Чугуны. Диаграмма состояния "железо - графит". Строение, свойства, классификация и маркировка серых чугунов
Отличия чугуна от стали. Классификация чугунов в зависимости от состояния углерода. Химическое взаимодействие углерода с железом и выделение в форме графита. Влияние состава чугуна на процесс графитизации. Влияние графита на механические свойства отливок.
Рубрика | Производство и технологии |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 14.03.2013 |
Размер файла | 226,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Чугуны. Диаграмма состояния "железо - графит". Строение, свойства, классификация и маркировка серых чугунов
Содержание
- Классификация чугунов
- Диаграмма состояния железо - графит
- Процесс графитизации
- Влияние состава чугуна на процесс графитизации
- Влияние графита на механические свойства отливок
- Серый чугун
- Высокопрочный чугун с шаровидным графитом
- Ковкий чугун
- Отбеленные и другие чугуны
Классификация чугунов
Чугун отличается от стали: по составу - более высокое содержание углерода и примесей; по технологическим свойствам - более высокие литейные свойства, малая способность к пластической деформации, почти не используется в сварных конструкциях.
В зависимости от состояния углерода в чугуне различают:
· белый чугун - углерод в связанном состоянии в виде цементита, в изломе имеет белый цвет и металлический блеск;
· серый чугун - весь углерод или большая часть находится в свободном состоянии в виде графита, а в связанном состоянии находится не более 0,8 % углерода. Из-за большого количества графита его излом имеет серый цвет;
· половинчатый - часть углерода находится в свободном состоянии в форме графита, но не менее 2 % углерода находится в форме цементита. Мало используется в технике.
Диаграмма состояния железо - графит
В результате превращения углерод может не только химически взаимодействовать с железом, но и выделяться в элементарном состоянии в форме графита. Жидкая фаза, аустенит и феррит могут находиться в равновесии и с графитом.
Диаграмма состояния железо - графит показана штриховыми линиями на рис. 1 Линии диаграммы находятся выше линий диаграммы железо - цементит. Температуры эвтектического и эвтектоидного преврашений, соответственно, 1153oС и 738oС. Точки C, E, S - сдвинуты влево, и находятся при концентрации углерода 4,24, 2,11 и 0,7 %, соответственно.
Рис. 1 Диаграмма состояния железо - углерод: сплошные линии - цементитная система; пунктирные - графитная
При высоких температурах цементит разлагается с выделением графита, поэтому диаграмма состояния железо - цементит является метастабильной, а диаграмма железо - графит - стабильной. Процесс образования графита в сплавах железа с углеродом называется графитизацией.
Процесс графитизации
Графит - это полиморфная модификация углерода. Так как графит содержит 100% углерода, а цементит - 6,67 %, то жидкая фаза и аустенит по составу более близки к цементиту, чем к графиту. Следовательно, образование цементита из жидкой фазы и аустенита должно протекать легче, чем графита.
С другой стороны, при нагреве цементит разлагается на железо и углерод. Следовательно, графит является более стабильной фазой, чем цементит.
Возможны два пути образования графита в чугуне.
чугун графит углерод железо
1. При благоприятных условиях (наличие в жидкой фазе готовых центров кристаллизации графита и очень медленное охлаждение) происходит непосредственное образование графита из жидкой фазы.
2. При разложении ранее образовавшегося цементита. При температурах выше 738oС цементит разлагается на смесь аустенита и графита по схеме
.
При температурах ниже 738oС разложение цементита осуществляется по схеме:
.
При малых скоростях охлаждение степень разложения цементита больше.
Графитизацию из жидкой фазы, а также от распада цементита первичного и цементита, входящего в состав эвтектики, называют первичной стадией графитизации.
Выделение вторичного графита из аустенита называют промежуточной стадией графитизации.
Образование эвтектоидного графита, а также графита, образовавшегося в результате цементита, входящего в состав перлита, называют вторичной стадией графитизации.
Структура чугунов зависит от степени графитизации, т.е. от того, сколько углерода находится в связанном состоянии.
Рис. 2 Схема образования структур при графитизации
Выдержка при температуре больше 738oС приводит к графитизации избыточного нерастворившегося цементита. Если процесс завершить полностью, то при высокой температуре структура будет состоять из аустенита и графита, а после охлаждения - из перлита и графита.
При незавершенности процесса первичной графитизации, выше температуры 738oС структура состоит из аустенита, графита и цементита, а ниже этой температуры - из перлита, графита и цементита.
При переходе через критическую точку превращения аустенита в перлит, и выдержке при температуре ниже критической приведет к распаду цементита, входящего в состав перлита (вторичная графитизация). Если процесс завершен полностью то структура состоит из феррита и графита, при незавершенности процесса - из перлита, феррита и графита.
Строение, свойства, классификация и маркировка серых чугунов
Из рассмотрения структур чугунов можно заключить, что их металлическая основа похожа на структуру эвтектоидной или доэвтектоидной стали или технического железа. Отличаются от стали только наличием графитовых включений, определяющих специальные свойства чугунов.
В зависимости от формы графита и условий его образования различают следующие группы чугунов: серый - с пластинчатым графитом; высокопрочный - с шаровидным графитом; ковкий - с хлопьевидным графитом.
Схемы микроструктур чугуна в зависимости от металлической основы и формы графитовых включений представлены на рис. 3
Рис. 3 Схемы микроструктур чугуна в зависимости от металлической основы и формы графитовых включений
Наиболее широкое распространение получили чугуны с содержанием углерода 2,4…3,8%. Чем выше содержание углерода, тем больше образуется графита и тем ниже его механические свойства, следовательно, количество углерода не должно превышать 3,8 %. В то же время для обеспечения высоких литейных свойств (хорошей жидкотекучести) углерода должно быть не менее 2,4 %.
Влияние состава чугуна на процесс графитизации
Углерод и кремний способствуют графитизации, марганец затрудняет графитизацию и способствует отбеливанию чугуна. Сера способствует отбеливанию чугуна и ухудшает литейные свойства, ее содержание ограничено - 0,08…0,12 %. Фосфор на процесс графитизации не влияет, но улучшает жидкотекучесть, Фосфор является в чугунах полезной примесью, его содержание - 0,3…0,8 %.
Влияние графита на механические свойства отливок
Графитовые включения можно рассматривать как соответствующей формы пустоты в структуре чугуна. Около таких дефектов при нагружении концентрируются напряжения, значение которых тем больше, чем острее дефект. Отсюда следует, что графитовые включения пластинчатой формы в максимальной мере разупрочняют металл. Более благоприятна хлопьевидная форма, а оптимальной является шаровидная форма графита. Пластичность зависит от формы таким же образом. Относительное удлинение () дпя серых чугунов составляет 0,5 %, для ковких - до 10 %, для высокопрочных - до 15%.
Наличие графита наиболее резко снижает сопротивление при жестких способах нагружения: удар; разрыв. Сопротивление сжатию снижается мало.
Положительные стороны наличия графита.
графит улучшает обрабатываемость резанием, так как образуется ломкая стружка;
· чугун имеет лучшие антифрикционные свойства, по сравнению со сталью, так как наличие графита обеспечивает дополнительную смазку поверхностей трения;
· из-за микропустот, заполненных графитом, чугун хорошо гасит вибрации и имеет повышенную циклическую вязкость;
· детали из чугуна не чувствительны к внешним концентраторам напряжений (выточки, отверстия, переходы в сечениях);
· чугун значительно дешевле стали;
· производство изделий из чугуна литьем дешевле изготовления изделий из стальных заготовок обработкой резанием, а также литьем и обработкой давлением с последующей механической обработкой.
Серый чугун
Структура не оказывает влияние на пластичность, она остается чрезвычайно низкой. Но оказывает влияние на твердость. Механическая прочность в основном определяется количеством, формой и размерами включений графита. Мелкие, завихренной формы чешуйки графита меньше снижают прочность. Такая форма достигается путем модифицирования. В качестве модификаторов применяют алюминий, силикокальций, ферросилиций.
Серый чугун широко применяется в машиностроении, так как легко обрабатывается и обладает хорошими свойствами.
В зависимости от прочности серый чугун подразделяют на 10 марок (ГОСТ 1412).
Серые чугуны при малом сопротивлении растяжению имеют достаточно высокое сопротивление сжатию.
Серые чугуны содержат углерода - 3,2…3,5 %; кремния - 1,9…2,5 %; марганца - 0,5…0,8 %; фосфора - 0,1…0,3 %; серы - < 0,12 %.
Структура металлической основы зависит от количества углерода и кремния. С увеличением содержания углерода и кремния увеличивается степень графитизации и склонность к образованию ферритвой структуры металлической основы. Это ведет к разупрочнению чугуна без повышения пластичности. Лучшими прочностными свойствами и износостойкостью обладают перлитные серые чугуны.
Учитывая малое сопротивление отливок из серого чугуна растягивающим и ударным нагрузкам, следует использовать этот материал для деталей, которые подвергаются сжимающим или изгибающим нагрузкам. В станкостроении это - базовые, корпусные детали, кронштейны, зубчатые колеса, направляющие; в автостроении - блоки цилиндров, поршневые кольца, распределительные валы, диски сцепления. Отливки из серого чугуна также используются в электромашиностроении, для изготовления товаров народного потребления.
Обозначаются индексом СЧ (серый чугун) и числом, которое показывает значение предела прочности, умноженное на СЧ 15.
Высокопрочный чугун с шаровидным графитом
Высокопрочные чугуны (ГОСТ 7293) могут иметь ферритную (ВЧ 35), феррито-перлитную (ВЧ45) и перлитную (ВЧ 80) металлическую основу. Получают эти чугуны из серых, в результате модифицирования магнием или церием (добавляется 0,03…0,07% от массы отливки). По сравнению с серыми чугунами, механические свойства повышаются, это вызвано отсутствием неравномерности в распределении напряжений из-за шаровидной формы графита.
Чугуны с перлитной металлической основой имеют высокие показатели прочности при меньшем значении пластичности. Соотношение пластичности и прочности ферритных чугунов - обратное.
Высокопрочные чугуны обладают высоким пределом текучести, , что выше предела текучести стальных отливок. Также характерна достаточно высокая ударная вязкость и усталостная прочность, , при перлитной основе.
Высокопрочные чугуны содержат: углерода - 3,2…3,8 %, кремния - 1,9…2,6 %, марганца - 0,6…0,8 %, фосфора - до 0,12 %, серы - до 0,3 %.
Эти чугуны обладают высокой жидкотекучестью, линейная усадка - около 1%. Литейные напряжения в отливках несколько выше, чем для серого чугуна. Из-за высокого модуля упругости достаточно высокая обрабатываемость резанием. Обладают удовлетворительной свариваемостью.
Из высокопрочного чугуна изготовляют тонкостенные отливки (поршневые кольца), шаботы ковочных молотов, станины и рамы прессов и прокатных станов, изложницы, резцедержатели, планшайбы.
Отливки коленчатых валов массой до 2.3 т, взамен кованых валов из стали, обладают более высокой циклической вязкостью, малочувствительны к внешним концентраторам напряжения, обладают лучшими антифрикционными свойствами и значительно дешевле.
Обозначаются индексом ВЧ (высокопрочный чугун) и числом, которое показывает значение предела прочности, умноженное на ВЧ 100.
Ковкий чугун
Получают отжигом белого доэвтектического чугуна.
Хорошие свойства у отливок обеспечиваются, если в процессе кристаллизации и охлаждения отливок в форме не происходит процесс графитизации. Чтобы предотвратить графитизацию, чугуны должны иметь пониженное содержание углерода и кремния.
Ковкие чугуны содержат: углерода - 2,4…3,0 %, кремния - 0,8…1,4 %, марганца - 0,3…1,0 %, фосфора - до 0,2 %, серы - до 0,1 %.
Формирование окончательной структуры и свойств отливок происходит в процессе отжига, схема которого представлена на рис. 4.
Рис. 4 Отжиг ковкого чугуна.
Отливки выдерживаются в печи при температуре 950…1000С в течении 15…20 часов. Происходит разложение цементита: .
Структура после выдержки состоит из аустенита и графита (углерод отжига). При медленном охлаждении в интервале 760…720oС, происходит разложение цементита, входящего в состав перлита, и структура после отжига состоит из феррита и углерода отжига (получается ферритный ковкий чугун).
При относительно быстром охлаждении (режим б, рис. 3) вторая стадия полностью устраняется, и получается перлитный ковкий чугун.
Структура чугуна, отожженного по режиму в, состоит из перлита, феррита и графита отжига (получается феррито-перлитный ковкий чугун)
Отжиг является длительной 70…80 часов и дорогостоящей операцией. В последнее время, в результате усовершенствований, длительность сократилась до 40 часов.
Различают 7 марок ковкого чугуна: три с ферритной (КЧ 30 - 6) и четыре с перлитной (КЧ 65 - 3) основой (ГОСТ 1215).
По механическим и технологическим свойствам ковкий чугун занимает промежуточное положение между серым чугуном и сталью. Недостатком ковкого чугуна по сравнению с высокопрочным является ограничение толщины стенок для отливки и необходимость отжига.
Отливки из ковкого чугуна применяют для деталей, работающих при ударных и вибрационных нагрузках.
Из ферритных чугунов изготавливают картеры редукторов, ступицы, крюки, скобы, хомутики, муфты, фланцы.
Из перлитных чугунов, характеризующихся высокой прочностью, достаточной пластичностью, изготавливают вилки карданных валов, звенья и ролики цепей конвейера, тормозные колодки.
Обозначаются индексом КЧ (высокопрочный чугун) и двумя числми, первое из которых показывает значение предела прочности, умноженное на , а второе - относительное удлинение - КЧ 30 - 6.
Отбеленные и другие чугуны
Отбеленные - отливки, поверхность которых состоит из белого чугуна, а внутри серый или высокопрочный чугун.
В составе чугуна 2,8…3,6 % углерода, и пониженное содержание кремния - 0,5…0,8 %.
Имеют высокую поверхностную твердость (950…1000 НВ) и очень высокую износостойкость. Используются для изготовления прокатных валов, вагонных колес с отбеленным ободом, шаров для шаровых мельниц.
Для изготовления деталей, работающих в условиях абразивного износа, используются белые чугуны, легированные хромом, хромом и марганцем, хромом и никелем. Отливки из такого чугуна отличаются высокой твердостью и износостойкостью.
Для деталей, работающих в условиях износа при высоких температурах, используют высокохромистые и хромоникелевые чугуны. Жаростойкость достигается легированием чугунов кремнием (5…6 %) и алюминием (1…2 %). Коррозионная стойкость увеличивается легированием хромом, никелем, кремнием.
Для чугунов можно применять термическую обработку.
Размещено на Allbest.ru
...Подобные документы
Классификация чугунов по составу и технологическим свойствам. Температуры эвтектического и эвтектоидного превращений. Процесс образования графита в сплавах железа с углеродом. Схема образования структур при графитизации. Специальные свойства чугунов.
презентация [7,7 M], добавлен 14.10.2013Диаграмма стабильного равновесия железо–углерод и процесс образования в чугуне графита – графитизация. Связь структуры чугуна с его механическими свойствами. Особенности маркировки серого чугуна, его основные разновидности и область применения.
контрольная работа [847,3 K], добавлен 17.08.2009Анализ влияния микроструктуры графита на свойства чугунов. Графит и механические свойства отливок. Расчет зависимости параметра формы от минимального размера учитываемых включений. Гистограмма распределения параметра формы по количеству включений.
курсовая работа [2,6 M], добавлен 08.02.2013К чугунам относятся сплавы железа с углеродом, содержание которого превышает 2,14%. Описание составов и свойств чугуна, а также структуры серых и ковких чугунов, область их применения. Процесс графитизации. Процесс получения ковкого чугуна, маркировка.
реферат [1,3 M], добавлен 18.01.2011Критические температуры превращений железа. Различия критических точек при нагревании и охлаждении. Механические свойства железа. Условия перехода алмаза в графит. Особенности жидкого раствора углерода в железе. Сходство в строении графита и цементита.
презентация [456,8 K], добавлен 29.09.2013Маркировка, химический состав и механические свойства хромистых чугунов. Основные легирующие элементы, стойкость чугунов в коррозии. Литая структура чугунов с карбидами. Строение евтектик белых износостойких чугунов, области применения деталей из них.
курсовая работа [435,0 K], добавлен 30.01.2014Характеристика чугуна как железоуглеродистого сплава, содержащего 2 % углерода. Классификация чугуна по металлической основе и форме графитовых включений. Физические особенности структура разновидностей чугуна: белого, серого, высокопрочного, ковкого.
реферат [1,0 M], добавлен 13.06.2012Классификация и разновидности железоуглеродистых сплавов в зависимости от содержания в них углерода. Кристаллизация заэвтектического чугуна, этапы данного процесса и его конечные продукты. Формирование структуры при охлаждении сталей и серых чугунов.
презентация [3,7 M], добавлен 29.09.2013Микроструктура и углеродистых сталей в отожженном состоянии, зависимость между их строением и механическими свойствами. Изучение диаграммы состояния железо - углерод. Кривая охлаждения сплавов. Структура белого, серого, высокопрочного и ковкого чугуна.
презентация [1,5 M], добавлен 21.12.2010Определение эксплуатационных свойств белых чугунов количеством, размерами, морфологией и микротвердостью карбидов. Влияние температуры отжига на механические свойства промышленного чугуна. Технологические схемы изготовления изделий повышенной стойкости.
доклад [50,8 K], добавлен 30.09.2011Автоматизированные анализаторы изображений. Кристаллическая решетка графита, его применение, свойства. Исследование зависимости параметра формы (вытянутость и диаметр) от размера графитовых включений. Построение графиков и выявление зависимостей.
курсовая работа [1,0 M], добавлен 16.02.2015Характеристика высокопрочного и ковкого чугуна, специфические свойства, особенности строения и применение. Признаки классификации, маркировка, строение, свойства и область применения легированных сталей, требования для разных отраслей использования.
контрольная работа [110,2 K], добавлен 17.08.2009Сравнительная характеристика физико-химических, механических и специфических свойств продуктов черной металлургии - чугуна и стали. Виды чугуна, их классификация по структуре и маркировка. Производство стали из чугуна, ее виды, структура и свойства.
реферат [36,1 K], добавлен 16.02.2011Критические точки в стали, зависимость их положения от содержания углерода. Диаграмма состояния железоуглеродистых сплавов, фазы и структурные составляющие: линии, точки концентрации, температуры; анализ фазовых превращений при охлаждении стали и чугуна.
реферат [846,6 K], добавлен 30.03.2011Железоуглеродистые сплавы – стали и чугуны – важнейшие металлические сплавы современной техники. Диаграмма состояния Fe–Fe3C. Компоненты и фазы железоуглеродистых сплавов, процессы при их структурообразовании. Состав и компоненты структуры стали и чугуна.
презентация [6,3 M], добавлен 14.10.2013Чугун - сплав железа с углеродом. Его распространение в промышленности. Классификация чугунов, его особенности, признаки, структура и свойства. Скорость охлаждения отливки. Характеристика серого, высокопрочного, легированного, белого и ковкого чугуна.
реферат [507,9 K], добавлен 03.08.2009Процентное содержание углерода и железа в сплаве чугуна. Классификация стали по химическому составу, назначению, качеству и степени раскисления. Примеры маркировки сталей. Расшифровка марок стали. Обозначение легирующих элементов, входящих в состав стали.
презентация [1,0 M], добавлен 19.05.2015Сплав железа с углеродом и другими элементами. Распространение чугуна в промышленности. Передельные, специальные и литейные чугуны. Изготовление литых заготовок деталей. Конфигурация графитовых включений. Высокопрочный чугун с шаровидным графитом.
реферат [771,7 K], добавлен 22.08.2011Углеродистые стали как основная продукция чёрной металлургии, характеристика их состава и компоненты. Влияние концентрации углерода, кремния и марганца, серы и фосфора в сплаве на свойства стали. Роль азота, кислорода и водорода, примесей в сплаве.
контрольная работа [595,8 K], добавлен 17.08.2009Свойства стали, ее получение и области применения. Классификация углеродистых сталей в зависимости от назначения, структуры, содержания углерода, качества. Качественные конструкционные углеродистые стали, их химический состав и механические свойства.
контрольная работа [999,9 K], добавлен 17.08.2009