Типовые звенья системы управления
Основные звенья системы управления, их характеристики. Логарифмические частотные характеристики интегрирующего звена. Амплитудно-фазовая частотная характеристика звена. Механические демпферы. Построение логарифмической частотной характеристики соединения.
Рубрика | Производство и технологии |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 19.05.2013 |
Размер файла | 216,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Типовые звенья системы управления
группа 4-15
Чепрасова К.Ю.
Любую систему можно представить в виде ограниченного набора типовых элементарных звеньев, которые могут быть любой природы, конструкции и назначения. Передаточную функцию любой системы можно представить в виде дробно-рациональной функции:
(1)
Таким образом, передаточную функцию любой системы можно представить как произведение простых множителей и простых дробей. Звенья, передаточные функции которых имеют вид простых множителей или простых дробей, называют типовыми или элементарными звеньями. Типовые звенья различаются по виду их передаточной функции, определяющей их статические и динамические свойства.
Как видно из разложения, можно выделить следующие звенья:
Усилительное (безынерционное).
Дифференцирующее.
Форсирующее звено 1-го порядка.
Форсирующее звено 2-го порядка.
Интегрирующее.
Апериодическое (инерционное).
Колебательное.
Запаздывающее.
При исследовании систем автоматического управления она представляется в виде совокупности элементов не по их функциональному назначению или физической природе, а по их динамическим свойствам. Для построения систем управления необходимо знание характеристик типовых звеньев. Основными характеристиками звеньев являются дифференциальное уравнение и передаточная функция.
Рассмотрим основные звенья и их характеристики.
Усилительное звено (безынерционное, пропорциональное). Усилительным называют звено, которое описывается уравнением:
(2)
или передаточной функцией:
(3)
При этом переходная функция усилительного звена (рис. 1а) и его фун-кция веса (рис. 1б) соответственно имеют вид:
а) б)
Рис. 1
Частотные характеристики звена (рис. 2) можно получить по его передаточной функции, при этом АФХ, АЧХ и ФЧХ определяются следующими соотношениями:
.
Рис. 2
Логарифмическая частотная характеристика усилительного звена (рис. 3) определяются соотношением .
Рис. 3
Примеры звена:
Усилители, например, постоянного тока (рис. 4а).
Потенциометр (рис. 4б).
а) б)
Рис. 4
3. Редуктор (рис. 5).
Рис. 5
Апериодическое (инерционное) звено. Апериодическим называют звено, которое описывается уравнением:
(4)
или передаточной функцией:
(5)
где Т - постоянная времени звена, которая характеризует его инерционность, k - коэффициент передачи.
При этом переходная функция апериодического звена (рис. 6а) и его функция веса (рис. 6б) соответственно имеют вид:
Рис. 6
Частотные характеристики апериодического звена (рис. 7а-в)
определяются соотношениями:
а) б) в)
Рис. 7
Логарифмические частотные характеристики звена (рис. 8) определяются по формуле
При
Рис. 8
Это асимптотические логарифмические характеристики, истинная характеристика совпадает с ней в области больших и малых частот, а максимальная погрешность будет в точке, соответствующей сопряженной частоте, и равна около 3 дБ. На практике обычно используют асимптотические характеристики. Их основное преимущество в том, что при изменении параметров системы (k и T) характеристики перемещаются параллельно самим себе.
Примеры звена:
1. Апериодическое звено может быть реализовано на операционных усилителях (рис. 9).
Рис. 9
2. Звенья на RLC-цепях (рис. 10).
Рис. 10
4. Механические демпферы (рис. 11).
Рис. 11
Интегрирующее звено. Интегрирующим звеном называют звено, которое описывается уравнением:
(6)
или передаточной функцией:
(7)
При этом переходная функция интегрирующего звена (рис. 12а) и его функция веса (рис. 12б) соответственно имеют вид:
Рис. 12
Частотные характеристики интегрирующего звена (рис. 13) определяются соотношениями:
Рис. 13
Логарифмические частотные характеристики интегрирующего звена (рис. 14) определяются по формуле:
Рис. 14
Пример звена. Интегрирующее звено может быть реализовано на операционных усилителях (рис. 15).
Рис. 15
Дифференцирующее звено. Дифференцирующим называют звено, которое описывается уравнением:
(8)
или передаточной функцией:
(9)
При этом переходная функция звена (рис. 16а) и его функция веса (рис. 16б) соответственно имеют вид:
Рис. 16
Частотные характеристики звена (рис. 17а-в) определяются соотношениями:
а) б) б)
Рис. 17
Идеальное дифференцирующее звено является физически не реализуемым. В реальных звеньях такой вид характеристики могут иметь только в ограниченном диапазоне частот.
Логарифмические частотные характеристики звена (рис. 18) определяются по формуле:
Рис. 18
Примеры звена:
1. Дифференцирующее звено может быть реализовано на операционных усилителях (рис. 19).
Рис. 19
2. Тахогенератор (рис. 20).
Рис. 20
Колебательное звено. Колебательным называют звено, которое описывается уравнением:
(10)
или передаточной функцией:
(11)
где - демпфирование (0 1).
Если = 0, то демпфирование отсутствует (консервативное звено - без потерь), если = 1, то имеем два апериодических звена.
При этом переходная функция звена и его функция веса (рис. 21) соответственно имеют вид:
(12)
а) б)
Рис. 21
Амплитудно-фазовая частотная характеристика (АФХ) имеет вид (рис. 22а) и определяется соотношением
Амплитудно-частотные характеристики (АЧХ) для различных значений имеет вид (рис. 22б) и определяется соотношением
Фазовая частотная характеристика (ФЧХ) имеет вид (рис. 22в) и определяется соотношением
Частотные характеристики колебательного звена имеют вид
а) б) в)
Рис. 22
Логарифмические частотные характеристики звена (рис. 23) определяются по формуле:
При k = 1
Рис. 23
Примеры звена. Колебательное звено может быть реализовано на операционных усилителях (рис. 24).
Рис. 24
Колебательное звено на RLC-цепи (рис. 25).
Рис. 25
В приведенной схеме:
С - накапливает энергию электрического поля;
L - накапливает энергию электромагнитного поля;
R - на сопротивлении происходит потеря энергии.
Запишем передаточную функцию цепи:
- затухание (демпфирование).
4. Механические демпферы (рис. 26).
Рис. 26
Форсирующее звено. Форсирующим называют звено, которое описывается уравнением:
(13)
или передаточной функцией
(14)
где k - коэффициент передачи звена.
При этом переходная функция звена и его функция веса соответственно определяются соотношениями:
Частотные характеристики звена (рис. 27а-в) определяются соотношениями:
1
а) б) в)
Рис. 27
Логарифмические частотные характеристики звена (рис. 28) определяются по формуле:
Рис. 28
Форсирующее звено 2-го порядка. Передаточная функция форсирующего звена 2-го порядка имеет вид:
(15)
Логарифмические частотные характеристики звена имеют вид:
Запаздывающее звено. Дифференциальное уравнение и передаточная функция запаздывающего звена имеют вид:
(16)
(17)
где - время запаздывания.
В соответствии с теоремой запаздывания . При этом переходная функция звена и его функция веса (рис. 30а, б) соответственно определяются соотношениями:
Рис. 30
Частотные характеристики звена (рис. 31а-в) определяются соотношениями:
а) б) в)
Рис. 31
Устойчивые и неустойчивые звенья. В устойчивых звеньях переходный процесс является сходящимся, а в неустойчивых он расходится. Устойчивые звенья называются минимально - фазовыми. Эти звенья не содержат нулей и полюсов в правой полуплоскости корней. Неустойчивые звенья называются не минимально - фазовыми. Т. е. изменению амплитуды на 20 дБ/дек соответствует изменение фазы на /2, а 40 дБ/дек - на .
Пример 1. Построить частотные характеристики для звеньев
Для заданных передаточных функций звеньев, характеристики имеют вид (рис. 32):
Рис. 32
Идеальные и реальные звенья. Идеальные звенья физически не реализуемы, реальные звенья содержат инерционности.
реальное интегрирующее звено;
реальное дифференцирующее звено;
реальное форсирующее звено.
АФХ этих звеньев имеют вид (рис. 33а-в):
а) б) в)
Рассмотрим характеристики соединений звеньев и порядок построения логарифмических частотных характеристик соединений звеньев.
1. Определяем, из каких элементарных звеньев состоит соединение.
2. Определяем сопрягающие частоты отдельных звеньев и откладываем их по оси частот в порядке возрастания.
3. Определяем наклон низкочастотной асимптоты, используя формулу [(-) 20] дБ/дек (где - количество дифференцирующих, а - интегрирующих звеньев) и проводим ее через соответствующую сопряженную частоту.
4. Последовательно сопрягая звенья, строим характеристику соединения.
Пример 2. Построить логарифмическую частотную характеристику соединения:
звено управление логарифмический частотный
Решение: Определяем сопрягающие частоты отдельных звеньев и откладыаем их по оси частот в порядке возрастания.
Tинт = 0,01 с; инт = 100 с-1;
Tфор = 1 с; фор = 1 с-1;
Tап = 0,1 с; ап = 10 с-1;
Строим характеристику (рис. 34).
Пример 3. Построить логарифмическую частотную характеристику соединения
Рис. 35
Решение: Определяем сопрягающие частоты отдельных звеньев и откладываем их по оси частот в порядке возрастания.
Tинт = 0,1 с; инт = 10 с-1;
Tфор = 10 с; фор = 0,1 с-1;
Tк = 1 с; к = 1 с-1;
Tфор = 0,1 с; фор = 10 с-1;
Tфор = 0,01 с; фор= 100 с-1;
Строим характеристику рис. 35
Пример 4. Построить АФХ соединения звеньев, передаточная функция которого имеет вид
Решение: Выполнив подстановку p = j и умножив на комплексно сопряженное выражение, получим
Строим характеристику рис. 36.
+j
+
Рис. 36
Размещено на Allbest.ru
...Подобные документы
Исследование частотных характеристик безынерционного звена. Электрическая принципиальная схема инвертирующего усилителя. Исследование апериодического звена 1-го порядка. Построение графика ЛАЧХ, частотные характеристики апериодического звена 2-го порядка.
контрольная работа [1,3 M], добавлен 11.04.2010Выбор элементной базы локальной системы управления. Выбор датчика угла поворота, двигателя, редуктора, усилителя, реле и датчика движения. Расчет корректирующего устройства. Построение логарифмической амплитудной частотной характеристики системы.
курсовая работа [710,0 K], добавлен 20.10.2013Технические характеристики тиристорного преобразователя. Двигатель постоянного тока. Построение логарифмических характеристик и их анализ. Передаточная функция разомкнутой системы. Синтез непрерывных корректирующих звеньев. Выбор корректирующего звена.
курсовая работа [778,2 K], добавлен 20.10.2013Определение запасов устойчивости системы по модулю и фазе. Оценка показателей качества процесса управления в переходном режиме. Логарифмическая амплитудно-частотная и фазочастотная характеристики автоматической системы. Проверка системы на устойчивость.
контрольная работа [208,9 K], добавлен 02.12.2013Определение передаточных функций и переходных характеристик звеньев системы автоматического управления. Построение амплитудно-фазовой характеристики. Оценка устойчивости системы. Выбор корректирующего устройства. Показатели качества регулирования.
курсовая работа [347,1 K], добавлен 21.02.2016Расчет параметров звена. Составление эскизов сборочной единицы и деталей. Расчет допусков и предельных отклонений на составляющие звенья размерной цепи, обеспечивающих величину заданного звена – суммарного осевого люфта вала в подшипниках корпуса.
контрольная работа [409,3 K], добавлен 09.10.2011Расчет допусков на составляющие звенья размерной цепи, обеспечивающих величину заданного замыкающего звена редуктора ЦД2-35-ВМ в установленных заданием пределах. Проведение расчетов по методам: максимума-минимума, вероятностному и регулирования.
контрольная работа [157,4 K], добавлен 07.12.2009Исследование системы управления частотой вращения двигателя с корректирующей цепью и без нее. Оценка устойчивости системы по критериям Гурвица, Михайлова и Найквиста. Построение логарифмических амплитудно-частотной и фазово-частотной характеристик.
курсовая работа [1,2 M], добавлен 22.03.2015Разработка схемы электрической принципиальной математической модели системы автоматического управления, скорректированной корректирующими устройствами. Оценка устойчивости исходной системы методом Рауса-Гурвица. Синтез желаемой частотной характеристики.
курсовая работа [172,1 K], добавлен 24.03.2013Амплитудно и фазо-частотная характеристика разомкнутой системы по передаточным функциям. Переходная характеристика системы по вещественной частотной характеристике замкнутой системы. Качество работы системы в переходном и установившемся режимах.
курсовая работа [5,2 M], добавлен 15.09.2009Разработка системы автоматического управления гидроприводом поворота башни танка. Подбор элементной базы и расчет передаточных функции системы. Определение с помощью желаемой логарифмической характеристики передаточной функции корректирующего устройства.
курсовая работа [293,0 K], добавлен 20.10.2013Исследование системы управления, синтез последовательного корректирующего звена для получения оптимальных показателей качества. Принципы работы системы, построение её функциональной схемы. Разработка модели системы в пакете MATLAB, анализ ее устойчивости.
курсовая работа [544,7 K], добавлен 26.10.2009Определение уравнений динамики и передаточных функций элементов системы автоматического управления. Дискретизация последовательного корректирующего звена методом аппроксимации операции интегрирования. Анализ устойчивости автоматической системы управления.
курсовая работа [521,3 K], добавлен 27.02.2014Структурная схема автоматической системы стабилизации крена. Определение передаточной функции корректирующего звена. Построение переходного процесса скорректированной системы. Анализ причин неисправностей и отказов в системах автоматического управления.
курсовая работа [1,2 M], добавлен 16.01.2014Разработка принципиальной схемы системы автоматического регулирования, описание ее действия. Определение передаточной функции и моделирование, оценка устойчивости по разным критериям, частотные характеристики. Разработка механизмов управления и защиты.
курсовая работа [1,1 M], добавлен 14.11.2013Изучение схемы привода стола станка с фазовой системой числового управления. Логарифмическая амплитудно-частотная характеристика устройства. Анализ устойчивости разомкнутой системы. Построение графика вещественного процесса, корректирующего устройства.
курсовая работа [1,7 M], добавлен 28.05.2014Запасы устойчивостей по амплитуде и по фазе у идеального пропорционального регулятора. Логарифмические частотные характеристики ленточного транспортера. Передаточная функция бункера. Нейтрализация сточных вод, содержащих кислоту, в аппарате с мешалкой.
контрольная работа [1,3 M], добавлен 29.06.2013Подвижные звенья и неподвижные стойки механизма. Построение планов скоростей. Расчет кинематических параметров. Построение планов ускорений механизма и кинематических диаграмм. Кинестетический анализ механизма. Определение сил, действующих на звенья.
контрольная работа [528,2 K], добавлен 31.10.2013Структурный, силовой, динамический и кинематический анализ исполнительного механизма, методика, основные этапы их реализации. Выбор начального звена и обобщенный координаты. Построение диаграмм перемещений, аналогов скоростей и ускорений выходного звена.
курсовая работа [374,4 K], добавлен 25.01.2016Кинематический анализ плоского рычажного механизма. Определение нагрузок, действующих на звенья механизма. Силовой расчёт ведущего звена методом Жуковского. Синтез кулачкового механизма. Способы нахождения минимального начального радиуса кулачка.
курсовая работа [101,3 K], добавлен 20.08.2010