Конструктивно-технологическая характеристика детали "Картер"

Анализ технологичности конструкции детали "Картер". Определение типа производства. Литьё детали методом машинной формовки. Технологический процесс сборки, описание станочного приспособления и принцип его работы. Автоматизированное рабочее место.

Рубрика Производство и технологии
Вид курсовая работа
Язык русский
Дата добавления 05.05.2013
Размер файла 624,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Станки металлорежущие, машины для изготовления частей других машин в основном путем снятия с заготовки стружки режущим инструментом. Многое из того, что производится в результате человеческой деятельности в настоящее время, делается на металлорежущих станках или с помощью машин, изготовленных с применением таких станков. Их спектр очень широк - от строгальных станков с ручным управлением до компьютеризованных и роботизованных систем. Более 500 разных типов существующих металлорежущих станков могут быть подразделены не менее чем на десять групп по характеру выполняемых работ и применяемому режущему инструменту: разрезные, токарные, сверлильные, фрезерные, шлифовальные, строгальные, зубообрабатывающие, протяжные, многопозиционные автоматические и др.

Режущий инструмент того или иного вида (резец, фреза и т.п.) снимает с обрабатываемого (металлического, пластмассового, керамического) изделия стружку примерно так же, как это происходит при чистке картофеля ножом. Материал режущего инструмента должен быть значительно более твердым и прочным, чем материал обрабатываемой детали. Станок оборудуется механизмом, обычно состоящим из салазок, шпинделей, ходовых винтов и столов с поперечным и продольным перемещением, который позволяет перемещать инструмент относительно обрабатываемой детали. На станках с ручным управлением такое относительное перемещение задает оператор, пользуясь маховичками подачи для перемещения суппорта с резцедержателем. На станках с числовым программным управлением (ЧПУ) перемещения задаются программой последовательных команд, записанной в памяти компьютера. Программа включает и выключает приводные механизмы, например электродвигатели и гидроцилиндры, которые осуществляют подачу суппорта с автоматическим регулированием взаимного положения обрабатываемой детали и режущей кромки.

Станки почти всех типов выпускаются как с ручным управлением, так и в варианте с ЧПУ. В механических мастерских бытового обслуживания, в любительских домашних, на машиностроительных заводах чаще всего встречаются разрезные, сверлильные, токарные, фрезерные и шлифовальные станки.

Разрезные станки предназначены для разрезания и распиловки сортового проката (прутков, уголков, швеллеров, балок). Режущим инструментом служат сегментная дисковая пила, абразивные диски или ножовочное полотно. Главное движение - вращение диска или возвратно-поступательное движение ножовочного полотна. Автоматические разрезные станки работают на разных скоростях, оборудуются устройствами периодической подачи заготовки и системами двухкоординатного управления рабочим столом.

Сверлильные станки, пожалуй, наиболее распространенный тип станков. Назначение - просверливание и обработка отверстий, главные движения - вращение и подача режущего инструмента (сверла). Сверло подается вручную или автоматически с переключением скорости подачи и вращения. В зависимости от материала детали и сверла, глубины сверления и диаметра отверстия частота вращения шпинделя может быть постоянной, имеющей ряд фиксированных значений или переменной.

Вертикально сверлийный станок - один из самых простых металлорежущих станков. Подача сверла может быть ручной либо автоматической. Стол вручную перемещается по вертикали (а в некоторых моделях и по радиусу). На схеме показана типичная операция - сверление спиральным сверлом малого отверстия в массивной заготовке. 1 - стол; 2 - тиски; 3 - деталь; 4 - сверло; 5 - автоматическая подача; 6 - ручная подача; 7 - переключение подачи.

Сверлильные станки более широкого назначения оборудуются рабочим столом с двумя салазками, перемещающимися под прямым углом друг к другу, устройством ЧПУ для перемещения стола и управления подачей сверла и устройствами для автоматической смены сверла. Существуют многошпиндельные сверлильные станки, работающие одновременно с несколькими сверлами, а также применяются сверлильные бабки с несколькими шпинделями, закрепляемые в патроне одношпиндельного станка.

Токарные станки. Главным движением токарного станка является вращение заготовки, а режущие инструменты (обычно однолезвийные) регулируемо закрепляются на неподвижной станине. Резец может подаваться по направляющим вдоль или поперек оси шпинделя. Заготовка закрепляется либо в патроне шпинделя, либо в центрах передней и задней бабки. Скорость подачи может регулироваться вручную или автоматически посредством ряда клиноременных или зубчатых передач, приводящих в движение ходовой винт и поперечные салазки суппорта. Скорость вращения заготовки регулируется в широких пределах в соответствии с выбранными режимами резания. Приводной электродвигатель может иметь как фиксированную, так и переменную частоту вращения. На токарных станках (а они составляют основу станочного парка) обычно выполняют операции обработки цилиндрических поверхностей, поперечной обточки и обрезки, нарезания винтовой резьбы и расточки осевых отверстий.

Горизонтально фрезерный станок

Фрезерные станки. Это универсальные станки с многолезвийным режущим инструментом - фрезой; главное движение - вращение фрезы. Шпиндель вертикально-фрезерных станков, несущий фрезу, вертикален, но его во многих случаях можно устанавливать под углом к заготовке. Движение стола, осуществляемое вручную или с помощью механического привода, точно контролируется по градуированным лимбам на ходовых винтах и по прецизионным шкалам с оптическим увеличением.

Фрезерная оправка (вал, несущий фрезу) горизонтально-фрезерного станка горизонтальна. Стол, на котором закрепляется обрабатываемая деталь с необходимой оснасткой, может быть либо «простым», т.е. с перемещением по трем осям, либо универсальным, т.е. допускающим и угловые повороты.

Резание шпоночной канавки на небольшом валу. Левой рукой рабочий подает стол (вместе с деталью) в продольном направлении, а правой - по вертикали. То и другое, а также поперечная подача могут осуществляться автоматически. 1 - оправка; 2 - фреза; 3 - тиски; 4 - деталь; 5 - стол.

На станках с ЧПУ предусматривается автоматическое управление перемещением стола и скоростью шпинделя. В некоторых случаях сам шпиндель устанавливается на салазках, допускающих его независимое перемещение в осевом или вертикальном направлении. Станок с ЧПУ такого типа позволяет серийно и с высокой точностью обрабатывать трехмерные поверхности, например, лопастей воздушных винтов и лопаток турбин.

Копировально-фрезерные станки обрабатывают сложные криволинейные поверхности, например, пуансонов и матриц для штампования листового металла, форм для литья под давлением и экструдирования. Индикаторный щуп проходит по фигурному профилю копира, а рабочая фреза передает этот профиль обрабатываемой детали.

Продольнофрезерный станок модели 6622

Приспособление разработано на продольнофрезерный станок модели 6622 для обработки торцов картера в размер 140-0,46.

За базовое приспособление взята однопарная стойка по нормам МН2493-71. На стойку можно устанавливать слепные установочные приспособления, что значительно снижает его стоимость. В сменном приспособлении при фрезеровании размера 140-0,46 картер устанавливается на центровые пальцы поз. 20 (круглый) и поз.21 (ромбический), крепится качалкой (поз.4). Чертеж приспособления приведен на листе графической части работы.

Приспособление состоит из плиты (поз.1) с укреплением на ней опорной колонки (поз.6сб). На плите располагаются плотики (поз.26), закрепленные болтами (поз.28). Прижимная планка (поз.30сб) устанавливается на оси (поз.2). На прижимной планке имеется качалка (поз.4) на оси (поз.6, 8) и установочный винт (поз.7), который служит для обеспечения более качественного зажатия деталей.

Закрепление заготовки производится от пневмокамеры (поз.17), к которой воздух из сети подводится через штуцер (поз.16). Используется камера одностороннего действия, при выпуске воздуха в ней срабатывает пружина. Камера взята как целый покупной узел ГОСТ 3151-71. Она крепится болтами к кронштейну (поз.27сб), который, в свою очередь, крепится болтами (поз.28) к плите (поз.1). Шток пневмоцилиндра соединен с рычагом (поз.19), который является усилителем, увеличивая силу зажима детали в три раза. Усилие передается через тягу (поз.13) на прижимную планку (поз.31сб). При откинутой прижимной планке (поз.31сб) картер устанавливается на круглый и ромбический пальцы (поз.21, 22). Сжатый воздух подается в камеру и связанная через рычаг (поз.13) со штоком тяга (поз.19) через прижимную планку (поз.31сб) и качалку (поз.4) переводится в крайнее левое положение. Таким образом, деталь оказывается зажатой и начинается обработка. После обработки воздух выпускается из пневмокамеры, рычаг подает тягу вправо, прижимная планка за счет противовеса поднимается и деталь освобождается.

3.3 Технологический процесс сборки

На базовом заводе сборка производится стационарным методом - вся сборочная единица целиком собирается на одном рабочем месте. Расчленение сборки на отдельные подсборки нет. Выполнение операций повторяется в различных сочетаниях и последовательности. Проектируемый технологический процесс сборки существенно отличается от заводского, а именно:

1. технологический процесс детально разработан на сборку сборочных единиц, групп и изделий с расчленением его на операции и переходы

2. сборка сборочных единиц осуществляется на основе полной взаимозаменяемости

3. на рабочем месте выполняется одна технологическая операция, состоящая из небольшого количества переходов

4. в основном применяются специальные приспособления и инструменты (пневмозажимы и держатели, пневмоключи и гайковерты), предназначенные для небольшого числа сборочных операций. Кроме того, сборка производится на предварительно собранных сборочных единицах, так как такая организация сборочных работ значительно сокращает длительность общей сборки по сравнению со сборкой изделия непосредственно из деталей.

Сборка сборочных единиц производится стационарно на стендах.

Сборка всего изделия ведется ленточным методом на движущемся конвейере, скорость движения которого Vк = 0,2 м/мин.

При полной взаимозаменяемости точность замыкающего звена размерных цепей достигается ужесточением размеров сопрягаемых деталей.

Ниже дан расчет одной из размерных цепей редуктора.

Определяется номинальное, наибольшее и наименьшее значение замыкающего звена "А" при установки крышки.

Рис. 3. Эскиз сборки: 1 - картер; 2 - подшипник; 5 - крышка; 6 - прокладка

4. Совершенствование технологии

4.1 Автоматизированное рабочее место (АРМ)

Современные масштабы и темпы внедрения средств автоматизации управления в народном хозяйстве с особой остротой ставит задачу проведения комплексных исследований, связанных со всесторонним изучением и обобщением возникающих при этом проблем как практического, так и теоретического характера.

В последние годы возникает концепция распределенных систем управления народным хозяйством, где предусматривается локальная обработка информации. Для реализации идеи распределенного управления необходимо создание для каждого уровня управления и каждой предметной области автоматизированных рабочих мест (АРМ) на базе профессиональных персональных ЭВМ.

Анализируя сущность АРМ, специалисты определяют их чаще всего как профессионально-ориентированные малые вычислительные системы, расположенные непосредственно на рабочих местах специалистов и предназначенные для автоматизации их работ.

Для каждого объекта управления нужно предусмотреть автоматизированные рабочие места, соответствующие их функциональному назначению. Однако принципы создания АРМ должны быть общими: системность, гибкость, устойчивость, эффективность.

Согласно принципу системности АРМ следует рассматривать как системы, структура которых определяется функциональным назначением.

Принцип гибкости означает приспособляемость системы к возможным перестройкам благодаря модульности построения всех подсистем и стандартизации их элементов.

Принцип устойчивости заключается в том, что система АРМ должна выполнять основные функции независимо от воздействия на нее внутренних и возможных внешних факторов. Это значит, что неполадки в отдельных ее частях должны быть легко устранимы, а работоспособность системы - быстро восстановима.

Эффективность АРМ следует рассматривать как интегральный показатель уровня реализации приведенных выше принципов, отнесенного к затратам по созданию и эксплуатации системы.

Функционирование АРМ может дать численный эффект только при условии правильного распределения функций и нагрузки между человеком и машинными средствами обработки информации, ядром которых является ЭВМ. Лишь тогда АРМ станет средством повышения не только производительности труда и эффективности управления, но и социальной комфортности специалистов.

Накопленный опыт подсказывает, что АРМ должен отвечать следующим требованиям:

* своевременное удовлетворение информационной и вычислительной потребности специалиста.

* минимальное время ответа на запросы пользователя.

* адаптация к уровню подготовки пользователя и его профессиональным запросам.

* простота освоения приемов работы на АРМ и легкость общения, надежность и простота обслуживания.

* терпимость по отношению к пользователю.

* возможность быстрого обучения пользователя.

* возможность работы в составе вычислительной сети.

Обобщенная схема АРМ представлена на рис. 3.

Рис. 3. Схема автоматизированного рабочего места

Немаловажную роль в процессе проектирования отводится комфортным условиям труда. Схема представлена на рисунке 4.

Рис.4 Схема расположения инструментов АРМ и оператора

4.2 Исследование методов отделочной и упрочняющей обработки деталей машин

Для повышения работоспособности корпусных деталей и, следовательно, работоспособности изделия в целом разработаны и реализуются различные технологические методы чистовой и упрочняющей обработки поверхностным пластическим деформированием (ППД).

Основными положительными особенностями ППД являются:

* высокая эффективность способов ППД, как средства повышения одной из важнейших эксплуатационных характеристик - усталостной прочности. Срок службы многих деталей за счет применения ППД повышается в несколько раз. Одновременно с этим существенно повышается износостойкость деталей, стабилизируются показатели шероховатости и прочность неподвижных посадок;

* универсальность способов ППД. Поверхностной чистовой и упрочняющей обработке можно подвергать детали практически из любых конструкционных материалов, любой твердости, детали любых размеров и конфигураций;

* технологичность способов ППД, возможность его применения в различных типах производства, как при изготовлении новых деталей, так и в ремонтной технологии. В большинстве случаев внедрение процессов ППД не требует применения дорогостоящего специального оборудования. Конструкция применяемых приспособлений и оснастки не сложны, надежны в работе, имеют невысокую стоимость. Большинство методов ППД обладает малой трудоемкостью и себестоимостью;

* возможность замены методами ППД традиционных методов абразивной обработки (шлифование, полирование). Как известно, последние методы сопровождаются появлением прижогов, структурной неоднородности, формирование в поверхностном слое неблагоприятных остаточных напряжений, шаржирование поверхности деталей осколками абразивных зерен.

Теоретически механизм ППД может объяснить теория дислокации. Пластическая деформация есть выражение сдвигов, происходящих в кристаллической решетке материала под действием нагрузки. Решетка искажается, в результате происходящих сдвигов на месте бывших зерен металла образуются продукты их разрушения - вытянутые вдоль приложения силы (нагрузки) обломки зерен материала и блоки. Растет плотность дислокаций, меняется не только взаимное расположение атомов в кристаллической решетке, но многие узлы оказываются незаполненными атомами. Таким образом, наряду с ростом количества дислокаций, растет и количество вакансий. Все это в комплексе и ведет к упрочнению металла при холодной пластической деформации.

При ППД детали имеются две основные причины упрочнения:

1. Улучшение физико-механических свойств материала за счет различных структурных превращений (измельчение зерен и др.).

2. Формирование в поверхностном слое благоприятных для эксплуатации остаточных напряжений сжатия, возникающих вследствие развития явлений сдвига в кристаллической решетке.

Одновременно с вышеуказанными факторами при ППД формируется определенный микрорельеф рабочих поверхностей деталей - снижается высота микровыступов, они становятся более плавными, увеличивается площадь фактического контактирования деталей, что обуславливает улучшение эксплуатационных свойств.

Все многообразие методов ППД классифицируется в соответствии с ГОСТ 18296-72. Условно их можно подразделить на две основные группы: статические методы и динамические методы.

Статические методы ППД основаны на постоянном взаимодействии деформируемого материала с инструментом, рабочим телом или средой в процессе обработки. Инструментом может быть специальный резец, алмазный наконечник, роликовый, шариковый или дисковый раскатник и т. п.

Динамические метода ППД характеризуются прерывистым взаимодействием деформируемого материала и инструмента, рабочего тела, среды. В качестве инструмента используют бойки, ролики, металлические щетки. Рабочими телами при обработке служат костяная или абразивная крошка, металлические или стеклянные шарики, стальная или чугунная дробь.

Обкатка роликами и шариками позволяет получить наклепанный слой глубиной 3 мм и более, твердость по сравнению с исходной повышается на 20…40 %, предел выносливости гладких образцов - на 20…30 %, а при эксплуатации в агрессивной среде - до 4 раз. Процесс обкатки характеризуется формированием остаточных напряжений сжатия, после, обработки шероховатость поверхности достигает Ra = 0,16 мкм.

Подача при обкатке назначается с учетом обеспечения равномерного пластического деформирования всей поверхности, скорость при накатывании не оказывает существенного влияния на результаты и регламентируется преимущественно размерами и конфигурацией обрабатываемой детали. В большинстве случаев обкатка производится за один проход. Ролики для обкатки изготавливаются из сталей X12М, ХВГ, 5ХНМ, У10, У12, ШХ15, их рабочие поверхности должны иметь твердость не менее НRСэ 58. Обкатка деталей может производиться на токарных, шлифовальных, специальных накатных станках с установкой детали в центрах или патроне. При упрочнении деталей обкаткой в зону обработки может подаваться масло или сульфопрезол, смесь машинного масла 40% и веретенного масла 60%. Машинное время при раскатывании составляет 2…3 мин, что обеспечивает повышение, производительности труда по сравнению с хонингованием до 10 раз. В результате раскатывания деталей роликами, их износостойкость возрастает в 2…5 раз.

Взаимосвязь показателей качества поверхности и эксплуатационных свойств детали

4.3 Применение универсальных измерительных центров в промышленности

Координатные измерительные приборы и универсальные измерительные центры применяются сегодня на самых различных участках промышленного производства. Как крупные предприятия, гак и мелкие фирмы или организации используют уникальные возможности универсальных измерительных центров для обеспечения высокого качества продукции.

Основанная на применении станков с ЧПУ современная технология позволяет работать со все более жесткими допусками. Такая технология предъявляет и более высокие требования к обеспечению качества. Универсальные измерительные центры различных эксплуатационных показателей должны стать средствами контроля, органично вписывающимися в технологический процесс. Здесь требуется обеспечить решение комплексных задач измерений как формы, так и положения. В дипломном проекте рассмотрено применение универсального измерительного центра серии UMC, UMC850. К особенностям данного измерительного центра относятся:

Стационарный стол изделия

- позволяет производить загрузку тяжелыми деталями, не оказывая влияния на точность направляющих;

- позволяет производить простое, надежное закрепление деталей, при котором силы ускорения не вызывают сползания;

- позволяет производить закрепление и освобождение деталей во время измерения;

- имеет незначительную массу и компактную конструкцию;

- при измерении небольших деталей предоставляется короткое неизменное расстояние для наблюдения удобной позиции сидя.

Передвижной портал

- позволяет иметь оптимальный доступ со всех сторон;

- позволяет иметь различную длину стола по оси У в качестве недорогого расширения объема измерения, например, при закреплении серийной партии деталей.

В качестве направляющих элементов применяются исключительно воздушные подшипники фирмы "ОПТОН", обладающие особой жесткостью и виброустойчивостью. Их расход воздуха составляет всего 4 л/мин. Расположение воздушных подшипников и качество направляющих из твердого камня гарантируют наименьшие возможные отклонения направляющих по всем осям.

Линейные измерительные системы - фокусины фирмы "ОПТОН", применяемые для машин серии UMC поставляются с разрешающей способностью 0,5 или 0.2 мк. При сканировании контуров для измерения форм и профиля точная разрешающая способность повышает точность информации в результатах измерения.

Эффективное демпфирование колебаний гарантируется при помощи пневматических демпфирующих элементов, расположенных между нижней частью станины и столом изделия.

Измеряющая 3-х координатная щуповая головка позволяет производить статически прием значений измерений в нулевой точке индуктивной измерительной системы щуповой головки, непрерывный сбор значений измерений в режиме сканирования и самоцентрирующее ощупывание пазов, впадин между зубьями, отверстий, витков резьбы и т.п. Отдельное приложение измерительного усилия и гидравлическое демпфирование позволяют настраивать на нулевую точку щуповой головки до полной остановки приема значений измерений, воспроизводимость составляет при этом + 15 мк по каждой оси. В режиме сканирования плоские пружины допускают пути измерения щуповой головки ±0,2 мм. Отклонение щуповой головки преобразуется в цифровую форму с разрешающей способностью 0,1 мк.

Конструкционные признаки

Измерительные центры серии UMC имеют экономичную и хорошо доступную конструкцию. Стабильная станина с демпфированием колебаний при помощи пневматических демпфирующих элементов, регулирующих уровень, покоится на основании. Она несет портал с поперечными салазками и пинолью Z.

Все направляющие элементы, такие как основная станина, поперечная балка и пиноль, состоят из отборного гранита тончайшей структуры чрезвычайно правильной формы с высокой жесткостью на изгиб, На их точно доведенные поверхности опираются салазки машины с помощью неизнашиваемых воздушных подшипников без трения с большими направляющими базами. За счет этого достигается прямолинейность движения салазок, перпендикулярные перемещения которых по отношению друг к другу могут быть точно отъюстированы.

Благодаря специальной технике воздушные подшипники фирмы "ОПТОН" особенно жестки и виброустойчивы.

Салазки машины приводятся в движение с помощью двигателей с дисковым ротором. Оптимально подогнанная электроника плавно регулирует скорость перемещения во всем диапазоне скорости. В случае столкновения движущиеся моменты ограничиваются максимально допустимой силой тяги.

Передача силы производится с помощью приводных элементов без зазора и поперечного усилия.

Незначительная погрешность и высокая скорость измерения, высокая предельно допускаемая нагрузка стола, не оказывающая влияния на направляющие» а также хороший доступ к детали со всех сторон - вот комплекс преимуществ измерительного центра UMC.

Для сведения к минимуму простоев производственного оборудования необходима быстрая реакция. Сокращение продолжительности измерений и обеспечение достаточно высокой их точности способны повысить надежность станочного оборудования и качество продукции. Добиться этого позволяют современные координатные измерительные приборы.

Для выполнения требований сегодняшнего производства необходимо применение универсальных координатных измерительных приборов с числовым программным управлением через ЭВМ. Такие приборы с полностью автоматизированным управлением используются для многих заготовок различных типо-размеров.

Таблица 9 Технические характеристики UMC850

Диапазон измерений (мм):

Х=850

Y-1200

Z=600

Погрешность линейного измерения U95 (при 20 °С) измеренное расстояние между 2-мя точками, включая ощупывание (L = длина измерения в мм)

(1,9+L/300) мк

Отклонение перпендикулярности любых осей относительно прямой выравнивания

?1''

Рабочая площадь стола (мм2)

1000х2020

Свободная высота над порталом (мм)

750

Максимальная свободная высота под щуповой головкой (мм);

710

Допустимая масса детали (кг)

1500

Масса измерительной машины (кг)

3800

Масса шкафа управления (кг)

110

Установочная площадь для измерительной машины (мм2)

1560x2120

Установочная площадь для шкафа управления (мм2)

600x600

К достоинствам следует отнести простоту обслуживания и отсутствие необходимости в навыках программирования. Большое значение имеют достоверное протоколирование, когда погрешность по величине и направление выдается в цифровом и графическом виде. Только на основании такого протокола на производстве можно принять соответствующие экстремальные меры.

Описанные здесь измерительные приборы с ЧПУ, работающие в трех координатах, используются для обеспечения качества продукции почти во всех измерительных лабораториях. Ускоренное развитие производственной структуры выдвигает необходимость дальнейшей автоматизации координатных измерительных приборов.

Для сокращения подготовительно-заключительного времени требуется установка и последовательная проверка на координатном измерительном приборе нескольких одинаковых заготовок. Решить такую задачу можно с помощью универсального программного оборудования. Необходимо также автоматизировать процесс замены измерительного щупа, пробок. Обеспечивается это с помощью управляемого ЭВМ механизма смены щупа.

Современное производство нуждается в координатной измерительной технике. Необходимо создавать и внедрять новые виды технологии, поэтапно внедряя надежные в работе компоненты. Это откроет возможность для успешной и экономически эффективной интеграции автоматизированных координатных измерительных средств и современного производства.

Выводы

В данном разделе проведено определение погрешности обработки методом математической статистики. Определен запас точности и уровень настройки инструмента при обработке. Выяснено, что технологический процесс является точным, но запасом точности не обладает; а уровень настройки неудовлетворительный и его следует производить по центру корпуса Вероятность получения брака по верхнему пределу допуска составляет около 4%, а по нижнему брака нет. В данном разделе проанализировано применение автоматических координатных измерительных приборов с ЧПУ.

Литература

1. Стандарт СТП МГАГИ. Проекты (работы) дипломные и курсовые. - М: МИП, 1988.-32 с.

2. Султан-заде Н.М., Жуков К.П., Зуев В.Ф. Методические указания по оформлению курсовых и дипломных проектов. - М.: МГАПИ, 2001. -117с.

3. Султан-заде Н.М. Конспект лекций. Основы проектирования автоматизированных технологических процессов. - М.: МГАПИ, 1999. -94с.

4. Орлов E.H., Султан-заде Н.М., Албагачиев А.Ю. Методические указания для выполнения курсового проекта по дисциплине Технология машиностроения. - М.: МГАПИ, 1997 - 84 с.

5. Основы технологии машиностроения. В.М. Кован, В.С. Корсаков и др. - М.: Машиностроение, 1977. - 416 с.

6. Маталин А.А. Технология машиностроения. - Л.: Машиностроение. 1985. - 496с.

7. Обработка металлов резанием: Справочник технолога. А.А. Панов и др. - М.: Машиностроение, 1988. - 736 с.

8. Справочник технолога машиностроителя. В 2-х томах. Под ред. А.Г. Косиловой и Р.К. Мецерякова. - М.: Машиностроение, 1985.

9. Власьевнина Л.К., Яценко Л.Г. Проектирование и производство заготовок в машиностроении. Части 1 и 2. - М.: МГАПИ, 2000.

10. Барановский Ю.В. Режимы резания металлов. Справочник. - М.: Машиностроение, 1972. - 407 с., ил.

11. Демьянюк Ф.С. Технологические основы поточно-автоматизированного производства. - М.: Высшая школа, 1968. - 700 с., ил.

Приложение 1

Базовый технологический маршрут механической обработки однотипной детали "корпус"

Технологическая операция. Код операции

Оборудование, технологическая оснастка, технологические показатели

1

2

3

1

Литейная

Точность отливки выполнена по третьему классу точности, ГОСТ 1855-85. Материал - чугун СЧ15.

2

Продольно-фрезерная 1575

Станок продольно-фрезерный мод. 6606. Обработка базовой поверхности. Шероховатость Ra5 мкм. Черновые литейные базы.

3

Продольно-фрезерная 1575

Станок продольно-фрезерный мод.6606. Фрезерование второстепенных поверхностей. Шероховатость Ra=5…10мкм. Черновые литейные базы.

4

Продольно-фрезерная 1575

Станок продольно-фрезерный мод.6606. Фрезерование второстепенной поверхности. Черновые литейные базы.

5

Горизонтально-фрезерная 1571

Станок горизонтально-фрезерный мод. 6Н82Г. Фрезерование выступов. Базирование по обработанным поверхностям.

6

Радиально-сверлильная 1253

Станок радиально-сверлильный мод.2М55. Сверление отверстий. Шероховатость Ra20 мкм.

7

Горизонтально-расточная (предварительная) 1045

Станок специальный расточной БК3121. Предварительная расточка отверстий. Снятие фасок. Шероховатость Ra=2,5 мм. Базирование по обработанной поверхности и отверстию.

8

Горизонтально-расточная (окончательная) 1045

Станок специальный расточной БК3121. Окончательная расточка отверстий. Шероховатость Ra=2,5 мкм. Базирование по обработанной поверхности.

9

Горизонтально-фрезерная 1571

Станок горизонтально-фрезерный мод.6Н82Г. Фрезерование второстепенной поверхности. Базирование по обработанным поверхностям.

10

Радиально-сверлильная 1253

Станок радиально-сверлильный мод. 2М55. Сверление отверстий. Зенкерование, зенкование отверстий. Нарезание резьбы. Шероховатость Ra=5…20 мкм. Базирование по трём отверстиям.

11

Радиально-сверлильная 1253

Станок радиально-сверлильный мод. 2М55. Зенкерование углубления. Нарезание резьбы. Шероховатость Ra=5…20 мкм. Базирование по трём отверстиям.

12

Радиально-сверлильная 1253

Станок радиально-сверлильный мод. 2М55. Сверление отверстий. Зенкерование отверстий. Зенкование отверстий. Нарезание резьбы. Подрезка на 18 мм. Шероховатость Ra=5…20 мкм Базирование по плоскости отверстию.

13

Слесарная

Ручная

Вывод: базовый технологический процесс соответствует основным требованиям типового технологического маршрута механической обработку детали типа "корпус". Его можно за основу для разработки проектного варианта на деталь «картер».

Размещено на Allbest.ru

...

Подобные документы

  • Описание узла машины, назначение детали. Анализ ее конструкции на технологичность. Определение типа производства, выбор технологического оборудования и оснащения. Расчет и определение промежуточных припусков. Описание конструкции приспособления.

    курсовая работа [505,9 K], добавлен 07.06.2014

  • Расчёт объёма выпуска и размера партии деталей. Служебное назначение детали "вал". Анализ соответствия технических условий и норм точности назначению детали. Анализ технологичности конструкции детали. Технологический маршрут изготовления детали.

    курсовая работа [2,2 M], добавлен 10.03.2011

  • Анализ технологичности детали "Втулка". Характеристика материала, выбор схемы базирования детали и оборудования для операции (характеристика и модель станка). Установочные элементы приспособления, зажимные устройства. Установка приспособления на станке.

    курсовая работа [535,0 K], добавлен 19.05.2011

  • Описание условий работы, служебное назначение детали, анализ технологичности детали и целесообразности перевода ее обработки на станки с ЧПУ. Проектирование маршрутного технологического процесса детали. Годовой расход и стоимость материалов по участку.

    дипломная работа [1,3 M], добавлен 22.02.2013

  • Общая характеристика и функциональные особенности детали "Корпус". Принцип выбора способа получения заготовки, оценка ее технологичности. Обоснование маршрута обработки. Описание спроектированной конструкции приспособления, а также режущего инструмента.

    курсовая работа [513,0 K], добавлен 17.04.2014

  • Общая характеристика детали "втулка". Анализ технологичности конструкции, определение служебного назначения детали. Нормоконтроль и метрологическая экспертиза чертежа. Разработка технологического процесса изготовления детали. Расчет режимов резания.

    курсовая работа [380,5 K], добавлен 04.05.2012

  • Технологический процесс изготовления детали "Крышка подшипника". Технология механической обработки. Служебное назначение и технологическая характеристика детали. Определение типа производства. Анализ рабочего чертежа детали, технологический маршрут.

    курсовая работа [574,4 K], добавлен 10.11.2010

  • Назначение и конструкция шестерни. Выбор станочных приспособлений и режущего инструмента. Анализ технологичности конструкции детали. Экономическое обоснование выбора заготовки. Описание конструкции, принципа работы и расчет станочного приспособления.

    курсовая работа [1,4 M], добавлен 07.03.2012

  • Определение типа производства. Технологический контроль чертежа и анализ технологичности конструкции детали. Выбор и обоснование метода изготовления заготовки. Проектирование станочного приспособления. Назначение режущего и измерительного инструмента.

    курсовая работа [525,8 K], добавлен 04.01.2014

  • Краткое описание конструкции детали, анализ ее технологичности; материал: химический состав, свойства. Технологический процесс механической обработки детали, операции. Выбор оборудования, приспособлений, режущих, измерительных и контрольных инструментов.

    контрольная работа [3,2 M], добавлен 08.12.2010

  • Назначение и конструкция вала-шестерни 546П-1802036-Б. Анализ технологичности конструкции детали. Расчет режимов резания и припусков на обработку. Расчет и проектирование станочного приспособления. Экономическое обоснование принятого варианта техпроцесса.

    курсовая работа [538,8 K], добавлен 10.05.2015

  • Анализ технологичности конструкции детали "Фланец". Описание химического состава (стали). Определение типа производства, выбор заготовки, режущего инструмента, оборудования, расчет припусков и норм времени. Описание измерительного приспособления.

    курсовая работа [241,3 K], добавлен 28.04.2015

  • Проектирование маршрутного технологического процесса механической обработки детали. Анализ технологичности конструкции детали. Выбор метода получения заготовки. Описание конструкции и принципа работы приспособления. Расчет параметров силового привода.

    курсовая работа [709,3 K], добавлен 23.07.2013

  • Назначение и условия работы детали в сборочной единице. Анализ технологичности конструкции детали. Выбор и технико-экономическое обоснование метода получения заготовки. Определение типа производства. Назначение и расчёт приспособления на точность.

    курсовая работа [91,6 K], добавлен 29.04.2014

  • Служебное назначение детали "рычаг", выбор и свойства материала изделия. Анализ технологичности конструкции. Содержание и последовательность технологических операций. Описание конструкции; расчет станочного приспособления, протяжки и калибра шлицевого.

    дипломная работа [2,0 M], добавлен 22.02.2015

  • Анализ технологичности конструкции детали. Выбор стратегии производства и технологического оснащения. Используемое оборудование, схема базирования заготовки. Приборы контроля точности обработки поверхности детали "вал". Калибр-пробки, скобы, отверстия.

    контрольная работа [979,0 K], добавлен 13.11.2013

  • Назначение вала, рабочий чертеж детали, механические свойства и химический состав стали. Анализ технологичности конструкции вала, определение типа производства. Разработка и анализ двух вариантов маршрутных технологических процессов изготовления детали.

    курсовая работа [925,1 K], добавлен 28.05.2012

  • Один из возможных технологических процессов обработки детали типа червяк. Анализ технологичности детали. Тип производства, свойства и особенности обрабатываемого материала, точность размеров, чистота поверхности, действующие стандарты и нормативы.

    дипломная работа [1,0 M], добавлен 09.03.2009

  • Расчет типа производства. Маршрут обработки детали "вал-шестерня". Операционный эскиз на данную операцию. Схема станочного приспособления, устройство и принцип работы. Расчет сил резания. Паспортные данные станка на заданную операцию. Сборочный чертеж.

    курсовая работа [1,4 M], добавлен 26.02.2010

  • Анализ конструкции заданной детали и ее технологичности. Обоснование и выбор методов формообразования. Расчет межоперационных припусков и промежуточных размеров заготовок. Технология изготовления детали: маршрутный техпроцесс, режимы механообработки.

    курсовая работа [202,4 K], добавлен 10.03.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.