образуют химических соединений и нерастворимы.

Диаграммы состояния представляют график в координатах сплава - температура, на котором отражены продукты, образованные в результате взаимодействия компонентов сплава друг с другом в условиях термодинамического равновесия при разных температурах. Это вещества, которые имеют в зависимости от температуры и состава определенное агрегатное состояние, специфический характер строения и определенные свойства, их называют фазами. Фазой считается однородная часть сплава, которая имеет одинаковые состав, строение и свойства. Жидкая фаза представляет раствор расплавленных компонентов. Твердые фазы являются зернами, которые имеют определенную форму, размер, состав, специфику строения и свойства. Это твердые растворы, химические соединения, а также зерна чистых компонентов, которые не образуют с другими компонентами ни твердых растворов, ни химических соединений.

Диаграмма состояния, на которой отображено предельное состояние сплавов, может быть разбита на области. Отдельные области состоят из одной фазы, а некоторые - из двух, они имеют разные составы, строение и свойства. В диаграммах состояния содержится информация, которая необходима для создания и обработки сплавов.

Диаграмма состояния I рода. Правило отрезков. Эта диаграмма охватывает сплавы, компоненты которых образуют смеси своих практически чистых зерен при ничтожной взаимной растворимости.

От температуры зависит фазовое строение сплавов на диаграмме. При термодинамическом воздействии компонентов друг на друга снижается температура их перехода в жидкое состояние.

Сплав двух компонентов, которые плавятся при минимальной температуре, называется эвтектическим или эвтектикой. Эвтектика является равномерной смесью одновременно закристаллизовавшихся мелких зерен обоих компонентов. Температура, при которой одновременно плавятся оба компонента, называется эвтектической температурой.

Переход сплавов из жидкого состояния в твердое при кристаллизации происходит в интервале температур, лежащих между линией ликвидуса и эвтектической температурой, которой соответствует линия солидуса.

Правилу отрезков подчиняются все количественные изменения в сплавах при кристаллизации. В зависимости от состава все сплавы делятся на доэвтектические и заэвтектические. Доэвтектические сплавы содержат компонента А свыше (100-Вэ)%. В них он является избыточным компонентом. В заэвтектических сплавах избыточным является компонент В (его количество превышает Вэ).

Количество каждой структурной составляющей вычисляется по правилу отрезков применительно к эвтектической температуре.

Диаграмма состояний II рода. Дендритная ликвация. При неограниченной растворимости компонентов друг в друге, которые имеют одинаковые типы решеток и сходное строение наружных электронных оболочек, получают диаграммы II рода.

На диаграмме различают три фазовые области:

1. Выше линии ликвидуса АDВ находится область жидкой фазы Ж.

2. Под ней до линии солидуса АDВ расположена двухфазная область б + Ж. Фаза б представляет твердый раствор компонентов А и В, зерна имеют единую кристаллическую решетку. Однако у сплавов разного состава число атомов компонентов А и В в элементарных ячейках решетки различно.

3. Область, расположенная под линией солидуса, является однофазной (фаза б).

В отличие от сплавов смесей зерен практически чистых компонентов каждый из затвердевших сплавов на диаграмме состояния представляет совокупность зерен фазы, которые внешне ничем не отличаются друг от друга.

В случае ускоренного охлаждения сплава при кристаллизации диффузионные процессы не успевают завершиться, и центральная часть каждого зерна оказывается обогащенной более тугоплавким компонентом, а периферийная - легкоплавким компонентом (А). Это явление называется дендритной ликвацией, которая снижает прочностные свойства сплавов. Ее предотвращение возможно за счет медленного охлаждения сплава, обеспечивающего его равновесную кристаллизацию.

В случае возникновения дендритной ликвации она устраняется путем длительного диффузионного отжига сплава. Происходящие при этом диффузионные процессы выравнивают химический состав в зернах.

Во время пластической деформации металлического материала внешняя сила должна преодолеть сопротивление передвижению дислокаций, которое определяется значением силы Пайерлса-Набарро. Эта сила зависит от интенсивности межатомного взаимодействия в кристаллической решетке сплава.

Атомы растворимого компонента образуют в решетке твердого раствора более прочную металлическую связь с атомами компонента-растворителя, чем в решетках обоих чистых компонентов. Из-за этого сопротивление пластической деформации твердого раствора с увеличением содержания растворенного в нем другого компонента должно возрастать по криволинейному закону.

8. Плавление металлов и строение расплавов

Плавление - это физический процесс перехода металла из твердого состояния в жидкое расплавленное. Плавление - процесс, обратный кристаллизации, происходит при температуре выше равновесной, т. е. при перегреве. Поскольку жидкий металл обладает большей внутренней энергией, чем твердый, при кристаллизации выделяется теплота. Между теплотой Q и температурой кристаллизации Тк существует определенная связь. Степень перегрева при плавлении металлов не превышает нескольких градусов.

В жидком состоянии атомы вещества из-за теплового движения перемещаются беспорядочно, в жидкости имеются группировки атомов небольшого объема, в их пределах расположение атомов аналогично расположению в решетке кристалла. Эти группировки неустойчивы, они рассасываются и снова появляются в жидкости. При переохлаждении жидкости некоторые крупные группировки становятся устойчивыми и способными к росту. Эти устойчивые группировки атомов называют центрами кристаллизации (зародышами). Для осуществления процесса плавления необходимо наличие некоторого перегрева над равновесной температурой, т. е. термодинамического потенциала. Выше равновесной температуры более устойчив жидкий металл, он имеет меньший запас свободной энергии. Ниже этой температуры более устойчив твердый металл. При равновесной температуре свободные энергии жидкого и твердого состояния одинаковы, поэтому при этой температуре обе фазы (жидкая и твердая) могут сосуществовать одновременно и притом бесконечно долго. Равновесная температура очень близка к температуре плавления Тпл, с которой ее часто сравнивают. При охлаждении переход из жидкого состояния в твердое сопровождается образованием кристаллической решетки, т. е. кристаллизацией. Чтобы вызвать кристаллизацию, жидкий металл нужно переохладить до температуры ниже температуры плавления.

Жидкости, находящиеся при температуре, близкой к температуре плавления называются расплавами. Расплавы бывают металлическими, ионными, полупроводниковыми, органическими и высокополимерными. В зависимости от того, какие химические соединения образуют расплавы, выделяют солевые, оксидные, оксидно-силикатные и другие расплавы.

Большинство расплавов имеют в составе искосаэдрические частицы.

В процессе плавления химические связи в расплавах подвергаются видоизменению. В полупроводниках наблюдается образование металлической проводимости, у некоторых галогенидов вместо ионной проводимости происходит снижение электрической проводимости из-за образования расплава с молекулярным составом. Уровень температуры также влияет на тип связи в расплавах.

Среднее координационное число и межатомные расстояния также являются характеристиками расплавов. В процессе плавления металлов происходит уменьшение координационного числа примерно на 10-15 %. В тоже время межатомные расстояния остаются прежними. При плавлении полупроводников происходит увеличение их координационного числа в 1,5 раза, расстояние между атомами также увеличивается. Многокомпонентные расплавы характеризуются неравновесными, метастабильными состояниями, которые имеют взаимосвязь со структурой первоначальных твердых фаз.

Во многих случаях встречается отставание (гистерезис) свойств расплавов в процессе изменения температуры. На свойства и строения расплавов оказывают влияние следующие факторы: температура, время выдержки, скорость колебания температуры, тот материал, из которого создан контейнер, а также наличие примесей.

Состав расплавов отличается своей сложностью. В ионных расплавах могут содержаться простые или комплексные ионы, недиссоциированные и полимерные молекулы, а также свободные объемы. Силикатные расплавы могут содержать изолированные кремнекислородные тетраэдры и образуемые ими цепи, кольца, сетки и каркасы.

Однозначная модель структуры расплавов формируется достаточно сложно, т. к. расплавы содержат разные виды частиц и связи. Основная функция моделей: определение и интерпретация свойств расплавов, а также расчет свойств.

Расплавы в металлургической области подразделяются на промежуточные, побочные и конечные продукты. Используя расплавы в качестве электролитов, в металлургии производят и рафинируют металлы, а также осуществляют нанесение покрытий. Многие сплавы образуются в виде расплавов. Монокристаллы и эпитаксиальные пленки выращиваются из расплавов. В качестве катализаторов принято использовать металлические, солевые и оксидные расплавы. Солевые расплавы применяют в отжиговых и закалочных ваннах, высокотемпературных топливных элементах, в качестве теплоносителей, флюсов в процессе пайки и сварки металлов, реакционных сред в неорганическом и органическом синтезе, а также как поглотители, экстрагенты и т. д. Некоторые расплавы используются для получения силикатных, фторидных и иных специальных стеков и аморфных металлов.

9. Кристаллизация металлов; зарождение кристаллов, критический зародыш; гомогенное и гетерогенное зарождение кристаллов; рост кристаллов. Кривые Таммана

Кристаллизация - это процесс перехода металла из жидкого состояния в твердое с образованием кристаллической структуры. В природе все самопроизвольно протекающие превращения, кристаллизация и плавление обусловлены тем, что новое состояние в новых условиях является энергетически более устойчивым, обладает меньшим запасом энергии.

Переход металла из жидкого или парообразного состояния в твердое с образованием кристаллической структуры называется первичной кристаллизацией. Образование новых кристаллов в твердом кристаллическом веществе называется вторичной кристаллизацией. Процесс кристаллизации состоит из двух одновременно идущих процессов зарождения и роста кристаллов. Кристаллы могут зарождаться самопроизвольно - самопроизвольная кристаллизация или расти на имеющихся готовых центрах кристаллизации - несамопроизвольная кристаллизация.

Проследить процесс кристаллизации металла можно с помощью счетчика времени и термоэлектрического пирометра. Две разнородные проволоки, которые спаянны концами, погружают в расплавленный металл и при этом возникающий термоток пропорционален температуре металла, а стрелка милливольтметра отклоняется, она указывает температуру по специально градуированной шкале. Показания пирометра записывают во времени и по полученным данным строят кривые охлаждения в координатах температура - время. Критической точкой называется температура, которая соответствует какому-либо превращению в металле.

При охлаждении переход из жидкого состояния в твердое сопровождается образованием кристаллической решетки, т. е. кристаллизацией. Для того чтобы вызвать кристаллизацию, жидкий металл нужно переохладить до температуры ниже температуры плавления. При затвердевании и при аллотропическом превращении в металле вначале образуются центры кристаллизации, вокруг которых группируются атомы, образуя соответствующую кристаллическую решетку. Процесс кристаллизации складывается из двух этапов: образования центров кристаллизации и роста кристаллов. У каждого из возникающих кристаллов кристаллографические плоскости ориентированы случайно, кроме того, при первичной кристаллизации кристаллы могут поворачиваться, так как они окружены жидкостью. Смежные кристаллы растут навстречу друг другу, и точки их столкновения определяют границы кристаллитов (зерен).

У аморфных веществ кривые охлаждения плавные, без площадок и уступов: понятно, что аллотропии у этих веществ быть не может. Механизм кристаллизации металла состоит в том, что при соответствующем понижении температуры внутри тигля с жидким металлом начинают образовываться мелкие кристаллики, называемые центрами кристаллизации или зародышами.

Для начала роста кристаллов из жидкого металла необходимо, чтобы свободная энергия металла уменьшилась. Если же в результате образования зародыша свободная энергия металла увеличивается, то зародыш растворяется. Минимальный размер способного к росту зародыша называется критическим размером зародыша, а такой зародыш - устойчивым.

Чем больше степень переохлаждения, понижающая свободную энергию металла, тем меньше критический размер зародыша.

Вокруг образовавшихся центров начинают расти кристаллы. По мере роста кристаллов в металле, оставшемся еще в жидком состоянии, продолжают возникать новые центры кристаллизации. Каждый из растущих новых кристаллов ориентирован в пространстве произвольно.

Кристаллы с неправильной формой называются зернами или кристаллами. Твердые тела, в том числе и металлы, состоящие из большого количества зерен, называют поликристаллическими.

Д.В. Черновым установлено, что процесс кристаллизации состоит из двух элементарных процессов: зарождения центров кристаллизации и роста кристаллов из этих центров. Гораздо позже Тамман, изучая процесс кристаллизации, установил зависимость числа центров кристаллизации и скорости роста кристаллов от степени переохлаждения.

Пока образовавшиеся кристаллы растут свободно, они имеют более или менее правильную геометрическую форму. Однако при столкновении растущих кристаллов их правильная форма нарушается, так как в этих участках рост граней прекращается. Рост продолжается в тех направлениях, где есть свободный доступ «питающей» жидкости. В результате растущие кристаллы, имеющие сначала геометрически правильную форму, после затвердевания получают неправильную внешнюю форму и поэтому называются кристаллитами или зернами.

Рост зародышей происходит в результате перехода атомов из переохлажденной жидкости к кристаллам. Кристалл растет послойно, каждый слой имеет одноатомную толщину. Различают два элементарных процесса роста кристаллов.

Образование двумерного зародыша.

Рост двумерного зародыша путем поступления атомов из переохлажденной жидкости. После образования на плоской грани двумерного зародыша дальнейший рост нового слоя протекает сравнительно легко, так как появляются участки, удобные для закрепления атомов, переходящих из жидкости.

Размер зерен, образующихся в процессе кристаллизации, зависит не только от числа самопроизвольно зарождающихся центров кристаллизации, но и от числа частичек нерастворимых примесей, всегда имеющихся в жидком металле, которые играют роль готовых центров кристаллизации.

10. Строение слитка и аморфные сплавы

Строение стального слитка впервые дано в 1878 г. Д.К. Черновым. Структура литого слитка состоит из трех основных зон. Первая зона - наружная мелкозернистая корка, которая состоит из дезориентированных мелких кристаллов - дендритов.

Вторая зона слитков - зона столбчатых кристаллов. После образования самой корки условия теплоотвода меняются, градиент температур уменьшается и уменьшается степень переохлаждения стали. Третья зона слитка - зона равноосных кристаллов.

Кристаллы, которые образуются в процессе затвердевания металла, имеют различную форму в зависимости от скорости охлаждения, характера и количества примесей. Чаще в процессе кристаллизации образуются разветвленные (древовидные) кристаллы, которые получили название дендриты из-за своей формы, которые напоминают форму дерева. Такая форма кристаллов объясняется тем, что возникшие в жидком металле зародыши растут в направлении с минимальным расстоянием между атомами. Так образуются оси первого порядка. Одновременно с удлинениями осей первого порядка на их ребрах зарождаются и растут перпендикулярно к ним под определенными углами оси второго порядка, от которых уже растут оси третьего порядка и в конечном счете образуются кристаллы в форме дендритов. Дендритное строение выявляется после специального травления шлифов, т. к. все промежутки между ветвями дендритов заполнены, и видны обычно только места стыков дендритов в виде границ зерен. Правильная форма дендритов искажается в результате столкновения и срастания частиц на поздних стадиях процесса. Дендритное строение характерно для макро- и микроструктуры литого металла (сплава).

...

Подобные документы

  • Эксплуатационные свойства металлов. Классификация металлических материалов. Черные и цветные металлы, их сплавы. Стали для режущих и измерительных инструментов. Стали и сплавы со специальными свойствами. Сплавы алюминия и меди. Сплавы с "эффектом памяти".

    курсовая работа [1,6 M], добавлен 19.03.2013

  • Классификация металлов: технические, редкие. Физико-химические свойства: магнитные, редкоземельные, благородные и др. Свойства конструкционных материалов. Строение и свойства сталей, сплавов. Классификация конструкционных сталей. Углеродистые стали.

    реферат [24,1 K], добавлен 19.11.2007

  • Типы кристаллических решёток металлов и дефекты их строения. Свойства и области применения карбида кремния. Электропроводность жидких диэлектриков и влиянии на неё различных факторов. Виды, свойства и применение неметаллических проводниковых материалов.

    контрольная работа [1,5 M], добавлен 09.10.2010

  • Классификация дефектов кристаллической решетки металлов. Схема точечных дефектов в кристалле. Дислокация при кристаллизации или сдвиге. Расположение атомов в области винтовой дислокации. Поверхностные или двухмерные дефекты. Схема блочной структуры.

    лекция [4,4 M], добавлен 08.08.2009

  • Отличия макро- и микроскопического строения материалов. Сравнение теплопроводности древесины и стали. Классификация дефектов кристаллического строения. Причины появления точечных дефектов. Особенности получения, свойства и направления применения резин.

    контрольная работа [318,1 K], добавлен 03.10.2014

  • Структура композиционных материалов. Характеристики и свойства системы дисперсно-упрочненных сплавов. Сфера применения материалов, армированных волокнами. Длительная прочность КМ, армированных частицами различной геометрии, стареющие никелевые сплавы.

    презентация [721,8 K], добавлен 07.12.2015

  • Условия получения крупнозернистой структуры при самопроизвольно развивающейся кристаллизации. Диаграмма состояния системы свинец-олово. Линейные несовершенства кристаллического строения и их влияние на свойства металлов. Устранение остаточного аустенита.

    контрольная работа [2,0 M], добавлен 11.01.2011

  • Понятие о металлах, особенности их атомного строения, физико-механические, химические и технологические свойства. Сплавы золота, серебра, титана, платины и палладия, нержавеющая сталь; их характеристики и применение в ортопедической стоматологии.

    презентация [433,4 K], добавлен 01.12.2013

  • Железоуглеродистые сплавы, физические и химические свойства, строение, полиморфные превращения; производство чугуна и доменный процесс. Термическая обработка стали: отжиг, отпуск, закалка. Медь и её сплавы, область применения, оксиды и гидрооксиды.

    курсовая работа [1,6 M], добавлен 17.10.2009

  • Свойства и атомно-кристаллическое строение металлов. Энергетические условия процесса кристаллизации. Строение металлического слитка. Изучение связи между свойствами сплавов и типом диаграммы состояния. Компоненты и фазы железоуглеродистых сплавов.

    курсовая работа [871,7 K], добавлен 03.07.2015

  • Железоуглеродистые сплавы - стали и чугуны, как важнейшие металлические сплавы, их химический состав и основные компоненты. Фазы в железоуглеродистых сплавах. Свойства и использование цементита. Структурные составляющие в железоуглеродистых сплавах.

    контрольная работа [347,8 K], добавлен 17.08.2009

  • Основные виды неметаллических конструкционных материалов. Древесные материалы, их общая характеристика и классификация. Антифрикционные сплавы на основе цветных металлов, их назначение, маркировка, основные области применения и условия эксплуатации.

    контрольная работа [80,7 K], добавлен 20.07.2012

  • Формирование структуры и методы исследования свойств металлов; диаграмма состояния "железо-цементит". Железоуглеродистые сплавы; термическая обработка металлов и сплавов. Сплавы, применяемые в промышленности; выбор сплава на основе цветного металла.

    контрольная работа [780,1 K], добавлен 13.01.2010

  • Классификация композиционных материалов, их геометрические признаки и свойства. Использование металлов и их сплавов, полимеров, керамических материалов в качестве матриц. Особенности порошковой металлургии, свойства и применение магнитодиэлектриков.

    презентация [29,9 K], добавлен 14.10.2013

  • Сущность пластической деформации металлов и влияние на неё химического состава, структуры, температуры нагрева, скорости и степени деформации. Определение легированных сталей, их состав. Литейные сплавы на основе алюминия: их маркировка и свойства.

    контрольная работа [38,4 K], добавлен 19.11.2010

  • Физико-химические закономерности формирования; строение и свойства материалов. Типы кристаллических решёток металлов. Испытания на ударный изгиб. Термическая и химико-термическая обработка, контроль качества металлов и сплавов. Конструкционные материалы.

    курсовая работа [3,7 M], добавлен 03.02.2012

  • Классификация чугунов по составу и технологическим свойствам. Температуры эвтектического и эвтектоидного превращений. Процесс образования графита в сплавах железа с углеродом. Схема образования структур при графитизации. Специальные свойства чугунов.

    презентация [7,7 M], добавлен 14.10.2013

  • Основные методы и виды гальванических покрытий на алюминий и его сплавы. Анализ схемы предварительной подготовки алюминия, а также его сплавов. Цинкатный и станнатный растворы. Непосредственное нанесение гальванических покрытий на алюминий и сплавы.

    реферат [26,8 K], добавлен 14.08.2011

  • К чугунам относятся сплавы железа с углеродом, содержание которого превышает 2,14%. Описание составов и свойств чугуна, а также структуры серых и ковких чугунов, область их применения. Процесс графитизации. Процесс получения ковкого чугуна, маркировка.

    реферат [1,3 M], добавлен 18.01.2011

  • Направления и этапы исследований в сфере строения и свойств металлов, их отражение в трудах отечественных и зарубежных ученых разных эпох. Типы кристаллических решеток металлов, принципы их формирования. Основные физические и химические свойства сплавов.

    презентация [1,3 M], добавлен 29.09.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.