Расчет надежности технических систем

Вычисление количественных характеристик безотказности с помощью вероятностных переменных. Структурно-логический анализ технических систем. Расчет надежности систем с последовательным и параллельным соединением элементов, ее повышение путем резервирования.

Рубрика Производство и технологии
Вид методичка
Язык русский
Дата добавления 10.01.2013
Размер файла 1,7 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

6. ИСХОДНЫЕ ДАННЫЕ К РАБОТЕ

По структурной схеме надежности технической системы в соответствии с вариантом задания, требуемому значению вероятности безотказной работы системы и значениям интенсивностей отказов ее элементов (табл. 6.1) требуется:

1. Построить график изменения вероятности безотказной работы системы от времени наработки в диапазоне снижения вероятности до уровня 0.1 - 0.2.

2. Определить - процентную наработку технической системы.

3. Обеспечить увеличение - процентной наработки не менее, чем в 1.5 раза за счет:

а) повышения надежности элементов;

б) структурного резервирования элементов системы.

Все элементы системы работают в режиме нормальной эксплуатации (простейший поток отказов). Резервирование отдельных элементов или групп элементов осуществляется идентичными по надежности резервными элементами или группами элементов. Переключатели при резервировании считаются идеальными.

На схемах обведенные пунктиром m элементов являются функционально необходимыми из n параллельных ветвей.

7. ПРИМЕР РАСЧЕТА НАДЕЖНОСТИ

Структурная схема надежности приведена на рис 7.1. Значения интенсивности отказов элементов даны в 1/ч.

1. В исходной схеме элементы 2 и 3 образуют параллельное соединение. Заменяем их квазиэлементом А. Учитывая, что , получим

. (7.1)

2. Элементы 4 и 5 также образуют параллельное соединение, заменив которое элементом В и учитывая, что, получим

. (7.2)

3. Элементы 6 и 7 в исходной схеме соединены последовательно. Заменяем их элементом С, для которого при

. (7.3)

4. Элементы 8 и 9 образуют параллельное соединение. Заменяем их элементом D, для которого при , получим

. (7.4)

5. Элементы 10 и 11 с параллельным соединением заменяем элементом Е, причем, так как , то

(7.5)

6. Элементы 12, 13, 14 и 15 образуют соединение “2 из 4”, которое заменяем элементом F. Так как, то для определения вероятности безотказной работы элемента F можно воспользоваться комбинаторным методом (см. раздел 3.3):

(7.6)

7. Преобразованная схема изображена на рис. 7.2.

8. Элементы A, B, C, D и Е образуют (рис. 7.2) мостиковую систему, которую можно заменить квазиэлементом G. Для расчета вероятности безотказной работы воспользуемся методом разложения относительно особого элемента (см. раздел 3.4), в качестве которого выберем элемент С. Тогда

(7.7)

где - вероятность безотказной работы мостиковой схемы при абсолютно надежном элементе С (рис. 7.3, а), - вероятность безотказной работы мостиковой схемы при отказавшем элементе С (рис. 7.3, б).

Учитывая, что , получим

(7.8)

9. После преобразований схема изображена на рис. 7.4.

10. В преобразованной схеме (рис. 7.4) элементы 1, G и F образуют последовательное соединение. Тогда вероятность безотказной работы всей системы

(7.9)

11. Так как по условию все элементы системы работают в периоде нормальной эксплуатации, то вероятность безотказной работы элементов с 1 по 15 (рис. 7.1) подчиняются экспоненциальному закону:

(7.10)

12. Результаты расчетов вероятностей безотказной работы элементов 1 - 15 исходной схемы по формуле (7.10) для наработки до часов представлены в таблице 7.1.

13. Результаты расчетов вероятностей безотказной работы квазиэлементов A, B, C, D, E, F и G по формулам (7.1) - (7.6) и (7.8) также представлены в таблице 7.1.

14. На рис. 7.5 представлен график зависимости вероятности безотказной работы системы P от времени (наработки) t.

15. По графику (рис. 7.5, кривая P) находим для - процентную наработку системы ч.

16. Проверочный расчет при ч показывает (таблица 7.1), что .

17. По условиям задания повышенная - процентная наработка системы ч.

Таблица 7.1 Расчет вероятности безотказной работы системы

Элемент

??i,

Наработка t, x 106 ч

x10-6 ч-1

0,5

1,0

1,5

2,0

2,5

3,0

1,9

2,85

1

0,001

0,9995

0,9990

0,9985

0,9980

0,9975

0,9970

0,9981

0,9972

2 - 5

0,1

0,9512

0,9048

0,8607

0,8187

0,7788

0,7408

0,8270

0,7520

6,7

0,01

0,9950

0,9900

0,9851

0,9802

0,9753

0,9704

0,9812

0,9719

8 - 11

0,2

0,9048

0,8187

0,7408

0,6703

0,6065

0,5488

0,6839

0,5655

12 - 15

0,5

0,7788

0,6065

0,4724

0,3679

0,2865

0,2231

0,3867

0,2405

A, B

-

0,9976

0,9909

0,9806

0,9671

0,9511

0,9328

0,9701

0,9385

C

-

0,9900

0,9801

0,9704

0,9608

0,9512

0,9417

0,9628

0,9446

D, E

-

0,9909

0,9671

0,9328

0,8913

0,8452

0,7964

0,9001

0,8112

F

-

0,9639

0,8282

0,6450

0,4687

0,3245

0,2172

0,5017

0,2458

G

-

0,9924

0,9888

0,9863

0,9820

0,9732

0,9583

0,9832

0,9594

P

-

0,9561

0,8181

0,6352

0,4593

0,3150

0,2075

0,4923

0,2352

12` - 15`

0,322

0,8513

0,7143

0,6169

0,5252

0,4471

0,3806

0,5424

0,3994

F`

-

0,9883

0,9270

0,8397

0,7243

0,6043

0,4910

0,7483

0,5238

P`

-

0,9803

0,9157

0,8270

0,7098

0,5866

0,4691

0,7343

0,5011

16 - 18

0,5

0,7788

0,6065

0,4724

0,3679

0,2865

0,2231

0,3867

0,2405

F``

-

0,9993

0,9828

0,9173

0,7954

0,6413

0,4858

0,8233

0,5311

P``

-

0,9912

0,9708

0,9034

0,7795

0,6226

0,4641

0,8079

0,5081

Рис 7.5. Изменение вероятности безотказной работы исходной системы (Р), системы с повышенной надежностью (Р`) и системы со структурным резервированием элементов (Р``).

18. Расчет показывает (таблица 7.1), что при ч для элементов преобразованной схемы (рис. 7.4) , и . Следовательно, из трех последовательно соединенных элементов минимальное значение вероятности безотказной работы имеет элемент F (система “2 из 4” в исходной схеме (рис. 7.1)) и именно увеличение его надежности даст максимальное увеличение надежности системы в целом.

19. Для того, чтобы при ч система в целом имела вероятность безотказной работы , необходимо, чтобы элемент F имел вероятность безотказной работы (см. формулу (7.9))

(7.11)

При этом значении элемент F останется самым ненадежным в схеме (рис. 7.4) и рассуждения в п.18 останутся верными.

Очевидно, значение , полученное по формуле (7.11), является минимальным для выполнения условия увеличения наработки не менее, чем в 1.5 раза, при более высоких значениях увеличение надежности системы будет большим.

20. Для определения минимально необходимой вероятности безотказной работы элементов 12 - 15 (рис. 7.1) необходимо решить уравнение (7.6) относительно при . Однако, т.к. аналитическое выражение этого уравнения связано с определенными трудностями, более целесообразно использовать графоаналитический метод. Для этого по данным табл. 7.1 строим график зависимости . График представлен на рис. 7.6.

Рис. 7.6. Зависимость вероятности безотказной работы системы “2 из 4” от вероятности безотказной работы ее элементов.

21. По графику при находим .

22. Так как по условиям задания все элементы работают в периоде нормальной эксплуатации и подчиняются экспоненциальному закону (7.10), то для элементов 12 - 15 при находим

ч. (7.12)

23. Таким образом, для увеличения - процентной наработки системы необходимо увеличить надежность элементов 12, 13, 14 и 15 и снизить интенсивность их отказов с до ч, т.е. в 1.55 раза.

24. Результаты расчетов для системы с увеличенной надежностью элементов 12, 13, 14 и 15 приведены в таблице 7.1. Там же приведены расчетные значения вероятности безотказной работы системы “2 из 4” F` и системы в целом P`. При ч вероятность безотказной работы системы , что соответствует условиям задания. График приведен на рис 7.5.

25. Для второго способа увеличения вероятности безотказной работы системы - структурного резервирования - по тем же соображениям (см. п. 18) также выбираем элемент F, вероятность безотказной работы которого после резервирования должна быть не ниже (см. формулу (7.11)).

26. Для элемента F - системы “2 из 4” - резервирование означает увеличение общего числа элементов. Аналитически определить минимально необходимое количество элементов невозможно, т.к. число элементов должно быть целым и функция дискретна.

27. Для повышения надежности системы “2 из 4” добавляем к ней элементы, идентичные по надежности исходным элементам 12 - 15, до тех пор, пока вероятность безотказной работы квазиэлемента F не достигнет заданного значения.

Для расчета воспользуемся комбинаторным методом (см. раздел 3.3) :

- добавляем элемент 16, получаем систему “2 из 5”:

(7.13)

(7.14)

- добавляем элемент 17, получаем систему “2 из 6”:

(7.15)

(7.16)

- добавляем элемент 18, получаем систему “2 из 7”:

(7.17)

(7.18)

28. Таким образом, для повышения надежности до требуемого уровня необходимо в исходной схеме (рис. 7.1) систему “2 из 4” достроить элементами 16, 17 и 18 до системы “2 из 7” (рис. 7.7).

29. Результаты расчетов вероятностей безотказной работы системы “2 из 7” F`` и системы в целом P`` представлены в таблице 7.1.

30. Расчеты показывают, что при ч , что соответствует условию задания.

31. На рис. 7.5 нанесены кривые зависимостей вероятности безотказной работы системы после повышения надежности элементов 12 - 15 (кривая ) и после структурного резервирования (кривая ).

Выводы:

1. На рис. 7.5 представлена зависимость вероятности безотказной работы системы (кривая ). Из графика видно, что 50% - наработка исходной системы составляет часов.

2. Для повышения надежности и увеличения 50% - наработки системы в 1.5 раза (до часов) предложены два способа:

а) повышение надежности элементов 12, 13, 14 и 15 и уменьшение их отказов с до ч;

б) нагруженное резервирование основных элементов 12, 13, 14 и 15 идентичными по надежности резервными элементами 16, 17 и 18 (рис. 7.7).

3. Анализ зависимостей вероятности безотказной работы системы от времени (наработки) (рис. 7.5) показывает, что второй способ повышения надежности системы (структурное резервирование) предпочтительнее первого, так как в период наработки до часов вероятность безотказной работы системы при структурном резервировании (кривая ) выше, чем при увеличении надежности элементов (кривая ).

Таблица 7.2 Численные значения параметров к заданию

?,

Интенсивности отказов элементов, ???, x10-6 1/ч

вар.

%

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1

90

0.1

1.0

0.5

1.0

0.1

2

95

0.2

0.5

1.0

0.1

3

80

0.1

1.0

2.0

1.0

5.0

0.2

4

70

0.05

1.0

0.5

0.2

0.02

5

50

0.01

0.05

0.1

0.5

1.0

6

75

0.01

0.05

1.0

0.05

0.1

-

7

65

0.05

0.5

0.05

0.005

0.1

0.2

0.1

-

8

85

0.1

0.5

0.2

0.01

0.5

0.1

-

9

60

0.03

0.5

0.2

1.0

0.03

0.1

-

10

50

0.1

0.5

1.0

0.5

1.0

0.1

-

11

75

0.05

0.2

0.5

0.2

0.1

12

65

0.02

0.1

1.0

2.0

0.1

0.05

13

70

0.01

0.2

0.1

1.0

0.5

0.1

-

14

50

0.01

0.1

10.0

0.2

10.0

0.5

-

15

85

0.01

1.0

5.0

0.2

5.0

0.1

-

16

80

0.1

1.0

2.0

1.0

5.0

3.0

1.0

0.05

17

95

0.1

5.0

1.0

5.0

10.0

5.0

1.0

0.2

18

60

0.01

1.0

0.1

-

19

75

0.1

5.0

0.5

5.0

1.0

3.0

1.0

5.0

0.5

5.0

20

90

0.1

10.0

20.0

10.0

21

90

0.1

1.0

0.5

2.0

0.5

0.2

1.0

22

80

1.0

0.2

0.5

1.0

0.5

1.0

1.0

0.1

23

70

0.5

0.2

1.0

0.5

1.0

0.5

1.0

0.2

0.5

1.0

0.2

24

60

1.0

2.0

4.0

2.0

4.0

5.0

1.0

25

50

0.5

10.0

0.5

5.0

0.8

5.0

1.0

5.0

26

60

1.0

2.0

3.0

5.0

2.0

5.0

1.0

27

70

5.0

10.0

15.0

10.0

10.0

15.0

10.0

28

80

1.0

2.0

5.0

2.0

1.0

29

90

5.0

20.0

50.0

30.0

1.0

30

80

2.0

1.0

2.0

1.0

5.0

2.0

5.0

2.0

1.0

2.0

1.0

2.0

1.0

31

70

2.0

1.0

2.0

1.0

5.0

2.0

5.0

2.0

1.0

2.0

1.0

2.0

1.0

32

60

5.0

2.0

5.0

1.0

2.0

3.0

1.0

33

60

1.0

2.0

3.0

4.0

2.0

3.0

5.5

0.2

0.5

34

90

6.0

3.0

6.0

3.0

6.0

20.0

10.0

35

95

1.0

2.0

1.0

2.0

1.0

5.0

36

80

2.0

1.0

0.6

37

70

10.0

30.0

5.0

2.0

38

90

3.0

2.0

1.0

2.0

3.0

2.0

39

90

8.0

3.0

5.0

2.0

40

80

2.0

5.0

8.0

2.0

5.0

8.0

?,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

вар.

%

Интенсивности отказов элементов, ???, x10-6 1/ч

ЛИТЕРАТУРА

1. Левин В.И. Логическая теория надежности сложных систем. - М.: Энергоатомиздат, 1985. - 128 с.

2. Надежность технических систем: Справочник/Под ред. Ушакова И.А. - М.: Радио и связь, 1985. - 608 с.

3. Нечипоренко В.И. Структурный анализ систем (эффективность и надёжность). - М.: Сов. радио, 1977. - 214 с.

4. Рябинин И.А., Черкесов Г.Н. Логико-вероятностные методы исследования надежности структурно-сложных систем. - М.: Радио и связь, 1981. - 216 с.

5. ГОСТ 27.002 - 83 Надежность в технике. Термины и определения.

6. Сотсков Б. С. Основы теории и расчета надежности элементов и устройств автоматики и вычислительной техники. - М.: Высш. школа, 1970. - 270 с.

ПРИЛОЖЕНИЕ

Биномиальные коэффициенты

n

m

0

1

2

3

4

5

6

7

8

9

10

0

1

1

1

1

2

1

2

1

3

1

3

3

1

4

1

4

6

4

1

5

1

5

10

10

5

1

6

1

6

15

20

15

6

1

7

1

7

21

35

35

21

7

1

8

1

8

28

56

70

56

28

8

1

9

1

9

36

84

126

126

84

36

9

1

10

1

10

45

120

210

252

210

120

45

10

1

11

1

11

55

165

330

462

462

330

165

55

11

12

1

12

66

220

495

792

924

792

495

220

66

13

1

13

78

286

715

1287

1716

1716

1287

715

286

14

1

14

91

364

1001

2002

3003

3432

3003

2002

1001

15

1

15

105

455

1365

3003

5005

6435

6435

5005

3003

16

1

16

120

560

1820

4368

8008

11440

12870

11440

8008

17

1

17

136

680

2380

6188

12376

19448

24310

24310

19448

18

1

18

153

816

3060

8568

18564

31824

43758

48620

43758

19

1

19

171

969

3876

11628

27132

50388

75582

92378

92378

20

1

20

190

1140

4845

15504

38760

77520

125970

167960

184756

Примечание: Для m>10 можно воспользоваться свойством симметрии:

Размещено на Allbest.ru

...

Подобные документы

  • Основные количественные показатели надежности технических систем. Методы повышения надежности. Расчет структурной схемы надёжности системы. Расчет для системы с увеличенной надежностью элементов. Расчет для системы со структурным резервированием.

    курсовая работа [129,7 K], добавлен 01.12.2014

  • Понятие и основные этапы жизненного цикла технических систем, средства обеспечения их надежности и безопасности. Организационно-технические мероприятия повышения надежности. Диагностика нарушений и аварийных ситуаций, их профилактика и значение.

    презентация [498,7 K], добавлен 03.01.2014

  • Показатели надежности систем. Классификация отказов комплекса технических средств. Вероятность восстановления их работоспособного состояния. Анализ условий работы автоматических систем. Методы повышения их надежности при проектировании и эксплуатации.

    реферат [155,0 K], добавлен 02.04.2015

  • Методология анализа и оценки техногенного риска, математические формулировки, используемые при оценке основных свойств и параметров надежности технических объектов, элементы физики отказов, структурные схемы надежности технических систем и их расчет.

    курсовая работа [130,7 K], добавлен 15.02.2017

  • Схема основных состояний и событий, характерных для восстанавливаемых систем. Показатели надежности невосстанавливаемых систем. Критерии потоков отказов. Показатели безотказности. Анализ ряда основных параметров, характеризующих надежность системы.

    курсовая работа [430,7 K], добавлен 22.07.2015

  • Исследование сущности матричного метода расчета надежности автоматизированных систем. Определение вероятности отсутствия отказов элементов. Практическая реализация оптимального резервирования. Анализ различных подходов и классификаций ошибок персонала.

    контрольная работа [1008,0 K], добавлен 02.04.2016

  • Место вопросов надежности изделий в системе управления качеством. Структура системы обеспечения надежности на базе стандартизации. Методы оценки и повышения надежности технологических систем. Предпосылки современного развития работ по теории надежности.

    реферат [29,8 K], добавлен 31.05.2010

  • Общие характеристики показателей надежности. Взаимосвязь надежности и качества объекта. Что понимается под ресурсными испытаниями и с какой целью они проводятся. Достоинства и недостатки "дерева событий". Модернизация конструкции или технологии.

    контрольная работа [21,0 K], добавлен 01.03.2011

  • Анализ изменения вероятности безотказной работы системы от времени наработки. Понятие процентной наработки технической системы, особенности обеспечения ее увеличения за счет повышения надежности элементов и структурного резервирования элементов системы.

    контрольная работа [558,6 K], добавлен 16.04.2010

  • Краткая характеристика предприятия, его организационная структура и история развития. Обзор технологического процесса и выявление недостатков. Описание и анализ существующей системы управления. Анализ технических средств автоматизации, его эффективность.

    отчет по практике [1,4 M], добавлен 02.06.2015

  • Уровень развития технологических и технических систем. Расчет освещения, электроснабжения и вентиляции помещения салона красоты, сечения проводников и кабелей, тепло- и влагоизбытков, надежности оборудования. Подбор вентилятора и электродвигателя.

    курсовая работа [567,0 K], добавлен 17.02.2013

  • Определение модели вероятности отказов для резистора и конденсатора, расчет коэффициентов нагрузки и суммарной эксплуатационной интенсивности отказов с целью оценки показателей безотказности функционального узла РЭУ при наличии постоянного резервирования.

    курсовая работа [158,7 K], добавлен 05.07.2010

  • Расчет допустимого значения диагностического параметра. Определение периодичности профилактики. Расчет надежности (безотказности) заданного механизма, агрегата, системы. Расчет эмпирических характеристик распределения и его теоретических параметров.

    курсовая работа [264,0 K], добавлен 11.11.2013

  • Теория надежности – наука о закономерности отказов технических систем. Случайный характер отказов и восстановлений. Элемент как объект (материальный, информационный) и его свойства. Техническая система и ее структура, исправность и работоспособность.

    презентация [1,1 M], добавлен 10.12.2010

  • Порядок поверки, калибровки и аттестации приборов. Прикладные функции управления технологическим процессом. Схема автоматического регулирования соотношения дутьё-газ доменной печи. Контроль качества и анализ характеристик надежности систем автоматизации.

    отчет по практике [317,5 K], добавлен 21.04.2016

  • Определение надежности линейной (трубопроводной) части газораспределительных систем, их основных элементов и узлов. Проектирование распределительных газовых сетей. Построение кольцевых, тупиковых и смешанных газопроводов, принципы их расположения.

    контрольная работа [232,9 K], добавлен 24.09.2015

  • Динамика рабочих сред в регулирующих устройствах и элементах систем гидропневмопривода, число Рейнольдса. Ограничитель расхода жидкости. Ламинарное движение жидкости в специальных технических системах. Гидропневматические приводы технических систем.

    курсовая работа [524,5 K], добавлен 24.06.2015

  • Определение основных показателей надежности технических объектов с применением математических методов. Анализ показателей надежности сельскохозяйственной техники и разработка мероприятий по ее повышению. Организации испытания машин на надежность.

    курсовая работа [231,6 K], добавлен 22.08.2013

  • Расчет параметров привода конвейера. Форма и размеры деталей редуктора привода, этапы его проектирования. Стадии и этапы разработки конструкторской документации. Определение условий эксплуатации. Оценка количественных показателей надежности ремонта.

    дипломная работа [4,6 M], добавлен 04.09.2014

  • Краткое описание конструкции двигателя. Нормирование уровня надежности лопатки турбины. Определение среднего времени безотказной работы. Расчет надежности турбины при повторно-статических нагружениях и надежности деталей с учетом длительной прочности.

    курсовая работа [576,7 K], добавлен 18.03.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.