Исследование и проектирование механизма дизельвоздуходувной установки

Динамический синтез и анализ рычажного механизма. Расчет скоростей ведомых звеньев. Проектирование кинематической схемы планетарного редуктора и построение картины эвольвентного зацепления. Синтез кулачкового механизма. Кинематические диаграммы толкателя.

Рубрика Производство и технологии
Вид курсовая работа
Язык русский
Дата добавления 26.01.2013
Размер файла 232,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования Российской Федерации

СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ

Кафедра:ТиКМС

Допускаю к защите

Руководитель: Меснянкин М.В.

Курсовой проект по ТММ

на тему: «Исследование и проектирование механизма дизельвоздуходувной установки»

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Выполнил студент группы ЗО НиГ

Суфияров Н.М.

Специальность: 130602.65

Курсовой проект защищен

с оценкой

Красноярск-2012

Содержание

Задание

1. Динамический синтез рычажного механизма

2. Динамический анализ рычажного механизма

3. Проектирование кинематической схемы планетарного редуктора и построение картины эвольвентного зацепления

4. Синтез кулачкового механизма

Список использованных источников

Задание

Размеры звеньев рычажного механизма ==/3, =0,08 м; ==0,33 м.

Частота вращения коленчатого вала 1 и кулачка n= n=2000 об/мин.

Массы звеньев m=m=3,6 кг;

m=m=3,6 кг.

Моменты инерции звеньев J=0,16 кгм;

J= J=0,09 кгм;

J=0,12 кгм.

Максимальное давление в цилиндрах двигателя р=6,3 МПа.

Диаметр цилиндров d=0,11 м.

Коэффициент неравномерности вращения коленчатого вала =1/100.

Положение кривошипа 1 при силовом расчёте механизма =120.

Число зубьев колёс стартерной передачи z=8; z=28.

Модуль колёс стартерной передачи и планетарного механизма m=m=3,5 мм.

Передаточное отношение планетарного механизма привода воздуховки u=1/5.

Ход толкателя кулачкового механизма h=13.

Фазовые углы поворота кулачка, =0, ==63.

Допускаемый угол давления =30.

Масса толкателя m=0,3 кг

Таблица 1. Давление газа в долях р/р в зависимости от перемещения поршня (в долях хода Н)

S/Н

0

0,02

0,05

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

Движение поршня вниз

0,8

1,0

0,79

0,55

0,34

0,23

0,17

0,13

0,1

0,08

0,06

0,02

0

Движение поршня вверх

0,8

0,5

0,35

0,22

0,12

0,08

0,05

0,03

0,02

0,01

0,003

0

0

Таблица 2. Циклограмма двигателя

Цилиндры

Угол поворота коленчатого вала, град

0

90

180

270

360

Левый

Сжатие

Расширение

Правый

Расширение

Сжатие

Расширение

1. Динамический синтез рычажного механизма

Угловая скорость ведущего звена:

=,

где n - частота вращения ведущего звена, об/мин

n=2000 об/мин.

==209,3 с

Масштаб схемы механизма:

,

где ОA - отрезок длинны шатуна на плане механизма, мм

ОA=40мм

l=0,08 м

=0,002 м/мм

Предварительно определим скорость и ускорение ведущего звена. Зная угловую скорость ведущего звена , можно определить линейную скорость точки А звена1.

V= l=209,30,08=16,74 м/с.

Масштаб плана скоростей:

,

где рa - отрезок скорости ведущего звена на плане скоростей, мм

рa=33,5 мм

=0,5 мс/мм

Точка А звена 1 будет иметь только нормальное ускорение, направленное к центру вращения О.

а= l=209,30,08=3505 м/с.

Масштаб плана ускорений:

,

где a - отрезок ускорения ведущего звена на плане скоростей, мм

a=87,6 мм

=40 мс/мм

Определение скоростей ведомых звеньев

Скорость точки В находится графически - на пересечении перпендикуляра к звену 2, выходящего из точки а и прямой, параллельной ОВ, выходящей из полюса р.

Скорость точки С находится графически - на пересечении перпендикуляра к звену 3, выходящего из точки а и прямой, параллельной ОС, выходящей из полюса р.

Скорости точек S и S находятся по методу подобия отрезков ОВ, О S и рb, рs; и, соответственно, отрезков ОС, О S и рс, рs.

Угловая скорость второго звена:

=.

Угловая скорость четвёртого звена:

=.

Скорости точек, м/с и угловые скорости, с звеньев механизма во всех положениях:

1

2

3

4

5

6

7

8

9

10

11

12

V

13,9

17,2

15,1

9,8

3,3

3,3

9,8

15,1

17,2

13,9

5,4

5,4

V

13,9

5,4

5,4

13,9

17,2

15,1

9,8

3,3

3,3

9,8

15,1

17,2

V

12

4,5

4,5

12

16,2

16,2

12

4,5

4,5

12

16,2

16,2

V

12

16,2

16,2

12

4,5

4,5

12

16,2

16,2

12

4,5

4,5

V

14,8

16,8

16,1

13,7

11,5

11,5

13,7

16,1

16,8

14,8

11,8

11,8

V

14,8

11,8

11,8

14,8

16,8

16,1

13,7

11,5

11,5

13,7

16,1

16,8

36,4

13,6

13,6

36,4

49,1

49,1

36,4

13,6

13,6

36,4

49,1

49,1

36,4

49,1

49,1

36,4

13,6

13,6

36,4

49,1

49,1

36,4

13,6

13,6

Для каждого положения механизма приведённый момент инерции звеньев находится по формуле:

J=,

где m - масса звена i; J- момент инерции звена I относительно оси, проходящей через центр масс S звена; - угловая скорость звена i; V - скорость центра масс звена i.

Моменты инерции, вычисленные для каждого положения, 10 кгм.

1

2

3

4

5

6

7

8

9

10

11

12

J

233,2

226,7

219,2

222,6

224,6

217

212

217

224,6

222,6

219,2

226,7

Движущую силу можно вычислить по формуле:

F= р

где р - давление в цилиндрах, Па;

d - диаметр цилиндров, м.

F= 6,310=59,8410 Н.

Вычисление движущей силы в зависимости от хода поршня (ход поршня определяется из плана механизма):

S/Н

0

0,02

0,05

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

Движение поршня вниз

0,8

1,0

0,79

0,55

0,34

0,23

0,17

0,13

0,1

0,08

0,06

0,02

0

F, кН

47,9

59,8

47,2

32,9

20,3

13,8

10,2

7,8

6

4,8

3,6

1,2

0

Движение поршня вверх

0,8

0,5

0,35

0,22

0,12

0,08

0,05

0,03

0,02

0,01

0,003

0

0

F, кН

47,9

29,9

20,9

13,2

7,2

4,8

3

1,79

1,2

0,6

0,18

0

0

График приведённого движущего момента строится по заданной индикаторной диаграмме, а приведённый момент сил сопротивления считается постоянным и определяется из условия равенства работ.

Для построения графика изменения кинетической энергии поступаем следующим образом. Находим изменение кинетической энергии на отдельных участках; оно равняется разности работ приведённых моментов движущих сил и сил сопротивления на каждом участке, т. е. равно разности площадей графиков этих моментов, умноженной на произведение масштабных коэффициентов. Откладывая полученное изменение кинетической энергии, получим ординату искомого графика. Указанное построение выполним графическим интегрированием методом секущих.

Диаграмма «энергия-масса» строится путём графического исключения параметра (угла поворота кривошипа) из графиков изменения кинетической энергии механизма и приведённого момента инерции.

Для определения момента инерции маховика по заданному коэффициенту неравномерности движения проводим касательные к графику «энергия-масса» под углами и к оси абсцисс (оси приведённого момента инерции), тангенсы которых определяются по формулам:

tg=(1+)=209,3(1+0,01)=0,343;=18,94;

tg=(1+)=209,3(1-0,01)=0,336;=18,94.

Искомый момент инерции маховика находим из выражения:

J=, кгм,

где (kl) - отрезок, отсекаемый проведёнными касательными на оси ординат диаграммы «энергия-масса»;

J==6,33 кгм.

2. Динамический анализ рычажного механизма

планетарный редуктор рычажной механизм

При динамическом анализе определяются реакции в кинематических парах механизма и уравновешивающий момент, приложенный к начальному звену, от действия внешних сил инерции.

Уравновешивающий момент представляет собой сопротивление, которое может преодолеть данный двигатель при заданной скорости вращения.

Изобразим схему механизма в положении, для которого требуется сделать силовой расчёт. В этом положении угол =210 . Построим для этого положения план скоростей.

Определение скоростей ведомых звеньев

Скорость точки В находится графически - на пересечении перпендикуляра к звену 2, выходящего из точки а и прямой, параллельной ОВ, выходящей из полюса р.

Скорость точки С находится графически - на пересечении перпендикуляра к звену 3, выходящего из точки а и прямой, параллельной ОС, выходящей из полюса р.

Скорости точек S и S находятся по методу подобия отрезков ОВ, О S и рb, рs; и, соответственно, отрезков ОС, О S и рс, рs.

V=12,71 м/с; V=10,15 м/с; V=8,57 м/с; V=14,61 м/с; V=15 м/с; V=14 м/с.

Угловая скорость второго звена:

===26 с.

Угловая скорость четвёртого звена:

==14,3 с.

Определение ускорений ведомых звеньев

Абсолютное ускорение точки В:

а=а+а+а

где а= V/=14,61/0,33=646,8 м/с;

а=2966 м/с;

а=3035 м/с.

Абсолютное ускорение точки С:

а=а+а+а

где а= V/=8,57/0,33=222,6 м/с;

а=1738 м/с;

а=3046 м/с.

Ускорения а и а находим по методу подобия

а=2675 м/с;

а=3256 м/с.

Определение угловых ускорений

===8989 с;

===5267 с.

Сила инерции первого звена:

I=m а,

где m=0 кг - масса первого звена,

а - ускорение центра тяжести первого звена.

Данное ускорение равно нулю, т. к. центр тяжести первого звена находится в неподвижной точке.

I==00=0 Н.

Сила инерции второго звена:

I=m а=3,62675=9630 Н.

Момент инерции второго звена:

М=,

где =0,09 кг - момент инерции второго звена относительно оси, проходящей через центр масс.

М=89890,09=809 Нм.

Направление силы инерции противоположно направлению ускорения центра масс данного звена. Смещение данной силы относительно центра тяжести:

h= М/ I=809/9630=0,084 м.

Силу инерции смещаем в ту сторону, чтобы сохранилось направление момента инерции.

Сила инерции третьего звена:

I=m а=3,63035=10926 Н.

Момент инерции третьего звена:

М==00,09=0.

Сила инерции четвёртого звена:

I=m а=3,63256=11722 Н.

Момент инерции четвёртого звена:

М==52670,09=474 Нм.

Направление силы инерции противоположно направлению ускорения центра масс данного звена. Смещение данной силы относительно центра тяжести:

h= М/ I=474/11722=0,0404 м

Силу инерции смещаем в ту сторону, чтобы сохранилось направление момента инерции.

Сила инерции пятого звена:

I=m а=3,63046=10966 Н.

Момент инерции четвёртого звена:

М==00,09=0 Нм.

Расчёт группы 4,5

Сила тяжести пятого звена:

G=mg;

G=3,69,8=35,3 Н.

Сила тяжести четвёртого звена:

G=mg;

G=3,69,8=35,3 Н.

Найдём сумму всех сил относительно точки С:

-Ih- Gh+Rl=0,

где h=0,0629 м;h=0,135 м;l=0,33 м

R=(Ih+Gh)/ l

R=(117220,0629+35,30,135)/0,33=2249 Н.

Составим векторное уравнение:

R+ G+ G+ F+I+I+ R+R=0,

где R - нормальная составляющая реакции в точке С.

R - реакция пятого звена;

F - полезная сила, действующая на пятое звено. По таблице исходных данных находим, что для точки В: F=60 Н, для точки С: F=38000 Н

Направление реакции R пока не известно.

Направление силы инерции I - противоположно ускорению а.

Направление реакции R - перпендикулярно опоре.

Направление силы инерции I - противоположно ускорению а.

Выбираем масштаб:

=100 Н/мм

Строим план сил векторного уравнения.

Из плана сил находим, что R=18049 Н;R=4457 Н.

Расчёт группы 2,3

Сила тяжести третьего и второго звеньев:

G=G=mg;

G=G=3,69,8=35,3 Н.

Найдём сумму всех сил относительно точки В:

-Ih+ Gh+Rl=0,

где h=0,217 м;h=0,185 м;l=0,33 м

R=(Ih-Gh)/ l

R=(96300,217-35,30,185)/0,33=6313 Н.

Составим векторное уравнение:

R+ G+ G+ F+I+I+ R+R=0,

где R - нормальная составляющая реакции в точке С.

R - реакция третьего звена;

Направление реакции R пока не известно.

Направление силы инерции I - противоположно ускорению а.

Направление реакции R - перпендикулярно опоре.

Направление силы инерции I - противоположно ускорению а.

Выбираем масштаб:

=100 Н/мм

Строим план сил векторного уравнения.

Из плана сил находим, что R=20101 Н;R=2943,5 Н.

Расчёт начального звена

Сила сопротивления действует в точке А перпендикулярно звену 1.

Найдём сумму всех сил относительно точки А:

Rh-Fh+ Rh=0

F= (Rh+ Rh)/ h=(2010139,5+1804955,7)/80=22486 Н.

Составим векторное уравнение:

R+ R+ R+F= 0

Строим план сил векторного уравнения.

Из плана сил находим, что R=4525 Н.

Проверка силового расчёта.

Проверку сделаем с помощью рычага Жуковского. Для этого к повёрнутому плану скоростей приложим внешние силы механизма и силы инерции его звеньев.

Относительно полюса р сумма моментов всех сил, приложенных к рычагу, должна быть равна нулю. Отсюда

F25,42+ F20,29+ G27,56+ G17,97+ G27,86+ G14,35+ I5,39- I13,39+ I25,42- I20,29- F33,5=0;

F=(6025,42+3800020,29+35,327,56+35,317,97+35,327,86+35,314,35+96305,39-1172213,39+1092625,42-1096620,29)/33,5=21663 Н

Ошибка силового расчёта

=%=%=3,4%.

3. Проектирование кинематической схемы планетарного редуктора и построение картины эвольвентного зацепления

Передаточное отношение редуктора:

u==u u,

где u - передаточное отношение стартерной передачи;

u= z/ z=28/8=3,5.

u=3,55=17,5.

Отсюда n=2000/17,5=114,3 об/мин.

Делительные диаметры колёс стартерной передачи:

d=mz=3,58=28 мм;

d=m z=3,528=98 мм.

Производится подбор чисел зубьев и числа сателлитов однорядного планетарного редуктора. Из условия соосности:

z=z+2z

Формула передаточного отношения:

u=1+,

где u=5/1=5;

5=1+;z=4z;

Отсюда 4z= z+2z;z=z.

Значит z - меньшее колесо. Т. к. z15, то принимаем z=20.

z=20=30;

z=420=80.

Из условия сборки находим максимальное число сателлитов:

k==4,5.

Принимаем число сателлитов k=4.

Делительные диаметры зубчатых колёс планетарной передачи:

d=mz=3,520=70 мм;

d=mz=3,530=105 мм;

d=mz=3,580=280 мм.

Рассчитываем параметры эвольвентного зацепления стартерной передачи.

Картина линейных угловых скоростей.

Схему изобразим в масштабе М1:2, что соответствует масштабному коэффициенту =2 м/мм. Отложим произвольный отрезок АА', изображающий скорость точки А колёс 1 и 2. Точку А' соединим с С - мгновенным центром вращения колеса 2. Прямая СА' является линией распределения скоростей этого колеса. С помощью СА' определим скорость ВВ' в точке В сателлита и водила. Соединяя В' и А' с 0, получим линии распределения скоростей для водила и колеса 1.

Построение картины угловых скоростей.

Из точки D произвольного отрезка DE проведём лучи, параллельные линиям распределения скоростей. Лучи отсекают на горизонтальной прямой отрезки Е1, Е2, ЕН, пропорциональные угловым скоростям , , соответственно. По картине угловых скоростей передаточное отношение

U==250/50=5.

Это совпадает с заданным U.

Геометрический расчёт зацепления

Исходные данные

Число зубьев колеса а…………………………………..z=8

Число зубьев колеса b…………………………………..z=28

Модуль, мм……………………………………………..m=3,5

Параметры производящей рейки (ГОСТ 13755-81)

Угол профиля, град……………………………………=20

Коэффициент высоты головки………………………..h*=1

Коэффициент радиального зазора…………………….с*=0,25

Так как межосевое расстояние не задано, то по блокирующим контурам находим коэффициенты смещения производящего реечного контура. Для этого находим блокирующий контур, построенный для заданного сочетания чисел зубьев. z и z.

x=0,6 мм; х=0,4 мм.

По выбранным коэффициентам смещения вычисляем инволюту угла зацепления:

inv=+ inv.

Значение inv=0,0149

inv=+ 0,0149=0,03512.

Угол зацепления =26,28

Межосевое расстояние:

а===66,025 мм.

Радиусы делительных окружностей:

r=mz/2=3,58/2=14 мм;

r=mz/2=3,528/2=49 мм.

Радиусы основных окружностей:

r=rcos=140,9397=13,1557 мм

r=rcos=490,9397=46,0449 мм

Радиусы окружностей впадин:

r=r-(h* +c* -x)m=14-(1+0,25-0,6)3,5=11,725 мм

r=r-(h* +c* -x)m=49-(1+0,25-0,4)3,5=46,025 мм

Радиусы окружностей вершин:

r=a- r-cm=66,025-46,025-0,253,5=19,125 мм

r=a- r-cm=66,025-11,725-0,253,5=53,425 мм.

Шаг по делительной окружности:

р=m=3,143,5=10,99 мм.

Шаг по хорде делительной окружности:

p=2rsin=214sin=10,71 мм

p=2rsin=249sin=10,97 мм

Толщины зубьев по делительным окружностям

s=(0,5+2хtg)m=(0,53,14+20,60,364)3,5=7,02 мм

s=(0,5+2хtg)m=(0,53,14+20,40,364)3,5=6,51 мм

Толщины зубьев по хордам делительных окружностей

s=2rsin=214sin=6,95 мм;

s=2rsin=249sin=6,51 мм.

Углы профиля на окружности вершин

=arcos=arcos=46,56;

=arcos=arcos=30,49.

Коэффициент перекрытия

==

==1,14.

Вычерчивание зацепления

Высота зуба колёс 4, 5 h=h= r- r=53,425-46,025=7,4 мм. На чертеже зуб должен иметь высоту не менее 40 мм. Требуемое увеличение составляет 40/7,4=5,4. На этом основании принимаем масштаб М 5:1. Зацепление вычерчиваем в следующем порядке. Отмечаем центры колёс. Проводим основные окружности. По касательной к этим окружностям проводим линию зацепления.

Отмечаем полюс зацепления. Проводим окружности вершин. Строим две эвольвенты, соприкасающиеся, например, в полюсе.

Проводим делительные окружности. Откладываем толщины зубьев по этим окружностям. Находим оси симметрии зубьев и строим противоположные стороны этих зубьев. Проводим окружности впадин. В основаниях зубьев делаем скругления радиусом 0,3 модуля. Это примерно равно радиусу производящей рейки.

Через полюс проводим начальные окружности. Отмечаем границы всей линии зацепления и её активной части. Находим границы активных профилей зубьев.

Определяем коэффициент перекрытия по чертежу:

==1,07.

Погрешность по сравнению с расчётным коэффициентом составляет 6%. Это допустимо и свидетельствует о правильности синтеза зацепления.

4. Синтез кулачкового механизма

Ход толкателя кулачкового механизма h=13.

Фазовые углы поворота кулачка, =0, ==63.

Допускаемый угол давления =30.

Масса толкателя m=0,3 кг

Кинематические диаграммы толкателя.

Согласно заданию, на фазе подъёма экстремальные значения аналога ускорения толкателя равны. Т. е. а=а. Пусть отрезок а+а=120 мм, тогда а=а=60 мм.

Примем ==63 мм. Графики и получим двукратным графическим интегрированием аналога ускорения. При первом интегрировании проведём горизонтальные выносные линии от каждой ступени этого аналога. На расстоянии 70 мм отметим полюс Р. Из полюса проведём лучи к каждой выноске. Параллельно лучам проведём соответствующие им линии графика .

При повторном интегрировании полюсное расстояние Н примем одинаковым с Н. График заменим ступенчатой линией. Высоту ступеней выберем так, чтобы треугольники, лежащие выше или ниже этих ступеней, были одинаковыми по площади. От каждой ступени проведём горизонтальные выносные линии до упора в координатную ось. Из полюса Р проведём лучи к каждой выносной лини. Из начала координат графика выстроим цепочку хорд, каждая из которых параллельна своему лучу. Точки излома цепочки хорд дадут искомые ординаты графика .

Вычислим масштабные коэффициенты по осям построенных графиков. Начнём с графика . По заданию S=h=0,013 м; в результате интегрирования отрезок <S> получился равным 48,6 мм. Отсюда. = S/<S>=0,013/48,6=0,0002675 м/мм.

По заданию =63?; на чертеже этому углу соответствует отрезок <>=126 мм. На этом основании =/<>=63?/126=0,5 град/мм=8,710 рад/мм

Масштабные коэффициенты по осям и определим по формулам:

=/(Н1)=0,0002675/(8,710 70)=0,4410 мс/мм

=/(Н2)= 0,4410 /(8,710 70)=0,7210 мс/мм

Начальный радиус кулачка.

По диаграммам и строим объединённую диаграмму . Масштаб диаграммы определяем по формуле:

===0,0002675 м/мм.

При переходе от исходных кинематических диаграмм к объединённой диаграмме масштабные перерасчёты производим по формулам:

<S>=<S>=<S>=<S>;

<S'>=<S'>=<S'>=<S'>1,64.

Из диаграммы находим, что АВ=R=70 мм.

Из центра кулачка А проводим лучи в каждую пронумерованную точку диаграммы . Угол давления считается положительным, если луч отклоняется от оси S против часовой стрелки.

Профиль кулачка.

С диаграммы снимают начальный радиус R. В масштабе =, т.е. в том же масштабе, что и на диаграмме , радиусом R проводим начальную окружность НО.

Через точку А проводим вертикальную прямую АВ, изображающую начальное положение оси толкателя в воображаемом движении этого толкателя относительно неподвижного (при синтезе) кулачка. В сторону, противоположную скорости , откладываем фазовые углы и .

Углы и разбиваем на 12 равных частей. Через точки деления начальной окружности проводим радиальные прямые, изображающие все прочие оси толкателя в его движении относительно кулачка.

На каждой из радиальных прямых откладываем отрезки ВС, ВС и т. д., снятые с оси S диаграммы . Точки С соединяем плавной кривой, которая представляет собой центровой профиль искомого кулачка.

Углы давления.

На выпуклой части центрового профиля находим наиболее изогнутый участок. В данном месте проводим две нормали n и n. На пересечении нормалей отмечаем центр кривизны С и замеряем радиус кривизны . Через и найденное ранее R определяем радиус ролика r. За радиус ролика принимаем меньшее из двух значений, вычисленных по формулам

r=0,7=0,736,36=25,45 мм;

r=0,3R=0,370=21 мм.

Значит радиус ролика r=21 мм. Реальный радиус ролика

r=210,0002675 =5,610 м

Из каждой пронумерованной точки центрового профиля кулачка проводим дуги радиусом ролика. По касательной к этим дугам проводим плавную кривую. Эта кривая представляет собой действительный профиль кулачка.

По графику ожидаемых углов давления находим то из пронумерованных положений механизма, в котором угол давления близок к максимальному. Устанавливаем численное значение угла давления в этом положении. В этом положении фактический угол давления равен 30?. Данный угол равен ожидаемому. Значит задача синтеза решена правильно.

Так как предварительное сжатие пружины составляет 20-40% от полного сжатия, то Предварительное сжатие составит h=0,3h=0,313=3,9 мм.

Жёсткость пружины можно найти по формуле:

F=2F=2 mа

где F - сила инерции выходного звена, где возможен отрыв выходного звена от поверхности кулачка.

2F - усилие пружины, увеличенное в 2 раза (из условия);

m - масса толкателя, кг

а - ускорение в точке 15 из графика ускорения, м/с.

а=60=600,7210=0,0432 м/с

F=20,30,0432=0,026 Н.

Список использованных источников

Артоболевский И.И Теория механизмов и машин: Учеб. Для втузов. - 4-е. Изд., перераб. и доп. - М.: Наука. 1988. 640с.

Кореняко А.С. Курсовой проект по теории механизмов и машин: издательство Высшая школа; 1979, 332 стр.

3. Ермак В. Н., Курышкин Н. П. Курсовой проект по теории механизмов и машин: Учебное пособие. Кемерово 2004.

Размещено на Allbest.ru

...

Подобные документы

  • Структурный и силовой анализ рычажного механизма, его динамический синтез, планы положения и скоростей. Кинематическая схема планетарного редуктора, расчет и построение эвольвентного зацепления. Синтез кулачкового механизма, построение его профиля.

    курсовая работа [472,2 K], добавлен 27.09.2011

  • Синтез и расчёт кулисного механизма, построение и расчёт зубчатого зацепления и кулачкового механизма. Силовой анализ рычажного механизма. Проектирование зубчатого зацепления. Синтез планетарного редуктора. Масштабный коэффициент времени и ускорения.

    курсовая работа [474,4 K], добавлен 30.08.2010

  • Постановка задач проекта. Синтез кинематической схемы механизма. Синтез рычажного механизма. Синтез кулачкового механизма. Синтез зубчатого механизма. Кинематический анализ механизма. Динамический анализ механизма. Оптимизация параметров механизма.

    курсовая работа [142,8 K], добавлен 01.09.2010

  • Структурный анализ рычажного, зубчатого и кулачного механизмов. Динамический анализ рычажного механизма: определение скоростей, момента инерции и сопротивления. Проектирование кинематической схемы планетарного редуктора и расчёт эвольвентного зацепления.

    курсовая работа [563,6 K], добавлен 15.09.2010

  • Динамический анализ рычажного механизма по коэффициенту неравномерности движения. Силовое исследование рычажного механизма. Проектирование зубчатой передачи и планетарного редуктора. Проектирование и расчет кулачкового механизма и его составляющих.

    курсовая работа [88,8 K], добавлен 18.01.2010

  • Устройство плоского рычажного механизма, его кинематический анализ. Построение плана скоростей и ускорений. Силовой анализ механизма. Синтез кулачкового механизма, определение его основных размеров. Построение профиля кулачка методом обращенного движения.

    курсовая работа [977,0 K], добавлен 11.10.2015

  • Структурный анализ рычажного механизма. Метрический синтез механизма штампа. Построение планов аналогов скоростей. Расчет сил инерции звеньев. Определение уравновешивающей силы методом Жуковского. Построение профиля кулачка. Схема планетарного редуктора.

    курсовая работа [2,5 M], добавлен 17.05.2015

  • Синтез и анализ рычажного механизма, определение недостающих размеров, построение диаграмм. Расчёт скоростей и ускорений. Проектирование зубчатого зацепления. Синтез планетарного редуктора. Диаграмма движения толкателя. Выбор минимального радиуса кулачка.

    курсовая работа [780,9 K], добавлен 08.09.2010

  • Использование рычажного пресса для изготовления изделий из порошковых материалов. Построения планов положений механизма. Построение планов скоростей. Определение реакций в кинематических парах. Синтез зубчатого механизма. Синтез планетарного редуктора.

    курсовая работа [493,3 K], добавлен 23.05.2015

  • Синтез кулачкового механизма. Построение диаграммы скорости, перемещения, ускорения толкателя. Построение графика изменения угла давления. Синтез эвольвентного зубчатого зацепления. Расчет массы и геометрических параметров маховика, построение графиков.

    курсовая работа [917,5 K], добавлен 05.01.2013

  • Проектирование кинематической схемы рычажного механизма. Построение планов его положения, скоростей и ускорения. Расчет ведущего звена. Синтез зубчатого механизма. Параметры инструментальной рейки. Порядок вычерчивания зацепления 2-х зубчатых колес.

    курсовая работа [901,6 K], добавлен 14.04.2014

  • Синтез и анализ рычажного механизма. Силовой анализ механизма: расчёт кривошипа, определение мощностей. Геометрический расчет зубчатой передачи. Проектирование планетарного редуктора. Синтез и анализ кулачкового механизма. Результаты работы программы.

    курсовая работа [439,5 K], добавлен 29.10.2009

  • Построение отдельных положений механизма. Определение приведенного момента инерции, скоростей точек и звеньев. Динамический анализ механизма. Расчет зубчатой цилиндрической передачи. Определение минимального радиуса кулачка. Построение диаграмм движения.

    курсовая работа [5,9 M], добавлен 26.09.2013

  • Определение линейных скоростей и ускорений точек рычажного механизма, а также угловых скоростей и ускорений звеньев, реакции в кинематических парах и уравновешивающую силу кривошипно-кулисного механизма. Построение графика перемещений толкателя.

    курсовая работа [244,2 K], добавлен 15.02.2016

  • Синтез, структурный и кинематический анализ рычажного механизма. Построение планов положений механизма. Определение линейных скоростей характерных точек и угловых скоростей звеньев механизма методом планов. Синтез кулачкового и зубчатого механизмов.

    курсовая работа [709,2 K], добавлен 02.06.2017

  • Кинематический анализ механизма. Построение планов скоростей и ускорений. Определение сил и моментов инерции. Силовой анализ группы Асура. Проектирование зубчатой передачи внешнего зацепления. Синтез планетарного редуктора. Построение графика скольжения.

    курсовая работа [1,3 M], добавлен 13.12.2014

  • Динамический синтез и анализ плоского механизма. Расчет планетарной ступени и синтез цилиндрической зубчатой передачи эвольвентного профиля. Синтез кулачкового механизма. Графическое интегрирование заданного закона движения. Построение профиля кулачка.

    курсовая работа [793,0 K], добавлен 18.01.2013

  • Структурный и динамический анализ рычажного механизма. Расчет масштаба кинематической схемы. Построение диаграммы приращения кинетической энергии машинного агрегата, звеньев рычажного механизма. Расчет параметров зубчатой передачи, межосевого расстояния.

    курсовая работа [853,6 K], добавлен 15.05.2013

  • Структурный анализ стержневого механизма. Построение планов положений и скоростей механизма. Динамический анализ и синтез машинного агрегата. Кинематический расчет передаточного механизма. Геометрический синтез эвольвентной цилиндрической передачи.

    курсовая работа [172,0 K], добавлен 19.05.2011

  • Структурное исследование плоского механизма и выполнение анализа кинематических пар. Разделение механизма на структурные группы Ассура. Масштаб построения плана скоростей. Определение кориолисова ускорения. Синтез эвольвентного зубчатого зацепления.

    курсовая работа [1,1 M], добавлен 20.04.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.