Система управления прожектором

Выбор структурной схемы. Достоинства синхронных электродвигателей. Суммарная короткозамкнутая часть ротора в двигателях с одним коллектором. Ротор с тремя полюсами. Конструкции коллекторов. Рамка с током, в однородном магнитном поле полюсов статора.

Рубрика Производство и технологии
Вид контрольная работа
Язык русский
Дата добавления 02.01.2013
Размер файла 264,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Описание принципа работы системы

С пульта управления на корабле подаётся команда (например, осуществить поворот прожектора на 450), сигнал, проходя через корректирующий контур, усиливается усилителем мощности, затем посредствам электродвигателя приводится в действие механизм разворота прожектора (в зависимости от заданного направления - танаж или рыскание). Через датчик обратной связи, поступает информация на преобразователь, после него, она передаётся на сравнивающее устройство, по данным которого мы видим величину, необходимую для корректировки.

электродвигатель ротор коллектор ток

2. Выбор и обоснование структурной схемы

На структурной схеме изображают все основные функциональные части устройства и основные взаимосвязи между ними.

Функциональные части на схеме изображают в виде прямоугольника или УГО.

Графическое построение схемы должно давать наиболее наглядное представление о последовательности взаимодействия функциональных частей в устройстве. На линиях взаимосвязей рекомендуется стрелками обозначать направление хода процессов, происходящих в устройстве.

На схеме должны быть указаны наименования каждой фунциональной части устройства, если для ее обозначения применен прямоугольник. При этом наименования, типы и обозначения рекомендуется вписывать внутрь прямоугольников.

При большом количестве функциональных частей допускается взамен наименований, типов и обозначений проставлять порядковые номера справа от изображения или над ним, как правило, сверху вниз в направлении слева направо. В этом случае наименования, типы и обозначения указывают в таблице, помещаемой на поле схемы.

Допускается помещать на схеме поясняющие надписи, диаграммы или таблицы, определяющие последовательность процессов во времени, а также указывать параметры в характерных точках (величины токов, напряжений, формы и величины импульсов, математические зависимости и т.п.).

Известны следующие типы структурных схем:

1) Разомкнутые системы автоматического управления;

2) Замкнутые системы автоматического управления;

3) Комбинированные системы автоматического управления.

Разомкнутая система автоматического управления

+ Простота, дешевизна

- Низкая точность поддержания требуемого режима.

С целью повышения точности, вводят устройства компенсации.

3. Выбор и обоснование функциональной схемы

На функциональной схеме изображают функциональные части устройства (элементы, устройства и функциональные группы), участвующие в процессе, и связи между этими частями.

Функциональные части на схеме изображают в виде УГО, установленных в стандартах ЕСКД. Отдельные функциональные части допускается изображать в виде прямоугольников.

На схеме должны быть указаны:

для каждой функциональной группы - обозначение, присвоенное ей на принципиальной схеме, и (или) ее наименование;

если функциональная группа изображена в виде УГО, то ее наименование не указывают;

для каждого устройства, изображенного в виде прямоугольника, указывают позиционное обозначение, присвоенное ему на принципиальной схеме, его наименование и тип и (или) обозначение документа (основной конструкторский документ, технические условия), на основании которого это устройство применено;

для каждого элемента - позиционное обозначение, присвоенное ему на принципиальной схеме, и (или) его тип.

Обозначение документа, на основании которого применено устройство, и тип элемента допускается не указывать.

Наименования, типы и обозначения рекомендуется вписывать в прямоугольники.

На схеме рекомендуется указывать технические характеристики функциональных частей (рядом с графическими обозначениями или на свободном поле схемы).

На схеме помещают поясняющие надписи, диаграммы или таблицы, определяющие последовательность процессов во времени, а также указывают параметры в характерных точках (величины токов. Напряжений, формы и величины импульсов, математические зависимости и т.д.).

4. Выбор и обоснование исполнительного органа

Для управления объектом (прожекторы) используется механизм управления. Для данного курсового механизмом управления будет служить электрический двигатель.

Известны следующие виды электрических двигателей:

1) Двигатель переменного тока:

- синхронный;

- асинхронный.

2) Двигатель постоянного тока с независимым возбуждением;

Синхронные двигатели получили широкое распространение в промышленности для электроприводов, работающих с постоянной скоростью. Можно встретить синхронные электродвигатели также в качестве привода насосов большой мощности длительного режима работы. В последнее время, вследствие появления преобразовательной полупроводниковой техники, разрабатываются регулируемые синхронные электроприводы (с частотными преобразователями), уже существуют сервоприводы с синхронными электродвигателями. Все это существенно расширяет сферу применения синхронных электродвигателей в наше время. Ну и кроме этого, очень распространены маломощные синхронные двигатели, которые используются в различной бытовой технике, часах и других приборах.

Принцип действия синхронного двигателя основан на взаимодействии вращающегося переменного магнитного поля якоря и постоянных магнитных полей полюсов индуктора. Обычно якорь расположен на статоре, а индуктор - на роторе. В мощных двигателях в качестве полюсов используются электромагниты (ток на ротор подаётся через скользящий контакт), в маломощных - постоянные магниты. Именно конструкция ротора и определяет наиболее существенное отличие синхронных электродвигателей от асинхронных.

Двигатель требует разгона до номинальной скорости вращения, прежде чем сможет работать самостоятельно. При такой скорости вращающееся магнитное поле якоря сцепляется с магнитными полями полюсов индуктора - это называется «вошёл в синхронизм».

Для разгона обычно используется асинхронный режим, когда обмотки индуктора замыкаются через реостат или накоротко. После выхода на номинальную скорость индуктор запитывают постоянным током от выпрямителя.

В двигателях с постоянными магнитами применяется внешний разгонный двигатель (обычно асинхронный). Для асинхронного двигателя применяется устройство плавного пуска.

Существуют комбинированные варианты, в которых на роторе, вместе с постоянными или электромагнитами, установлены короткозамкнутые обмотки. Иногда на валу ставят небольшой генератор постоянного тока, который питает электромагниты.

Также используется частотный пуск, когда частоту тока якоря постепенно увеличивают от очень малых до номинальных величин. Возможен и обратный вариант, когда частоту индуктора понижают от номинальной до 0, т.е. до постоянного тока.

Достоинства синхронных электродвигателей:

Синхронный двигатель несколько сложнее, чем асинхронный, но обладает рядом преимуществ, что позволяет применять его в ряде случаев вместо асинхронного.

1. Основным достоинством синхронного электродвигателя является возможность получения оптимального режима по реактивной энергии, который осуществляется путем автоматического регулирования тока возбуждения двигателя. Синхронный двигатель может работать, не потребляя и не отдавая реактивной энергии в сеть, при коэффициенте мощности (cos фи) равным единице. В этих условиях работающий синхронный двигатель нагружает сеть только активным током. По этой причине обмотка статора синхронного двигателя рассчитывается на один активный ток (у асинхронного двигателя эта обмотка рассчитывается на активный и реактивный токи). По этой причине при одинаковой номинальной мощности габариты синхронного двигателя меньше, а его к.п.д. выше, чем асинхронного.

Если же для предприятия необходима выработка реактивной энергии, то синхронный электродвигатель, работая с перевозбуждением, может отдавать ее в сеть. Если ток возбуждения синхронного двигателя существенно меньше номинального, то магнитный поток ротора индуктирует в обмотке статора э.д.с., меньшую, чем напряжение сети - это условие, когда двигатель недовозбужден. Помимо активного тока, он нагружает сеть реактивным током, отстающим по фазе от напряжения на четверть периода, как намагничивающий ток асинхронного электродвигателя. Но если постоянный ток возбуждения больше номинального, то э.д.с. больше напряжения сети - двигатель перевозбужден. Он нагружает сеть, кроме активного тока, реактивным током, опережающим по фазе напряжение сети, совершенно также как емкостной ток конденсатора. Следовательно, перевозбужденный синхронный двигатель может подобно емкости улучшать общий cos? промышленного предприятия, снижаемый индуктивными токами асинхронных двигателей.

2. Синхронные электродвигатели менее чувствительны к колебаниям напряжения сети, чем асинхронные электродвигатели. Их максимальный момент пропорционален напряжению сети, в то время как критический момент асинхронного электродвигателя пропорционален квадрату напряжения.

3. Синхронные электродвигатели имеют высокую перегрузочную способность. Кроме того, перегрузочная способность синхронного двигателя может быть автоматически увеличена за счет повышения тока возбуждения, например, при резком кратковременном повышении нагрузки на валу двигателя.

4. Скорость вращения синхронного двигателя остается неизменной при любой нагрузке на валу в пределах его перегрузочной способности.

Недостатки синхронных двигателей:

а) сложность конструкции;

б) сравнительная сложность пуска в ход;

в) трудности с регулированием частоты вращения, которое возможно только путем изменения частоты питающего напряжения.

Указанные недостатки синхронных двигателей делают их менее выгодными, чем асинхронные двигатели, при ограниченных мощностях до 100 кВт. Однако при более высоких мощностях, когда особенно важно иметь высокий cos ц и уменьшенные габаритные размеры машины, синхронные двигатели предпочтительнее асинхронных.

Асинхронная машина - это электрическая машина переменного тока, частота вращения ротора которой не равна (в двигательном режиме меньше) частоте вращения магнитного поля, создаваемого током обмотки статора.

В ряде стран к асинхронным машинам причисляют также коллекторные машины. В России асинхронными машинами стали называть машины, которые являются индукционными. Асинхронные машины сегодня составляют большую часть электрических машин. В основном они используются как электродвигатели и являются основными преобразователями электрической энергии в механическую.

Достоинства:

1. Лёгкость в изготовлении.

2. Отсутствие механического контакта со статической частью машины.

Недостатки:

1. Небольшой пусковой момент.

2. Значительный пусковой ток.

3. Угловая скорость вращения нестабильна и определяется величиной нагрузки

Двигатели постоянного тока

Учитывая, что проект учебный, по согласованию с руководителем в дальнейшей работе мы будем использовать исполнительный элемент на базе коллекторного двигателя с независимым возбуждением.

Описание коллекторного ДПТ

По некоторым мнениям этот двигатель, можно еще назвать синхронной машиной постоянного тока с самосинхронизацией. Простейший двигатель (рисунок 1), являющийся машиной постоянного тока, состоит из одного постоянного магнита на индукторе (статоре), из одного электромагнита с явно выраженными полюсами на якоре (двухполюсного якоря с явно выраженными полюсами и с одной обмоткой из двух частей), щёточно-коллекторного узла с двумя пластинами (ламелями) и двумя щётками.

Простейший двигатель имеет два положения ротора (две «мёртвые точки»), из которых невозможен самозапуск, и неравномерный крутящий момент. В первом приближении магнитное поле полюсов статора равномерное (однородное) и равно:

,

где - число витков обмотки ротора,

- индукция магнитного поля полюсов статора,

- ток в обмотке ротора [А],

- длина рабочей части витка обмотки [м],

- расстояние от оси ротора до рабочей части витка обмотки ротора (радиус) [м],

- синус угла между направлением северный-южный полюс статора и аналогичным направлением в роторе [рад],

- угловая скорость [рад/сек],

- время [сек].

Из-за наличия угловой ширины щёток и углового зазора между пластинами (ламелями) коллектора в двигателе этой конструкции имеются динамически постоянно короткозамкнутые щётками части обмотки ротора. Число короткозамкнутых частей обмотки ротора равно числу щёток. Эти короткозамкнутые части обмотки ротора не участвует в создании общего крутящего момента.

Суммарная короткозамкнутая часть ротора в двигателях с одним коллектором равна:

,

где - число щёток,

- угловая ширина одной щётки [радиан].

Без учёта короткозамкнутых щётками частей крутящего момента средний крутящий момент рамок (витков) с током за один оборот равен площади под интегральной кривой крутящего момента, делённой на длину периода (1 оборот = 2р):

.

Двигатель состоит из одного электромагнита на статоре (двухполюсного статора) с явно выраженными полюсами и с одной обмоткой, трёхполюсного ротора с явно выраженными полюсами и с тремя обмотками (обмотки ротора могут быть включены звездой или треугольником), щёточно-коллекторного узла с тремя пластинами (ламелями) и с двумя щётками. Самозапуск возможен из любого положения ротора. Имеет меньшую неравномерность крутящего момента, чем двигатель с двухполюсным ротором.

ДПТ являются обратимыми электрическими машинами, то есть в определённых условиях способны работать как генераторы.

Статор

На статоре ДПТ располагаются, в зависимости от конструкции, или постоянные магниты (микродвигатели), или электромагниты с обмотками возбуждения (катушками, наводящими магнитный поток возбуждения).

В простейшем случае статор имеет два полюса, то есть один магнит с одной парой полюсов. Но чаще ДПТ имеют две пары полюсов. Бывает и более. Помимо основных полюсов на статоре (индукторе) могут устанавливаться добавочные полюса, которые предназначены для улучшения коммутации.

Ротор (техника)

Ротор состоит из электромагнитов с переключаемой полярностью, датчика положения ротора и переключателя (в обычных машинах это функции коллектора). В простейшем случае, ротор состоит из одного электромагнита с двумя полюсами, то есть имеет одну пару полюсов, при этом есть две «мёртвые точки», из которых невозможен самозапуск двигателя.

Ротор с тремя полюсами (условно полторы пары) имеет наименьшее число полюсов ротора, при которых самозапуск возможен из любого положения ротора. На самом деле, один полюс всё время находится в зоне коммутации, то есть ротор имеет неявные две пары полюсов.

Ротор любого ДПТ состоит из многих катушек, на часть которых подаётся питание, в зависимости от угла поворота ротора, относительно статора. Применение большого числа (несколько десятков) катушек, необходимо для уменьшения неравномерности крутящего момента, для уменьшения коммутируемого (переключаемого) тока, и для обеспечения оптимального взаимодействия между магнитными полями ротора и статора (то есть для создания максимального момента на роторе).

При вычислении момента инерции ротора его, в первом приближении, можно считать сплошным однородным цилиндром с моментом инерции, равным:

,

где - масса цилиндра (ротора),

а - радиус цилиндра (ротора).

Коллектор

Коллектор (щёточно-коллекторный узел) выполняет одновременно две функции: является датчиком углового положения ротора и переключателем тока со скользящими контактами.

Конструкции коллекторов имеют множество разновидностей.

Выводы всех катушек объединяются в коллекторный узел. Коллекторный узел обычно представляет собой кольцо из изолированных друг от друга пластин-контактов (ламелей), расположенных по оси (вдоль оси) ротора. Существуют и другие конструкции коллекторного узла.

Щёточный узел необходим для подвода электроэнергии к катушкам на вращающемся роторе и переключения тока в обмотках ротора. Щётка - неподвижный контакт (обычно графитовый или медно-графитовый).

Щётки с большой частотой размыкают и замыкают пластины-контакты коллектора ротора. Как следствие, при работе ДПТ происходят переходные процессы, в обмотках ротора. Эти процессы приводят к искрению на коллекторе, что значительно снижает надёжность ДПТ. Для уменьшения искрения применяются различные способы, основным из которых является установка добавочных полюсов.

При больших токах в роторе ДПТ возникают мощные переходные процессы, в результате чего искрение может постоянно охватывать все пластины коллектора, независимо от положения щёток. Данное явление называется кольцевым искрением коллектора или «круговой огонь». Кольцевое искрение опасно тем, что одновременно выгорают все пластины коллектора и срок его службы значительно сокращается. Визуально кольцевое искрение проявляется в виде светящегося кольца около коллектора. Эффект кольцевого искрения коллектора недопустим. При проектировании приводов устанавливаются соответствующие ограничения на максимальные моменты (а следовательно и токи в роторе), развиваемые двигателем.

Принцип работы

В принципе работы электродвигателя постоянного тока есть два подхода:

1. рамка (2 стержня с замкнутыми концами) с током в магнитном поле статора.

2. взаимодействие магнитных полей статора и ротора.

Рамка с током, в однородном магнитном поле полюсов статора

В однородном магнитном поле полюсов статора с индукцией , на два стержня рамки длиной , и с током , действуют силы Лоренца , постоянной величины, равные:

и направленные в противоположные стороны.

Эти силы прикладываются к плечам , равным:

,

где - радиус рамки;

и создают крутящий момент , равный:

.

Для двух стержней рамки, суммарный крутящий момент равен:

.

Практически (из-за того, что угловая ширина щётки (в радианах) немного меньше угловой ширины зазора , между пластинами четыре небольших части под кривой крутящего момента, равные:

,

где ,

не участвуют в создании общего крутящего момента.

При числе витков в обмотке равном , крутящий момент будет равен:

.

Наибольший крутящий момент будет при угле поворота рамки равном: , то есть при угле 90°.

При этом угле поворота рамки с током, вектора магнитных полей статора и ротора (рамки) будут перпендикулярны друг к другу, то есть под углом 90°. При угле поворота ротора (рамки) равном 180°, крутящий момент равен нулю (из-за нулевого плеча), но силы не равны нулю и это положение ротора (рамки), при отсутствии переключения тока, весьма устойчиво и подобно одному шагу в шаговом двигателе.

Без учёта короткозамкнутых щётками частей крутящего момента средний крутящий момент за один оборот (период) равен площади под интегральной кривой крутящего момента, делённой на длину периода :

.

При витков в обмотке:

.

Две рамки с током в однородном магнитном поле полюсов статора

Если на роторе машины установить вторую рамку, сдвинутую относительно первой на угол , то получится четырёхполюсный ротор.

Момент второй рамки:

.

Суммарный момент обеих рамок:

.

Таким образом получается, что крутящий момент зависит от угла поворота ротора, но неравномерность меньше, чем при одной рамке. Кроме этого добавляется самозапуск из любого положения ротора. При этом для второй рамки потребуется второй коллектор (щёточно-коллекторный узел). Оба узла соединяются параллельно, при этом переключение тока в рамках происходит в интервалах с наименьшим током в рамках, при последовательном соединении переключение тока в одной из рамок (разрыв цепи) происходит во время максимального тока в другой рамке. Практически, из-за того, что угловая ширина щётки (в радианах) немного меньше угловой ширины зазора (в радианах) между пластинами коллектора (ламелями), восемь небольших частей под кривой крутящего момента, равных:

,

где ,

не участвуют в создании общего крутящего момента.

Рамка с током, в неоднородном магнитном поле полюсов статора

Если магнитное поле полюсов статора неоднородное и изменяется по отношению к стержням рамки по закону:

,

то крутящий момент для одного стержня будет равен:

,

для двух стержней:

,

для рамки из витков:

.

В создании крутящего момента не участвуют четыре части под кривой крутящего момента равные:

Без учёта короткозамкнутых щётками частей крутящего момента средний крутящий момент за один оборот (период) равен площади под интегральной кривой делённой на длину периода :

.

При витках в обмотке:

.

Две рамки с током, в неоднородном магнитном поле полюсов статора

Для второй (косинусной) рамки:

;

крутящий момент от второй (косинусной) рамки будет равен:

,

суммарный крутящий момент от обеих рамок равен:

,

то есть постоянен, и от угла поворота ротора не зависит.

Практически из-за наличия зазора восемь небольших частей, под кривой крутящего момента, равные:

каждая, в создании крутящего момента не участвуют.

Для вычисления момента инерции ротора его можно считать, в первом приближении, сплошным однородным цилиндром с моментом инерции:

,

где - масса цилиндра (ротора), - радиус цилиндра (ротора).

Взаимодействие магнитных полей

Необходимо отметить, что работа по вращению ротора (рамки с током) совершается не за счет энергии внешнего магнитного поля (поля статора), а за счет источника тока, поддерживающего неизменным ток в контуре рамки. При изменениях магнитного потока, пронизывающего контур (рамку с током) при вращении, в этом контуре возникает э.д.с. индукции, направленная противоположно э.д.с. источника тока. Следовательно, источник тока, кроме работы, затрачиваемой на выделение ленц-джоулева тепла, должен совершать дополнительную работу против э.д.с. индукции. Сам же процесс вращения происходит за счет силы Лоренца, действующей на заряд, движущийся в магнитном поле. От носителя тока действие этой силы передается проводнику, по которому он перемещается. Ошибочно мнение, что ротор (рамка с током) приходит в движение за счет того, что его магнитное поле толкает магнитное поле статора.

Классификация

ДПТ классифицируют по виду магнитной системы статора:

· с постоянными магнитами;

· с электромагнитами:

o с независимым включением обмоток (независимое возбуждение);

o с последовательным включением обмоток (последовательное возбуждение);

o с параллельным включением обмоток (параллельное возбуждение);

o со смешанным включением обмоток (смешанное возбуждение):

§ с преобладанием последовательной обмотки;

§ с преобладанием параллельной обмотки;

Вид подключения обмоток статора существенно влияет на тяговые и электрические характеристики электродвигателя.

Разновидности

Коллекторные, с щёточноколлекторным переключателем тока

С одним коллектором (щёточноколлекторным узлом) и обмотками, где - число пар полюсов ротора, с соединением обмоток ротора в кольцо (по этой классификации двигатель на рис. 2 является полуторным, имеет полторы пары полюсов и обмотки ротора). Имеют большую, короткозамкнутую щётками, часть обмотки ротора, равную:

,

где - число щёток, - угловая ширина одной щётки (рад), - число пи (3,14…).

С двумя коллекторами (щёточноколлекторными узлами, в бесколлекторных - с инвертором на двух параллельных мостах) и двумя обмотками синусной и косинусной (синусно-косинусный, двухфазный) с неоднородным (синусообразным) магнитным полем полюсов статора. Имеют малую нерабочую часть под кривой крутящего момента, равную:

,

где , a - угловая ширина зазора между пластинами коллектора (ламелями).

Подобен двухфазному бесколлекторному.

С тремя коллекторами и тремя обмотками (в бесколлекторных с инвертором на трёх параллельных мостах, трёхфазный).

С четырьмя коллекторами (щёточно-коллекторными узлами) и двумя обмотками синусной и косинусной (синусно-косинусные), специальные. Специальная конструкция коллектора с четырьмя коллекторами (один коллектор на одну щётку) позволяет почти до нуля уменьшить нерабочую часть крутящего момента (нерабочая часть крутящего момента в этом двигателе зависит от точности изготовления деталей) и сделать используемую часть крутящего момента независимой от угловой ширины щётки. При этом угловая ширина одной пластины коллектора равна:

,

где - угловая ширина одной щётки.

С четырьмя коллекторами и четырьмя обмотками (в бесколлекторных - с инвертором на четырёх параллельных мостах, четырёхфазный).

С восемью коллекторами (щёточноколлекторными узлами). В этом двигателе уже нет рамок, а ток подаётся через коллекторы в отдельные стержни ротора.

Бесколлекторные, с электронным переключателем тока

Электронным аналогом щёточно-коллекторного узла является инвертор с датчиком положения ротора (ДПР) (вентильный электродвигатель).

Ротор является постоянным магнитом, а обмотки статора переключаются электронными схемами - инверторами. Бесколлекторные электродвигатели могут быть однофазными (две «мёртвые точки»), двухфазными (синусно-косинусными), трёх- и более фазными.

Бесколлекторный двигатель постоянного тока с выпрямителем (мостом) может заменить универсальный коллекторный двигатель (УКД).

Другие виды электродвигателей постоянного тока

· Униполярный электродвигатель (униполярный генератор)

· Универсальный коллекторный двигатель, - работает и на постоянном токе, и на переменном. Применяется в ручных электроинструментах (электродрели, электролобзики, электропилы, электрорубанки и др.), пылесосах, кофемолках, блендерах и др.

Управление

Основные формулы, используемые при управлении ДПТ:

· Скорость двигателя:

щ = (U - IR)/CЦ

где U - подводимое к ОЯ напряжение, I - ток ОЯ, R - сопротивление цепи якоря, С - конструктивная постоянная, Ф - поток создаваемый обмоткой возбуждения.

· Крутящий момент, развиваемый двигателем с независимым (параллельным) возбуждением, пропорционален току в обмотке якоря (ротора) (для двигателей последовательного возбуждения - момент приближённо пропорционален квадрату тока, так как поток пропорционален почти току):

M = CMЦI

· ПротивоЭДС в обмотках якоря пропорциональна угловой частоте вращения ротора при постоянном потоке возбуждения:

,

где - коэффициент ЭДС двигателя, - угловая скорость вращения ротора.

Общие способы управления ДПТ:

· Изменение напряжения подводимого к обмотке якоря;

· Введение добавочного сопротивления в цепь якоря;

· Изменение потока.

Механическая характеристика

Зависимость частоты от момента на валу ДПТ отображается в виде графика. Горизонтальная ось (абсцисс) - момент на валу ротора, вертикальная ось (ординат) - частота вращения ротора. Механическая характеристика ДПТ есть прямая, идущая с отрицательным наклоном.

Механическая характеристика ДПТ строится при определённом напряжении питания обмоток ротора. В случае построения характеристик для нескольких значений напряжения питания говорят о семействе механических характеристик ДПТ.

Регулировочная характеристика

Зависимость частоты вращения ротора от напряжения питания обмоток ротора ДПТ, отображается в виде графика. Горизонтальная ось (абсцисс) - напряжение питания обмоток ротора, вертикальная ось (ординат) - частота вращения ротора. Регулировочная характеристика ДПТ есть прямая, идущая с положительным наклоном.

Регулировочная характеристика ДПТ строится при определённом моменте, развиваемом двигателем. В случае построения регулировочных характеристик для нескольких значений момента на валу ротора, говорят о семействе регулировочных характеристик ДПТ.

Применение

· Электропривод тепловозов, электровозов, теплоходов, карьерных самосвалов.

· Стартёры автомобилей, тракторов и др. Для уменьшения номинального напряжения питания в автомобильных стартёрах применяют двигатель постоянного тока с четырьмя щётками. Благодаря этому эквивалентное комплексное сопротивление ротора уменьшается почти в четыре раза. Статор такого двигателя имеет четыре полюса (две пары полюсов). Пусковой ток в автомобильных стартёрах около 200 ампер. Режим работы - кратковременный.

Достоинства и недостатки

Достоинства:

· простота устройства и управления;

· практически линейные механическая и регулировочная характеристики двигателя;

· легко регулировать частоту вращения;

· хорошие пусковые свойства (большой пусковой момент);

· так как ДПТ являются обратимыми машинами, появляется возможность использования их как в двигательном, так и в генераторном режимах.

Недостатки:

· дороговизна изготовления;

· необходимость профилактического обслуживания коллекторно-щёточных узлов;

· ограниченный срок службы из-за износа коллектора.

Для нашей системы выберем модель P2RH

P2RH. Основные параметры

Мощность, Вт

40

Напряжение, В

12, 24 DC

Обороты, 1/мин

5300, 6200

Режим работы,

S1

Защита,

IP40

Размеры, мм

63x166.5

Масса, кг

0.5

Список литературы

1. Руководство по проектированию систем автоматического управления: Учеб. пособие для студентов спец. «Автоматика и телемеханика»/ Бесекерский В.А., Власов В.Ф., Гомзин В.Н., и др.; Под ред. В.А. Бесекерского. - М.: Высш. школа, 1983. - 296 с., ил.

2. Основы метрологии и электрические измерения: Учебник для вузов / Б.Я. Авдеев, Е.М. Антонюк, Е.М. Душин и др.; Под ред. Е.М. Душина. - 6-е изд., перераб. и доп. - Л.: Энергоатомиздат. Ленингр. отд-е, 1987. - 480 с.: ил.

3. Ахметжанов А.А., Кочемасов А.В., Следящие системы и регуляторы: Учеб. пособие для вузов. - М.: Энергоатомиздат, 1986. - 288 с.: ил.

4. Конспекты лекций по ТАУ и ЦСУ, метрологии, схемотехнике, микропроцессорном программировании, курсу «Технологии проектирования аппаратуры СУ».

Размещено на Allbest.ru

...

Подобные документы

  • Рабочие характеристики асинхронного двигателя, определение его размеров, выбор электромагнитных нагрузок. Расчет числа пар полюсов, мощности двигателя, сопротивлений обмоток ротора и статора, магнитной цепи. Механические и добавочные потери в стали.

    курсовая работа [285,2 K], добавлен 26.11.2013

  • Магнитная цепь двигателя. Размеры, конфигурация, материал. Сердечник статора, ротора и полюсный наконечник. Расчет магнитной цепи. Воздушный зазор, зубцы и спинка статора. Активное и индуктивное сопротивление обмотки статора для установившегося режима.

    дипломная работа [218,6 K], добавлен 16.08.2010

  • Выбор главных размеров обмотки статора. Расчёт размеров зубцовой зоны статора, воздушного зазора. Внешний диаметр ротора. Расчёт магнитной цепи. Магнитное напряжение зубцовой зоны статора. Расчёт параметров асинхронной машины для номинального режима.

    курсовая работа [273,5 K], добавлен 30.11.2010

  • Устройство и условное изображение синхронной трехфазной машины. Расположение полюсов магнитного поля статора и ротора. Зависимость электромагнитного момента синхронной машины от угла. схема включения синхронного двигателя при динамическом торможении.

    реферат [347,0 K], добавлен 10.06.2010

  • Применение синхронных двигателей в устройствах автоматики и техники. Изготовление ротора, турбогенератора. Предназначение двигателей для привода мощных вентиляторов, мельниц, насосов и других устройств. Конструктивное исполнение статора синхронной машины.

    презентация [2,0 M], добавлен 01.09.2015

  • Определение критериев оптимизации электрических машин, выбор главных размеров электродвигателя. Расчет размеров зубцовой зоны статора и воздушного зазора. Основные параметры обмоток статора и ротора. Вычисление потерь в машине и параметров холостого хода.

    курсовая работа [348,3 K], добавлен 22.06.2021

  • Определение размеров асинхронной машины. Расчет активного сопротивления обмотки статора и ротора, магнитной цепи. Механическая характеристика двигателя. Расчёт пусковых сопротивлений для автоматического пуска. Разработка схемы управления двигателем.

    курсовая работа [1,2 M], добавлен 05.02.2014

  • Розрахунок розмірів пазів та провідників обмоток статора. Розрахунок довжини статора і ротора. Коефіцієнт насичення і намагнічуючий струм. Параметри обмоток двигуна. Основні магнітні втрати у спинці статора. Робочі характеристики асинхронного двигуна.

    курсовая работа [1,8 M], добавлен 12.10.2011

  • Определение сечения провода обмотки статора. Расчет размеров зубцовой зоны статора и воздушного зазора. Определение ротора и намагничивающего тока. Определение параметров рабочего режима. Расчет рабочих и пусковых характеристик электродвигателя.

    курсовая работа [231,2 K], добавлен 22.08.2021

  • Служебное назначение, конструктивные особенности и условия эксплуатации втулки компрессорного ротора. Расчёт припусков на механическую обработку, обоснование схемы базирования и закрепления заготовки. Выбор металлорежущих станков и режимов резания.

    курсовая работа [1,7 M], добавлен 09.10.2012

  • Главные размеры, расчет параметров сердечника стартера, сердечника ротора, обмотки статора. Определение размеров трапецеидальных пазов, элементов обмотки, овальных закрытых пазов ротора. Расчет магнитной цепи ее параметров, подсчет сопротивления обмоток.

    курсовая работа [2,7 M], добавлен 31.10.2008

  • Визначення головних розмірів магнітопровода статора. Розрахункова потужність двигуна. Розрахунок геометричних розмірів пазів і зубців статора. Число ефективних провідників в пазу. Геометричні розміри пазів і зубців ротора. Індукція в повітряному зазорі.

    курсовая работа [1,6 M], добавлен 01.03.2013

  • Общая характеристика автоматизированных систем. Требования к системе управления роботом. Разработка структурной электрической схемы. Обоснование и выбор функциональной схемы. Выбор исполнительного двигателя. Проектирование ряда датчиков и систем.

    курсовая работа [1,7 M], добавлен 12.11.2009

  • Выбор основных размеров двигателя. Расчет обмоток статора и ротора, размеров зубцовой зоны, магнитной цепи, потерь, КПД, параметров двигателя и построения рабочих характеристик. Определение расходов активных материалов и показателей их использования.

    курсовая работа [602,5 K], добавлен 21.05.2012

  • Способ составления уравнения движения для жесткого ротора. Влияние на частоты колебаний ротора жесткостей горизонтальных и вертикальных опор. Рассмотрение прямой задачи по определению собственных частот колебаний ротора, ее программная реализация.

    курсовая работа [682,5 K], добавлен 28.10.2013

  • Расчет упругих и инерционных характеристик ротора. Характеристики диска и ротора. Определение области допустимых значений податливостей опор. Ограничение, накладываемое на первую критическую частоту вращения. Расчет форм модели "жесткого" ротора.

    курсовая работа [715,4 K], добавлен 28.03.2016

  • Расчет асинхронного двигателя с короткозамкнутым ротором. Выбор главных размеров. Расчет размеров зубцовой зоны статора и воздушного зазора, ротора, намагничивающего тока. Параметры рабочего режима. Расчет потерь, рабочих и пусковых характеристик.

    курсовая работа [218,8 K], добавлен 27.10.2008

  • Проектирование трёхфазного асинхронного двигателя с короткозамкнутым ротором 4А климатического исполнения "У3". Расчет геометрических размеров сердечников и обмоток. Магнитное напряжение зубцового слоя ротора и ярма статора, их индуктивные сопротивления.

    курсовая работа [1,5 M], добавлен 14.06.2009

  • Расчет схемы замещения трехфазного трансформатора, параметров механической характеристики асинхронного электродвигателя. Зависимость частоты вращения ротора и электромагнитного момента электродвигателя от скольжения. Угловая частота вращения ротора.

    контрольная работа [118,4 K], добавлен 09.02.2012

  • Общие понятия об электрических машинах, их технико-экономические показатели и особенности проектирования. Электромагнитный, тепловой, механический и экономический расчёты машины. Определение параметров обмоток статора и ротора, расчёт пускового режима.

    дипломная работа [648,1 K], добавлен 29.11.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.