Расчет надежности технических систем
Вычисление количественных характеристик безотказности с помощью вероятностных переменных. Структурно-логический анализ технических систем. Расчет надежности систем с последовательным и параллельным соединением элементов, ее повышение путем резервирования.
Рубрика | Производство и технологии |
Вид | методичка |
Язык | русский |
Дата добавления | 10.01.2013 |
Размер файла | 1,7 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
6. ИСХОДНЫЕ ДАННЫЕ К РАБОТЕ
По структурной схеме надежности технической системы в соответствии с вариантом задания, требуемому значению вероятности безотказной работы системы и значениям интенсивностей отказов ее элементов (табл. 6.1) требуется:
1. Построить график изменения вероятности безотказной работы системы от времени наработки в диапазоне снижения вероятности до уровня 0.1 - 0.2.
2. Определить - процентную наработку технической системы.
3. Обеспечить увеличение - процентной наработки не менее, чем в 1.5 раза за счет:
а) повышения надежности элементов;
б) структурного резервирования элементов системы.
Все элементы системы работают в режиме нормальной эксплуатации (простейший поток отказов). Резервирование отдельных элементов или групп элементов осуществляется идентичными по надежности резервными элементами или группами элементов. Переключатели при резервировании считаются идеальными.
На схемах обведенные пунктиром m элементов являются функционально необходимыми из n параллельных ветвей.
7. ПРИМЕР РАСЧЕТА НАДЕЖНОСТИ
Структурная схема надежности приведена на рис 7.1. Значения интенсивности отказов элементов даны в 1/ч.
1. В исходной схеме элементы 2 и 3 образуют параллельное соединение. Заменяем их квазиэлементом А. Учитывая, что , получим
. (7.1)
2. Элементы 4 и 5 также образуют параллельное соединение, заменив которое элементом В и учитывая, что, получим
. (7.2)
3. Элементы 6 и 7 в исходной схеме соединены последовательно. Заменяем их элементом С, для которого при
. (7.3)
4. Элементы 8 и 9 образуют параллельное соединение. Заменяем их элементом D, для которого при , получим
. (7.4)
5. Элементы 10 и 11 с параллельным соединением заменяем элементом Е, причем, так как , то
(7.5)
6. Элементы 12, 13, 14 и 15 образуют соединение “2 из 4”, которое заменяем элементом F. Так как, то для определения вероятности безотказной работы элемента F можно воспользоваться комбинаторным методом (см. раздел 3.3):
(7.6)
7. Преобразованная схема изображена на рис. 7.2.
8. Элементы A, B, C, D и Е образуют (рис. 7.2) мостиковую систему, которую можно заменить квазиэлементом G. Для расчета вероятности безотказной работы воспользуемся методом разложения относительно особого элемента (см. раздел 3.4), в качестве которого выберем элемент С. Тогда
(7.7)
где - вероятность безотказной работы мостиковой схемы при абсолютно надежном элементе С (рис. 7.3, а), - вероятность безотказной работы мостиковой схемы при отказавшем элементе С (рис. 7.3, б).
Учитывая, что , получим
(7.8)
9. После преобразований схема изображена на рис. 7.4.
10. В преобразованной схеме (рис. 7.4) элементы 1, G и F образуют последовательное соединение. Тогда вероятность безотказной работы всей системы
(7.9)
11. Так как по условию все элементы системы работают в периоде нормальной эксплуатации, то вероятность безотказной работы элементов с 1 по 15 (рис. 7.1) подчиняются экспоненциальному закону:
(7.10)
12. Результаты расчетов вероятностей безотказной работы элементов 1 - 15 исходной схемы по формуле (7.10) для наработки до часов представлены в таблице 7.1.
13. Результаты расчетов вероятностей безотказной работы квазиэлементов A, B, C, D, E, F и G по формулам (7.1) - (7.6) и (7.8) также представлены в таблице 7.1.
14. На рис. 7.5 представлен график зависимости вероятности безотказной работы системы P от времени (наработки) t.
15. По графику (рис. 7.5, кривая P) находим для - процентную наработку системы ч.
16. Проверочный расчет при ч показывает (таблица 7.1), что .
17. По условиям задания повышенная - процентная наработка системы ч.
Таблица 7.1 Расчет вероятности безотказной работы системы
Элемент |
??i, |
Наработка t, x 106 ч |
||||||||
x10-6 ч-1 |
0,5 |
1,0 |
1,5 |
2,0 |
2,5 |
3,0 |
1,9 |
2,85 |
||
1 |
0,001 |
0,9995 |
0,9990 |
0,9985 |
0,9980 |
0,9975 |
0,9970 |
0,9981 |
0,9972 |
|
2 - 5 |
0,1 |
0,9512 |
0,9048 |
0,8607 |
0,8187 |
0,7788 |
0,7408 |
0,8270 |
0,7520 |
|
6,7 |
0,01 |
0,9950 |
0,9900 |
0,9851 |
0,9802 |
0,9753 |
0,9704 |
0,9812 |
0,9719 |
|
8 - 11 |
0,2 |
0,9048 |
0,8187 |
0,7408 |
0,6703 |
0,6065 |
0,5488 |
0,6839 |
0,5655 |
|
12 - 15 |
0,5 |
0,7788 |
0,6065 |
0,4724 |
0,3679 |
0,2865 |
0,2231 |
0,3867 |
0,2405 |
|
A, B |
- |
0,9976 |
0,9909 |
0,9806 |
0,9671 |
0,9511 |
0,9328 |
0,9701 |
0,9385 |
|
C |
- |
0,9900 |
0,9801 |
0,9704 |
0,9608 |
0,9512 |
0,9417 |
0,9628 |
0,9446 |
|
D, E |
- |
0,9909 |
0,9671 |
0,9328 |
0,8913 |
0,8452 |
0,7964 |
0,9001 |
0,8112 |
|
F |
- |
0,9639 |
0,8282 |
0,6450 |
0,4687 |
0,3245 |
0,2172 |
0,5017 |
0,2458 |
|
G |
- |
0,9924 |
0,9888 |
0,9863 |
0,9820 |
0,9732 |
0,9583 |
0,9832 |
0,9594 |
|
P |
- |
0,9561 |
0,8181 |
0,6352 |
0,4593 |
0,3150 |
0,2075 |
0,4923 |
0,2352 |
|
12` - 15` |
0,322 |
0,8513 |
0,7143 |
0,6169 |
0,5252 |
0,4471 |
0,3806 |
0,5424 |
0,3994 |
|
F` |
- |
0,9883 |
0,9270 |
0,8397 |
0,7243 |
0,6043 |
0,4910 |
0,7483 |
0,5238 |
|
P` |
- |
0,9803 |
0,9157 |
0,8270 |
0,7098 |
0,5866 |
0,4691 |
0,7343 |
0,5011 |
|
16 - 18 |
0,5 |
0,7788 |
0,6065 |
0,4724 |
0,3679 |
0,2865 |
0,2231 |
0,3867 |
0,2405 |
|
F`` |
- |
0,9993 |
0,9828 |
0,9173 |
0,7954 |
0,6413 |
0,4858 |
0,8233 |
0,5311 |
|
P`` |
- |
0,9912 |
0,9708 |
0,9034 |
0,7795 |
0,6226 |
0,4641 |
0,8079 |
0,5081 |
Рис 7.5. Изменение вероятности безотказной работы исходной системы (Р), системы с повышенной надежностью (Р`) и системы со структурным резервированием элементов (Р``).
18. Расчет показывает (таблица 7.1), что при ч для элементов преобразованной схемы (рис. 7.4) , и . Следовательно, из трех последовательно соединенных элементов минимальное значение вероятности безотказной работы имеет элемент F (система “2 из 4” в исходной схеме (рис. 7.1)) и именно увеличение его надежности даст максимальное увеличение надежности системы в целом.
19. Для того, чтобы при ч система в целом имела вероятность безотказной работы , необходимо, чтобы элемент F имел вероятность безотказной работы (см. формулу (7.9))
(7.11)
При этом значении элемент F останется самым ненадежным в схеме (рис. 7.4) и рассуждения в п.18 останутся верными.
Очевидно, значение , полученное по формуле (7.11), является минимальным для выполнения условия увеличения наработки не менее, чем в 1.5 раза, при более высоких значениях увеличение надежности системы будет большим.
20. Для определения минимально необходимой вероятности безотказной работы элементов 12 - 15 (рис. 7.1) необходимо решить уравнение (7.6) относительно при . Однако, т.к. аналитическое выражение этого уравнения связано с определенными трудностями, более целесообразно использовать графоаналитический метод. Для этого по данным табл. 7.1 строим график зависимости . График представлен на рис. 7.6.
Рис. 7.6. Зависимость вероятности безотказной работы системы “2 из 4” от вероятности безотказной работы ее элементов.
21. По графику при находим .
22. Так как по условиям задания все элементы работают в периоде нормальной эксплуатации и подчиняются экспоненциальному закону (7.10), то для элементов 12 - 15 при находим
ч. (7.12)
23. Таким образом, для увеличения - процентной наработки системы необходимо увеличить надежность элементов 12, 13, 14 и 15 и снизить интенсивность их отказов с до ч, т.е. в 1.55 раза.
24. Результаты расчетов для системы с увеличенной надежностью элементов 12, 13, 14 и 15 приведены в таблице 7.1. Там же приведены расчетные значения вероятности безотказной работы системы “2 из 4” F` и системы в целом P`. При ч вероятность безотказной работы системы , что соответствует условиям задания. График приведен на рис 7.5.
25. Для второго способа увеличения вероятности безотказной работы системы - структурного резервирования - по тем же соображениям (см. п. 18) также выбираем элемент F, вероятность безотказной работы которого после резервирования должна быть не ниже (см. формулу (7.11)).
26. Для элемента F - системы “2 из 4” - резервирование означает увеличение общего числа элементов. Аналитически определить минимально необходимое количество элементов невозможно, т.к. число элементов должно быть целым и функция дискретна.
27. Для повышения надежности системы “2 из 4” добавляем к ней элементы, идентичные по надежности исходным элементам 12 - 15, до тех пор, пока вероятность безотказной работы квазиэлемента F не достигнет заданного значения.
Для расчета воспользуемся комбинаторным методом (см. раздел 3.3) :
- добавляем элемент 16, получаем систему “2 из 5”:
(7.13)
(7.14)
- добавляем элемент 17, получаем систему “2 из 6”:
(7.15)
(7.16)
- добавляем элемент 18, получаем систему “2 из 7”:
(7.17)
(7.18)
28. Таким образом, для повышения надежности до требуемого уровня необходимо в исходной схеме (рис. 7.1) систему “2 из 4” достроить элементами 16, 17 и 18 до системы “2 из 7” (рис. 7.7).
29. Результаты расчетов вероятностей безотказной работы системы “2 из 7” F`` и системы в целом P`` представлены в таблице 7.1.
30. Расчеты показывают, что при ч , что соответствует условию задания.
31. На рис. 7.5 нанесены кривые зависимостей вероятности безотказной работы системы после повышения надежности элементов 12 - 15 (кривая ) и после структурного резервирования (кривая ).
Выводы:
1. На рис. 7.5 представлена зависимость вероятности безотказной работы системы (кривая ). Из графика видно, что 50% - наработка исходной системы составляет часов.
2. Для повышения надежности и увеличения 50% - наработки системы в 1.5 раза (до часов) предложены два способа:
а) повышение надежности элементов 12, 13, 14 и 15 и уменьшение их отказов с до ч;
б) нагруженное резервирование основных элементов 12, 13, 14 и 15 идентичными по надежности резервными элементами 16, 17 и 18 (рис. 7.7).
3. Анализ зависимостей вероятности безотказной работы системы от времени (наработки) (рис. 7.5) показывает, что второй способ повышения надежности системы (структурное резервирование) предпочтительнее первого, так как в период наработки до часов вероятность безотказной работы системы при структурном резервировании (кривая ) выше, чем при увеличении надежности элементов (кривая ).
Таблица 7.2 Численные значения параметров к заданию
№ |
?, |
Интенсивности отказов элементов, ???, x10-6 1/ч |
|||||||||||||||
вар. |
% |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
|
1 |
90 |
0.1 |
1.0 |
0.5 |
1.0 |
0.1 |
|||||||||||
2 |
95 |
0.2 |
0.5 |
1.0 |
0.1 |
||||||||||||
3 |
80 |
0.1 |
1.0 |
2.0 |
1.0 |
5.0 |
0.2 |
||||||||||
4 |
70 |
0.05 |
1.0 |
0.5 |
0.2 |
0.02 |
|||||||||||
5 |
50 |
0.01 |
0.05 |
0.1 |
0.5 |
1.0 |
|||||||||||
6 |
75 |
0.01 |
0.05 |
1.0 |
0.05 |
0.1 |
- |
||||||||||
7 |
65 |
0.05 |
0.5 |
0.05 |
0.005 |
0.1 |
0.2 |
0.1 |
- |
||||||||
8 |
85 |
0.1 |
0.5 |
0.2 |
0.01 |
0.5 |
0.1 |
- |
|||||||||
9 |
60 |
0.03 |
0.5 |
0.2 |
1.0 |
0.03 |
0.1 |
- |
|||||||||
10 |
50 |
0.1 |
0.5 |
1.0 |
0.5 |
1.0 |
0.1 |
- |
|||||||||
11 |
75 |
0.05 |
0.2 |
0.5 |
0.2 |
0.1 |
|||||||||||
12 |
65 |
0.02 |
0.1 |
1.0 |
2.0 |
0.1 |
0.05 |
||||||||||
13 |
70 |
0.01 |
0.2 |
0.1 |
1.0 |
0.5 |
0.1 |
- |
|||||||||
14 |
50 |
0.01 |
0.1 |
10.0 |
0.2 |
10.0 |
0.5 |
- |
|||||||||
15 |
85 |
0.01 |
1.0 |
5.0 |
0.2 |
5.0 |
0.1 |
- |
|||||||||
16 |
80 |
0.1 |
1.0 |
2.0 |
1.0 |
5.0 |
3.0 |
1.0 |
0.05 |
||||||||
17 |
95 |
0.1 |
5.0 |
1.0 |
5.0 |
10.0 |
5.0 |
1.0 |
0.2 |
||||||||
18 |
60 |
0.01 |
1.0 |
0.1 |
- |
||||||||||||
19 |
75 |
0.1 |
5.0 |
0.5 |
5.0 |
1.0 |
3.0 |
1.0 |
5.0 |
0.5 |
5.0 |
||||||
20 |
90 |
0.1 |
10.0 |
20.0 |
10.0 |
||||||||||||
21 |
90 |
0.1 |
1.0 |
0.5 |
2.0 |
0.5 |
0.2 |
1.0 |
|||||||||
22 |
80 |
1.0 |
0.2 |
0.5 |
1.0 |
0.5 |
1.0 |
1.0 |
0.1 |
||||||||
23 |
70 |
0.5 |
0.2 |
1.0 |
0.5 |
1.0 |
0.5 |
1.0 |
0.2 |
0.5 |
1.0 |
0.2 |
|||||
24 |
60 |
1.0 |
2.0 |
4.0 |
2.0 |
4.0 |
5.0 |
1.0 |
|||||||||
25 |
50 |
0.5 |
10.0 |
0.5 |
5.0 |
0.8 |
5.0 |
1.0 |
5.0 |
||||||||
26 |
60 |
1.0 |
2.0 |
3.0 |
5.0 |
2.0 |
5.0 |
1.0 |
|||||||||
27 |
70 |
5.0 |
10.0 |
15.0 |
10.0 |
10.0 |
15.0 |
10.0 |
|||||||||
28 |
80 |
1.0 |
2.0 |
5.0 |
2.0 |
1.0 |
|||||||||||
29 |
90 |
5.0 |
20.0 |
50.0 |
30.0 |
1.0 |
|||||||||||
30 |
80 |
2.0 |
1.0 |
2.0 |
1.0 |
5.0 |
2.0 |
5.0 |
2.0 |
1.0 |
2.0 |
1.0 |
2.0 |
1.0 |
|||
31 |
70 |
2.0 |
1.0 |
2.0 |
1.0 |
5.0 |
2.0 |
5.0 |
2.0 |
1.0 |
2.0 |
1.0 |
2.0 |
1.0 |
|||
32 |
60 |
5.0 |
2.0 |
5.0 |
1.0 |
2.0 |
3.0 |
1.0 |
|||||||||
33 |
60 |
1.0 |
2.0 |
3.0 |
4.0 |
2.0 |
3.0 |
5.5 |
0.2 |
0.5 |
|||||||
34 |
90 |
6.0 |
3.0 |
6.0 |
3.0 |
6.0 |
20.0 |
10.0 |
|||||||||
35 |
95 |
1.0 |
2.0 |
1.0 |
2.0 |
1.0 |
5.0 |
||||||||||
36 |
80 |
2.0 |
1.0 |
0.6 |
|||||||||||||
37 |
70 |
10.0 |
30.0 |
5.0 |
2.0 |
||||||||||||
38 |
90 |
3.0 |
2.0 |
1.0 |
2.0 |
3.0 |
2.0 |
||||||||||
39 |
90 |
8.0 |
3.0 |
5.0 |
2.0 |
||||||||||||
40 |
80 |
2.0 |
5.0 |
8.0 |
2.0 |
5.0 |
8.0 |
||||||||||
№ |
?, |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
|
вар. |
% |
Интенсивности отказов элементов, ???, x10-6 1/ч |
ЛИТЕРАТУРА
1. Левин В.И. Логическая теория надежности сложных систем. - М.: Энергоатомиздат, 1985. - 128 с.
2. Надежность технических систем: Справочник/Под ред. Ушакова И.А. - М.: Радио и связь, 1985. - 608 с.
3. Нечипоренко В.И. Структурный анализ систем (эффективность и надёжность). - М.: Сов. радио, 1977. - 214 с.
4. Рябинин И.А., Черкесов Г.Н. Логико-вероятностные методы исследования надежности структурно-сложных систем. - М.: Радио и связь, 1981. - 216 с.
5. ГОСТ 27.002 - 83 Надежность в технике. Термины и определения.
6. Сотсков Б. С. Основы теории и расчета надежности элементов и устройств автоматики и вычислительной техники. - М.: Высш. школа, 1970. - 270 с.
ПРИЛОЖЕНИЕ
Биномиальные коэффициенты
n |
m |
|||||||||||
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
||
0 |
1 |
|||||||||||
1 |
1 |
1 |
||||||||||
2 |
1 |
2 |
1 |
|||||||||
3 |
1 |
3 |
3 |
1 |
||||||||
4 |
1 |
4 |
6 |
4 |
1 |
|||||||
5 |
1 |
5 |
10 |
10 |
5 |
1 |
||||||
6 |
1 |
6 |
15 |
20 |
15 |
6 |
1 |
|||||
7 |
1 |
7 |
21 |
35 |
35 |
21 |
7 |
1 |
||||
8 |
1 |
8 |
28 |
56 |
70 |
56 |
28 |
8 |
1 |
|||
9 |
1 |
9 |
36 |
84 |
126 |
126 |
84 |
36 |
9 |
1 |
||
10 |
1 |
10 |
45 |
120 |
210 |
252 |
210 |
120 |
45 |
10 |
1 |
|
11 |
1 |
11 |
55 |
165 |
330 |
462 |
462 |
330 |
165 |
55 |
11 |
|
12 |
1 |
12 |
66 |
220 |
495 |
792 |
924 |
792 |
495 |
220 |
66 |
|
13 |
1 |
13 |
78 |
286 |
715 |
1287 |
1716 |
1716 |
1287 |
715 |
286 |
|
14 |
1 |
14 |
91 |
364 |
1001 |
2002 |
3003 |
3432 |
3003 |
2002 |
1001 |
|
15 |
1 |
15 |
105 |
455 |
1365 |
3003 |
5005 |
6435 |
6435 |
5005 |
3003 |
|
16 |
1 |
16 |
120 |
560 |
1820 |
4368 |
8008 |
11440 |
12870 |
11440 |
8008 |
|
17 |
1 |
17 |
136 |
680 |
2380 |
6188 |
12376 |
19448 |
24310 |
24310 |
19448 |
|
18 |
1 |
18 |
153 |
816 |
3060 |
8568 |
18564 |
31824 |
43758 |
48620 |
43758 |
|
19 |
1 |
19 |
171 |
969 |
3876 |
11628 |
27132 |
50388 |
75582 |
92378 |
92378 |
|
20 |
1 |
20 |
190 |
1140 |
4845 |
15504 |
38760 |
77520 |
125970 |
167960 |
184756 |
Примечание: Для m>10 можно воспользоваться свойством симметрии:
Размещено на Allbest.ru
...Подобные документы
Основные количественные показатели надежности технических систем. Методы повышения надежности. Расчет структурной схемы надёжности системы. Расчет для системы с увеличенной надежностью элементов. Расчет для системы со структурным резервированием.
курсовая работа [129,7 K], добавлен 01.12.2014Понятие и основные этапы жизненного цикла технических систем, средства обеспечения их надежности и безопасности. Организационно-технические мероприятия повышения надежности. Диагностика нарушений и аварийных ситуаций, их профилактика и значение.
презентация [498,7 K], добавлен 03.01.2014Показатели надежности систем. Классификация отказов комплекса технических средств. Вероятность восстановления их работоспособного состояния. Анализ условий работы автоматических систем. Методы повышения их надежности при проектировании и эксплуатации.
реферат [155,0 K], добавлен 02.04.2015Методология анализа и оценки техногенного риска, математические формулировки, используемые при оценке основных свойств и параметров надежности технических объектов, элементы физики отказов, структурные схемы надежности технических систем и их расчет.
курсовая работа [130,7 K], добавлен 15.02.2017Схема основных состояний и событий, характерных для восстанавливаемых систем. Показатели надежности невосстанавливаемых систем. Критерии потоков отказов. Показатели безотказности. Анализ ряда основных параметров, характеризующих надежность системы.
курсовая работа [430,7 K], добавлен 22.07.2015Исследование сущности матричного метода расчета надежности автоматизированных систем. Определение вероятности отсутствия отказов элементов. Практическая реализация оптимального резервирования. Анализ различных подходов и классификаций ошибок персонала.
контрольная работа [1008,0 K], добавлен 02.04.2016Место вопросов надежности изделий в системе управления качеством. Структура системы обеспечения надежности на базе стандартизации. Методы оценки и повышения надежности технологических систем. Предпосылки современного развития работ по теории надежности.
реферат [29,8 K], добавлен 31.05.2010Общие характеристики показателей надежности. Взаимосвязь надежности и качества объекта. Что понимается под ресурсными испытаниями и с какой целью они проводятся. Достоинства и недостатки "дерева событий". Модернизация конструкции или технологии.
контрольная работа [21,0 K], добавлен 01.03.2011Анализ изменения вероятности безотказной работы системы от времени наработки. Понятие процентной наработки технической системы, особенности обеспечения ее увеличения за счет повышения надежности элементов и структурного резервирования элементов системы.
контрольная работа [558,6 K], добавлен 16.04.2010Краткая характеристика предприятия, его организационная структура и история развития. Обзор технологического процесса и выявление недостатков. Описание и анализ существующей системы управления. Анализ технических средств автоматизации, его эффективность.
отчет по практике [1,4 M], добавлен 02.06.2015Уровень развития технологических и технических систем. Расчет освещения, электроснабжения и вентиляции помещения салона красоты, сечения проводников и кабелей, тепло- и влагоизбытков, надежности оборудования. Подбор вентилятора и электродвигателя.
курсовая работа [567,0 K], добавлен 17.02.2013Определение модели вероятности отказов для резистора и конденсатора, расчет коэффициентов нагрузки и суммарной эксплуатационной интенсивности отказов с целью оценки показателей безотказности функционального узла РЭУ при наличии постоянного резервирования.
курсовая работа [158,7 K], добавлен 05.07.2010Расчет допустимого значения диагностического параметра. Определение периодичности профилактики. Расчет надежности (безотказности) заданного механизма, агрегата, системы. Расчет эмпирических характеристик распределения и его теоретических параметров.
курсовая работа [264,0 K], добавлен 11.11.2013Теория надежности – наука о закономерности отказов технических систем. Случайный характер отказов и восстановлений. Элемент как объект (материальный, информационный) и его свойства. Техническая система и ее структура, исправность и работоспособность.
презентация [1,1 M], добавлен 10.12.2010Порядок поверки, калибровки и аттестации приборов. Прикладные функции управления технологическим процессом. Схема автоматического регулирования соотношения дутьё-газ доменной печи. Контроль качества и анализ характеристик надежности систем автоматизации.
отчет по практике [317,5 K], добавлен 21.04.2016Определение надежности линейной (трубопроводной) части газораспределительных систем, их основных элементов и узлов. Проектирование распределительных газовых сетей. Построение кольцевых, тупиковых и смешанных газопроводов, принципы их расположения.
контрольная работа [232,9 K], добавлен 24.09.2015Динамика рабочих сред в регулирующих устройствах и элементах систем гидропневмопривода, число Рейнольдса. Ограничитель расхода жидкости. Ламинарное движение жидкости в специальных технических системах. Гидропневматические приводы технических систем.
курсовая работа [524,5 K], добавлен 24.06.2015Определение основных показателей надежности технических объектов с применением математических методов. Анализ показателей надежности сельскохозяйственной техники и разработка мероприятий по ее повышению. Организации испытания машин на надежность.
курсовая работа [231,6 K], добавлен 22.08.2013Расчет параметров привода конвейера. Форма и размеры деталей редуктора привода, этапы его проектирования. Стадии и этапы разработки конструкторской документации. Определение условий эксплуатации. Оценка количественных показателей надежности ремонта.
дипломная работа [4,6 M], добавлен 04.09.2014Краткое описание конструкции двигателя. Нормирование уровня надежности лопатки турбины. Определение среднего времени безотказной работы. Расчет надежности турбины при повторно-статических нагружениях и надежности деталей с учетом длительной прочности.
курсовая работа [576,7 K], добавлен 18.03.2012