Переработка газообразных топлив

Классификация и состав газообразных топлив. Фракционирование углеводородных газов нефтепереработки для получения из нефтезаводских газов индивидуальных низкомолекулярных углеводородов. Разделение газов на абсорбционно-газофракционирующей установке.

Рубрика Производство и технологии
Вид реферат
Язык русский
Дата добавления 06.03.2013
Размер файла 36,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

Нефтеперерабатывающая и нефтехимическая промышленность является одной из ведущих отраслей тяжелой промышленности. В последние годы добыча нефти значительно сократилась.

Перед нефтеперерабатывающей промышленностью поставлена задача повысить эффективность использования нефти, обеспечить дальнейшее улучшение её переработки.

В настоящее время особая роль отведена увеличению глубины переработки нефтяного сырья с помощью различных термических и химических методов, с целью получения из нефти большего количества светлых нефтепродуктов. Широкое применение в нефтепереработки имеет газ. Газ применяется как хладагент, топливо.

В топливном балансе, газообразное топливо занимает существенное место. С каждым годом его потребление возрастает не только в промышленности, но и в хозяйстве. Газообразное топливо имеет ряд существенных преимуществ по сравнению с другими видами топлива: оно широко распространено, дешево, имеются его большие запасы, легко осуществляется дозировка и регулировка с воздухом. Многие газы обладают высокой тепловой ценностью. При сгорании они развивают высокую температуру, полностью сгорают с небольшим коэффициентом избытка воздуха, не содержат коррозионно-агрессивных веществ. Газообразное топливо очень удобно в использовании: в помещениях сохраняется чистота, так как при его сгорании не выделяются копоть и смолы, не остается золы, а продукты сгорания почти не содержат веществ, вредных для окружающей живой природы. Хранение газообразного топлива централизованно, что удобно для потребления: не нужны индивидуальные складские помещения, специальные хранилища. Использование газовых магистралей особенно важно для тех районов, где нет запасов твердого и жидкого топлива.

Основной недостаток многих видов газообразного топлива - их высокая взрывоопасность (природные газы, водород, метан). Легкая утечка горючих газов через мельчайшие неплотности требует внимания и осторожности при использовании. Те газы, в состав которых входит окись углерода, сильно ядовиты. Однако соблюдение правил технической и противопожарной безопасности, а также выполнение рекомендуемых мер, делает эксплуатацию газовых установок надежной и безопасной.

1. Классификация и состав газообразных топлив

Газообразные топлива - это в основном смесь различных газов, таких как метан, этилен, и других углеводородов. Также в состав газообразного топлива входят оксид углерода, диоксид углерода или углекислого газа, азот, водород, сероводород, кислород и другие газы, а также водяные пары.

Все виды газообразного топлива по теплоте сгорания делят на три группы: 1) низкокалорийные газы (генераторный, смешанный, доменный, рудничный и др.), выделяющие до 10000 кДж/м?; 2) среднекалорийные (водяной, светильный, коксовый и др.), при их сгорании выделяется 10000-20000 кДж/м?; 3) высококалорийные - более 20000 кДж/м?, к их числу относятся различные природные газы газовых месторождений, нефтяные или попутные газы, добываемые вместе с нефтью из нефтяных скважин, сжиженные газы, а также различные крекинговые и другие газы, получаемые при переработке нефти.

Газообразное топливо может быть естественным и искусственным. К естественным относятся легкие газообразные углеводороды, улавливаемые при добыче нефти, и природные газы чисто газовых месторождений. По составу и тепловой ценности природные газы различных месторождений отличаются незначительно. Их главная составная часть (92-99%) - метан СН4, что и обусловливает высокую взрывоопасность. Природный газ - самое дешевое топливо, что делает его чрезвычайно перспективным для использования во многих отраслях хозяйства. С каждым годом он находит все более широкое применение и в сельском хозяйстве и для обеспечения различных технологических и бытовых нужд.

Искусственные горючие газы получают при переработке твердых и жидких топлив (процессы сухой перегонки, коксования, полукоксования и др.). Наиболее распространены светильный, коксовый, водяной, смешанный, крекинговый. По тепловой ценности искусственные газы бывают как низко, так и высококалорийными. Их используют как топливо, а также часто смешивают с природным для снижения взрывоопасности. Смешивание проводят на специальных станциях, а к потребителю уже поступает готовый двойной или тройной газ. Однако необходимо помнить, что газ, поступающий к потребителю, все равно взрывоопасен, а часто и ядовит (если в нем содержится окись углерода) и поэтому требует осторожного обращения с ним.

Газовое топливо представляет собой смесь горючих и негорючих газов. Горючими являются метан, пропан, бутан, этан, водород и окись углерода; негорючими - азот, углекислый газ и кислород, а также некоторое количество примесей как горючих, так и негорючих веществ, количество которых лимитируется ГОСТ 5542-78.

С помощью приборов, называемых газоанализаторами, определяют состав газообразного топлива.

В состав сухого газообразного топлива входят:

CH4+ C2H4+ CO2 + H2+ H2S + CmHn+ N2 + O2+… = 100.

Метан (СН4) - основная составляющая часть многих природных газов. При сгорании 1 м? метана выделяется 35 800 кДж теплоты. Метана в природных газах может содержаться до 93-98%.

Этилен (С2Н4) - при сгорании 1 м? этилена выделяется 59000 кДж теплоты. В газах может содержаться небольшое его количество.

Водород (Н2) - при сгорании 1 м? водорода выделяется 10800 кДж теплоты. Многие горючие газы, кроме коксового, содержат относительно небольшое количество водорода. Однако в коксовом газе его содержание может достигнуть 50-60%.

Пропан (С3Н8), бутан (С4Н10) - при горении этих углеводородов выделяется большее количество теплоты, чем при сгорании этилена, но в горючих газах их содержание незначительно.

Оксид углерода (СО) - при сгорании 1 м? этого газа выделяется 12770 кДж теплоты. Оксид углерода - основная горючая составляющая доменного газа. Этот газ не имеет ни цвета, ни запаха, очень ядовит.

Сероводород (H2S) - при горении 1 м? сероводорода выделяется 23400 кДж теплоты. При наличии в газообразном топливе сероводорода повышается коррозия металлических частей печи и газопровода. При одновременном присутствии в газе кислорода и влаги коррозирующее воздействие сероводорода усиливается. Сероводород - тяжелый газ с неприятным запахом, обладает высокой токсичностью.

Остальные газы (СО2, N2, О2) и пары воды - балластные составляющие. Их присутствие в топливе приводит к понижению температуры его горения. При повышении содержания этих газов снижается содержание горючих составляющих. Содержание в топливе более 0,5% свободного кислорода считается опасным по условиям техники безопасности.

Природные газы чисто газовых месторождений состоят в основном из метана (СН4), относятся к категории сухих (тощих) газов и характеризуются относительным постоянством состава, в то время как состав газов газонефтяных месторождений непостоянен и зависит от природы нефти, величины газового фактора и условий разделения нефтегазовых смесей.

Попутные газы из газовых шапок нефтяной залежи, как правило, содержат меньше тяжелых углеводородных газов, чем газы, получаемые из месторождений нефти, в которой они были растворены.

В народном хозяйстве широко применяются сжиженные углеводородные газы, которые находят применение в сельской местности и населенных пунктах, удаленных на значительные расстояния от магистральных газопроводов.

К сжиженным углеводородным газам относятся такие углеводороды, которые при нормальных условиях находятся в газообразном состоянии, а при относительно небольшом повышении давления (без снижения температуры) переходят в жидкое состояние.

При снижении давления эти углеводородные жидкости испаряются и переходят в паровую фазу. Это позволяет перевозить и хранить сжиженные углеводороды, как жидкости, а контролировать, регулировать и сжигать газообразные углеводороды, как газы.

Особенностями газообразных углеводородов являются: высокая плотность, значительно превышающая плотность воздуха; медленная диффузия в атмосферу, низкие температуры воспламенения, низкие пределы взрываемости в воздухе, высокий объемный коэффициент расширения жидкой фазы и другие факторы, которые повышают требования при их использовании.

Из углеводородных сжиженных газов в качестве топлива главным образом используются пропан, бутан и их смеси. Соотношение пропана и бутана в смеси этих газов устанавливается по соглашению между потребителем и поставщиком газа.

Технический пропан является универсальным сжиженным газом, так как он может применяться при естественном и искусственном испарении жидкости в пределах изменения температур от +45 до -35°С. Это позволяет в любое время года устанавливать баллоны и резервуары с жидким пропаном в отапливаемых и неотапливаемых помещениях, снаружи здания и в грунте. Достоинством пропана является и то, что образующиеся в начале и в конце опорожнения емкостей пары при любом методе испарения почти однородны по своему составу.

Основными видами газообразного топлива, используемого для газоснабжения городов и населенных пунктов, являются горючие газы с низшей теплотой сгорания не менее 12,57 мДж/м? и согласно ГОСТ 5542-78 он должен соответствовать следующим требованиям: содержание в нем вредных примесей на 100 м? газа не должно превышать (г):

Сероводорода - 2.

Смолы и пыли - 0,1.

Аммиака - 2.

Нафталина летом - 10.

Цианистых соединений нафталина зимой - 5.

В пересчете на HCN - 5.

Содержание кислорода не должно быть более 1% по объему.

Запах нетоксичных газов должен ощущаться при содержании их в воздухе в количестве не более 1/5 от нижнего предела воспламеняемости, а запах токсичных газов - при содержании их в воздухе и в количествах, допускаемых санитарными нормами, для чего газ должен одорироваться, если он не обладает достаточно сильным и характерным запахом.

2. Фракционирование углеводородных газов нефтепереработки

Процессы газофракционирования предназначены для получения из нефтезаводских газов индивидуальных низкомолекулярных углеводородов С16 (как предельных, так и непредельных, нормального или изостроения) или их фракций высокой чистоты, являющихся компонентами высокооктановых автобензинов, ценным нефтехимическим сырьем, а также сырьем для процессов алкилирования и производств метилтретбутилового эфира и т.д.

Источником углеводородных газов на НПЗ являются газы, выделяющиеся из нефти на установках AT, ABT и образующиеся в термодеструктивных или каталитических процессах переработки нефтяного сырья, а также газы стабилизации нестабильных бензинов.

В зависимости от химического состава различают предельные и непредельные газы. Предельные углеводородные газы получаются на установках перегонки нефти и гидрокаталитической переработки (каталитического риформинга, гидроочистки, гидрокрекинга) нефтяного сырья. В состав непредельных газов, получающихся при термодеструктивной и термокаталитической переработке нефтяного сырья (в процессах каталитического крекинга, пиролиза, коксования и др.), входят низкомолекулярные моно-, иногда диолефины как нормального, так и изостроения.

Как правило, предельные и непредельные углеводородные газы на НПЗ перерабатываются раздельно вследствие их различного назначения.

При фракционировании предельных газов получают следующие узкие углеводородные фракции:

- метан-этановую (сухой газ), иногда этановую, которую используют как сырье пиролиза или в качестве хладоагента на установках глубокой депарафинизации масел и т.д.;

- пропановую, используемую как сырье пиролиза, бытовой сжиженный газ и хладоагент для производственных установок;

- изобутановую, являющуюся сырьем установок алкилирования, производств синтетического каучука;

- бутановую для получения бутадиена или используемую как бытовой сжиженный газ и как компонент автобензинов для регулирования их пусковых свойств;

- изопентановую, которая служит сырьем для производства изопренового каучука и высокооктановым компонентом автобензинов;

- пентановую фракцию - сырье для процессов пиролиза, изомеризации и т.д. Иногда смесь пентанов и более тяжелых углеводородов не разделяют на фракции, а используют как газовый бензин.

На ГФУ непредельных газов из олефинсодержащих потоков выделяются следующие фракции:

- пропан-пропиленовая - сырье процессов полимеризации и алкилирования, нефтехимических производств;

- бутан-бутиленовая - сырье установок алкилирования для производств метилэтилкетона, полиизобутилена, синтетического каучука и др.;

- этан-этиленовая и пентан - амиленовая фракции, используемые как нефтехимическое сырье.

Получаемые на ГФУ фракции углеводородных газов должны по качеству соответствовать техническим условиям на эти нефтепродукты.

До фракционирования углеводородные газы направляются вначале в блоки очистки от сероводорода и осушки.

На нефте- и газоперерабатывающих заводах наибольшее распространение получили следующие физические процессы разделения углеводородных газов на индивидуальные или узкие технические фракции: конденсация, компрессия, ректификация и абсорбция. На ГФУ эти процессы комбинируются в различных сочетаниях.

Компрессия и конденсация - процессы сжатия газа компрессорами и охлаждения его в холодильниках с образованием двухфазной системы газа и жидкости. С повышением давления и понижением температуры выход жидкой фазы возрастает, причем сконденсировавшиеся углеводороды облегчают переход легких компонентов в жидкое состояние, растворяя их. Обычно применяют многоступенчатые (2, 3 и более) системы компрессии и охлаждения, используя в качестве хладоагентов воду, воздух, испаряющиеся аммиак, пропан или этан. Разделение сжатых и охлажденных газов осуществляют в газосепараторах, откуда конденсат и газ направляют на дальнейшее фракционирование методами ректификации или абсорбции.

Абсорбция - процесс разделения газовых смесей, основанный на избирательном поглощении отдельных компонентов сырья жидким поглотителем - абсорбентом. Растворимость углеводородов в абсорбенте возрастает с повышением давления, ростом молекулярной массы и понижением температуры процесса ниже критической температуры абсорбируемого газа.

Абсорбция - обратимый процесс, и на этом основано выделение поглощенного газа из жидкости - десорбция. Сочетание абсорбции с десорбцией позволяет многократно применять поглотитель и выделять из него поглощенный компонент. Для десорбции благоприятны условия, противоположные тем, при которых проводят абсорбцию, то есть повышенная температура и низкое давление. Наилучшим абсорбентом для углеводородных газов являются близкие им по строению и молекулярной массе жидкие углеводороды, например, бензиновая или керосиновая фракции.

Ректификация является завершающей стадией разделения углеводородных газов. Особенность ректификации сжиженных газов, по сравнению с ректификацией нефтяных фракций, - необходимость разделения очень близких по температуре кипения компонентов или фракций сырья при высокой четкости фракционирования. Так, разница между температурами кипения этана и этилена составляет 15°С. Наиболее трудно разделить бутан-бутиленовую фракцию: температура кипения изобутана при нормальном давлении составляет 11,7°С, изобутилена - 6,9, бутена - 1 - 6,29, а н-бутана - 0,5°С.

Ректификацию сжиженных газов приходится проводить при повышенных давлениях в колоннах, поскольку для создания жидкостного орошения необходимо сконденсировать верхние продукты колонн в обычных воздушных и водяных холодильниках, не прибегая к искусственному холоду.

Конкретный выбор схемы (последовательности) разделения, температуры, давления и числа тарелок в колоннах определяется составом исходной газовой смеси, требуемой чистотой и заданным ассортиментом получаемых продуктов.

3. Разделение газов на установке ГФУ

Газофракционирование - получение индивидуальных легких углеводородов или углеводородных фракций высокой чистоты из нефтезаводских газов.

Газофракционирующие установки (ГФУ) - комплекс устройств для разделения смеси лёгких углеводородов на индивидуальные или технически чистые вещества. Ha ГФУ перерабатываются газовые бензины, получаемые из нефтяных (попутных), природных и нефтезаводских газов, жидкие продукты, выделенные из газов коксования каталитич. риформинга и термич. крекинга. В состав сырья входят в основном индивидуальных низкомолекулярных углеводородов С1 С6 (как предельных, так и непредельных, нормального или изостроения) или их фракций высокой чистоты, являющихся компонентами высокооктановых автобензинов, ценным нефтехимическим сырьем, а также сырьем для процессов алкилирования и производств метилтретбутилового эфира и т.д.

На нефте- и газоперерабатывающих заводах наибольшее распространение получили следующие физические процессы разделения углеводородных газов на индивидуальные или узкие технические фракции: конденсация, компрессия, ректификация и абсорбция. На ГФУ эти процессы комбинируются в различных сочетаниях. До фракционирования углеводородные газы направляются вначале в блоки очистки от сероводорода и осушки.

Смеси углеводородов разделяются ректификацией в колонных аппаратах ГФУ. Ректификация является завершающей стадией разделения углеводородных газов. Особенность ректификации сжиженных газов, по сравнению с ректификацией нефтяных фракций, необходимость разделения очень близких по температуре кипения компонентов или фракций сырья при высокой четкости фракционирования.

Основными показателями работы ГФУ являются четкость разделения сырья на составляющие компоненты и концентрация целевых компонентов во фракциях. Качество их должно удовлетворять требованиям технических условий и стандартам.

Для каждой установки разрабатывается своя технологическая карта, в которой указывают: оптимальный режим работы всего оборудования - пределы изменений основных параметров процесса - давление в колоннах и емкостях орошении, температура верха и низа (на контрольной тарелке) колонн, расход сырья, расход орошения, уровни в кипятильниках, емкостях орошения и химический состав получаемых продуктов.

На НПЗ для разделения нефтезаводских газов применяются преимущественно 2 типа газофракционирующих установок, в каждый из которых входят блоки компрессии и конденсации: ректификационный - сокращенно ГФУ, и абсорбционно-ректификационный АГФУ.

Газофракционирующая установка (ГФУ) служит для разделения смеси лёгких углеводородов на индивидуальные, или технически чистые, вещества.

ГФУ входит в состав газобензиновых, газоперерабатывающих, нефтехимических и химических заводов. Мощность ГФУ достигает 750 тыс. т сырья в год.

Для переработки на ГФУ поступает сырьё - газовые бензины, получаемые из природных и нефтезаводских газов, продукты стабилизации нефтей, газы пиролиза и крекинга. В состав сырья входят в основном углеводороды, содержащие от 1 до 8 атомов углерода в молекуле. Разделение смесей углеводородов осуществляется ректификацией в колонных аппаратах.

Из верхней части колонны отводятся пары пропана, которые конденсируются в конденсаторе-холодильнике и поступают в ёмкость орошения. Часть пропана возвращается на верх колонны как орошение, а избыток отводится в виде готового продукта. Жидкость с низа колонны после подогрева поступает для дальнейшего разделения по такой же схеме в следующую колонну, где из неё выделяется в виде верхнего продукта смесь бутанов, а из нижней части отводится бензин. Аналогичным образом производится разделение бутанов на изобутан и нормальный бутан, а бензина - на изопентан, нормальный пентан, гексаны и т.д. Примерное содержание чистого вещества (в%) в товарном продукте того же наименования при переработке газового бензина: пропан 96; изобутан 95; нормальный бутан 96; изопентан 95; стабильный бензин 74.

Абсорбционно-газофракционирующая установка (АГФУ). Обычно жирный газ с установки каталитического крекинга I поступает на абсорбционно-газофракционирующую установку, откуда отдельные фракции направляются на последующую переработку. Большей частью бутан-бутиленовая фракция является сырьем установки алкилирования, где из бутиленов и изобутана получают алкил - бензо З - ценный компонент авиабензина.

При наличии в поступающем на газофракционирование сырье значительного количества этана и этилена, как правило, на НПЗ используют установки, в которых предварительное разделение газов на легкую и тяжелую части абсорбционным методом сочетается с ректификацией полученных потоков. Абсорбционно-газофракционирующие установки (АГФУ) используют на ГПЗ, НПЗ и нефтехимических предприятиях. В ряде случаев их комбинируют с установкой стабилизации нефти.

Работа этой установки тесно связана с работой установки каталитического крекинга. Связь заключается не только в том, что на абсорбционно-газофракционирующую установку поступают легкие продукты с установки каталитического крекинга, но и в технологической взаимозависимости обеих установок. Так, с увеличением количества газа, образующегося при крекинге, необходимо вводить в работу дополнительный компрессор на абсорбционно-газофракционирующей установке во избежание повышения давления на установке каталитического крекинга. С увеличением температуры конца кипения нестабильного бензина приходится изменять режим бутановой колонны, чтобы не снизить глубину отбора бутан-бутиленовой фракции.

На этой установке перерабатываются газ НПЗ и нестабильный бензин. Установка состоит из следующих узлов: собственно фракционирования, компримирования, очистки жирного газа и широкой фракции легких углеводородов раствором моноэтаноламина, а также с доочисткой последней 10%-м раствором щелочи и осушкой водным раствором диэтиленгликоля затем растворы моноэтаноламина и диэтиленгликоля регенерируется.

Абсорбция позволяет перевести извлекаемые газы в жидкое состояние при сравнительно невысоких давлениях. Количество и качество абсорбента, а также температура и давление абсорбции зависят от состава разделяемого газа и заданной глубины извлечения отдельных компонентов; 97,8%-ное извлечение пропан-пропиленовой фракции удается осуществить при давлении 12 атм и подаче 7 л абсорбента на 1 м? газа, не прибегая к искусственному холоду. Абсорбционный метод извлечения газов начал успешно применяться после разработки головной, комбинированной аб-сорбционно-отпарной колонны, называемой также фракционирующим абсорбером.

Заключение

Газообразное топливо имеет значительные преимущества по сравнению с твердым топливом и находит широкое применение в промышленности» в быту, в автотранспорте, химической промышленности. И использование газообразных топлив целесообразней, чем использование жидких топлив, так как они более экологичны и экономичны. Также, преимуществом является то, что запасы газообразных видов топлив, на данный момент, гораздо больше, чем других видов.

Список литературы

1. Баринов В.Е. Газофракционирующие установки. М. 1962.

2. Рудин М.Г. Драбкин А.Е. Краткий справочник нефтепереработчика. Л. 1980.

3. Смидович Е.В. Технология переработки нефти и газа, ч. 2.

4. Черкни И.Р. Крекинг нефтяного сырья и переработка углеводородных газов. 3 изд., М. 1980.

5. Макаров Ю.И., Геникн А.Э. Технологическое оборудование химических и нефтеперерабатывающих производств. 2 изд., М. 1976. 368 с.

6. Чуркаев А.М. Переработка нефтяных газов. Учебник для рабочих. М. 1983. 279 с.

топливо газообразный абсорбционный переработка

Размещено на Allbest.ru

...

Подобные документы

  • Группы лесных товаров как строительных материалов. Сортность лесоматериалов и стойкость пород древесины к поражению и растрескиванию. Виды жидких и газообразных топлив, их характеристика и области применения. Физико-химические свойства природных газов.

    контрольная работа [167,8 K], добавлен 17.09.2009

  • Виды и состав газов, образующихся при разложении углеводородов нефти в процессах ее переработки. Использование установок для разделения предельных и непредельных газов и мобильных газобензиновых заводов. Промышленное применение газов переработки.

    реферат [175,4 K], добавлен 11.02.2014

  • Классификация углеводородных газов. Процесс очистки газов от механических примесей. Осушка газа от воды гликолями. Технология удаление сероводорода и углекислого газа. Физико-химические свойства абсорбентов. Процесс извлечения тяжелых углеводородов.

    презентация [3,6 M], добавлен 26.06.2014

  • Требования и основные характеристики сжиженных газов. Характеристика исходного сырья, реагентов и продуктов. Описание технологического процесса и технологической схемы ректификации сжиженных углеводородных газов. Определение температуры ввода сырья.

    курсовая работа [125,3 K], добавлен 19.02.2014

  • Технологическое описание структурной схемы проекта по автоматизации процесса переработки предельных углеводородных газов. Изучение функциональной схемы автоматизации и обоснование выбора средств КИП установки. Математическая модель контура регулирования.

    контрольная работа [67,1 K], добавлен 13.06.2012

  • Подготовка газов к переработке, очистка их от механических смесей. Разделение газовых смесей, низкотемпературная их ректификация и конденсация. Технологическая схема газофракционной установки. Специфика переработки газов газоконденсатных месторождений.

    дипломная работа [628,4 K], добавлен 06.02.2014

  • Адсорбция как поглощение газов или паров поверхностью твёрдых тел, называемых адсорбентами. Понятия поглощения паров и газообразных компонентов жидкими поглотителями (абсорбентами). Характеристика закона Генри. Принципы применения абсорбционной очистки.

    реферат [47,0 K], добавлен 24.03.2015

  • Технология переработки компонентов природного газа и отходящих газов С2-С5 нефтедобычи и нефтепереработки в жидкие углеводороды состава С6-С12. Особенности расчета технологических параметров ректификационной колонны, ее конденсатора и кипятильника.

    контрольная работа [531,6 K], добавлен 06.11.2012

  • Теоретические основы абсорбции. Растворы газов в жидкостях. Обзор и характеристика абсорбционных методов очистки отходящих газов от примесей кислого характера, оценка их преимуществ и недостатков. Технологический расчет аппаратов по очистке газов.

    курсовая работа [834,6 K], добавлен 02.04.2015

  • Общая характеристика реактивных топлив, их назначение и физико-химические свойства. Технология получения и перспективы производства реактивных топлив, их марки и классификация сырья. Особенности топлив, применяемых жидкостных ракетных двигателей.

    контрольная работа [26,4 K], добавлен 11.06.2013

  • Исследование проблем современной нефтепереработки в России и путей их решения. Особенности применения гидродинамического оборудования для интенсификации технологических процессов нефтепереработки. Изучение технологии обработки углеводородных топлив.

    реферат [4,3 M], добавлен 12.05.2016

  • Гидродеароматизация — каталитический процесс, предназначенный для получения высококачественных реактивных топлив из прямогонных керосиновых фракций с ограниченным содержанием ароматических углеводородов. Установки для депарафинизации дизельных топлив.

    реферат [1,2 M], добавлен 26.12.2011

  • Классификация методов и аппаратов для обезвреживания газовых выбросов. Каталитическая очистка газов: суть метода. Конструкция каталитических реакторов. Технологическая схема установки каталитического обезвреживания отходящих газов в производстве клеенки.

    курсовая работа [1,7 M], добавлен 12.06.2011

  • Элементный состав нефти - сложной многокомпонентной взаиморастворимой смеси газообразных, жидких и твердых углеводородов различного химического строения. Групповой углеводородный состав нефтей. Твердые парафиновые углеводороды (жидкие и твердые).

    презентация [290,9 K], добавлен 21.01.2015

  • Использование криолита в процессе производства алюминия. Получение вторичного криолита путем флотации и регенерации. Состав анодных газов и их утилизация с получением вторичного криолита на Братском алюминиевом заводе. Источники выделения анодных газов.

    дипломная работа [1,7 M], добавлен 20.07.2012

  • Назначение товарного парка сжиженных газов. Схема сбора факельного газа и подтоварной воды. Подача синтетического спирта в трубопроводы. Система программирования промышленных контроллеров. Схема поступления и откачки пропан-пропиленовой фракции.

    дипломная работа [2,7 M], добавлен 16.04.2015

  • Анализ прибора, определяющего фракционный состав топлива. Особенности загустителей пластичных смазок, рассмотрение видов. Характеристика свойств сжиженных газообразных топлив. Пластические массы как полимерные высокомолекулярные синтетические материалы.

    контрольная работа [884,5 K], добавлен 13.01.2013

  • Общие сведения о методах контроля качества жидкого топлива. Классификация и оценка качества топлив. Основные методы оценки качества топлив. Стандартизация и аттестация качества топлив, организация контроля качества. Цетановое число и фракционный состав.

    курсовая работа [75,0 K], добавлен 20.08.2012

  • Расчет горения топлива и температуры газов после воздухоподогревателя. Определение теплоемкости компонентов уходящих газов. Нахождение кинематической вязкости и коэффициента теплоотдачи внутри труб. Подсчет потерь давления при движении дымовых газов.

    курсовая работа [2,5 M], добавлен 21.12.2021

  • Общая характеристика производства чугуна и стали. Физико-химические свойства получаемых и используемых газов. Некоторые физические явления при использовании промышленных газов и пара на Челябинском металлургическом комбинате. Физика в газовой сфере.

    реферат [19,6 K], добавлен 13.01.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.