Основы добычи нефти и газа

Процесс гидравлического разрыва пласта. Механизм образования горизонтальных и вертикальных трещин. Технология проведения ГРП: подготовка, промывка, закачка жидкости; вызов притока, время выстойки и освоение скважины, ее гидродинамическое исследование.

Рубрика Производство и технологии
Вид лекция
Язык русский
Дата добавления 30.05.2013
Размер файла 115,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

ЛЕКЦИЯ

ОСНОВЫ ДОБЫЧИ НЕФТИ И ГАЗА

Ахмеджанов Т.К.

1. Гидравлический разрыв пласта

пласт трещина скважина гидравлический

Гидравлический разрыв пласта (ГРП) предназначен для повышения проницаемости обрабатываемой области ПЗС и заключается в создании искусственных и расширении естественных трещин. Наличие микротрещин в ПЗС связано с процессом первичного вскрытия в фазе бурения вследствие взаимодействия долота с напряженными горными породами, а также с процессом вторичного вскрытия (перфорации).

Сущность ГРП заключается в нагнетании под давлением в ПЗС жидкости, которая заполняет микротрещины и «расклинивает» их, а также формирует новые трещины. Если при этом ввести в образовавшиеся или расширившиеся трещины закрепляющий материал (например, песок), то после снятия давления трещины не смыкаются.

Общие положения

В невозмущенном горном массиве напряженное состояние горных пород характеризуется следующими напряжениями:

- вертикальным уz = Pг определяемым весом вышележащих горных пород

уz = Pг = спgH;

- горизонтальным уx = уy = Pгг

уx = уy = Pгг = лспgH,

где сп - плотность вышележащих горных пород;

Н - глубина залегания горизонта, для которого рассчитываются напряжения;

л - коэффициент бокового распора, определяемый по формуле академика А.Н. Динника:

, (10.3)

н - коэффициент Пуассона горной породы, зависящий от продольных и поперечных ее деформаций.

Для песчаников и известняков н = 0,2 + 0,3; для упругих пород коэффициент Пуассона изменяется в пределах 0,25 + 0,43. Для пластичных горных пород (глина, глинистые сланцы, каменная соль) коэффициент Пуассона стремится к 0,5, вследствие чего л>1.

Рис. 1. К образованию зоны пониженного горного давления в разрезе скважины

В пределах залежи или месторождения фактическое горное давление может отличаться от такового, рассчитываемого по (1). Это вызвано перераспределением горного давления между различными участками пласта и зависит не только от свойств горных пород в разрезе скважины, но и от формы их залегания. Академик С.А. Христианович связывает величину горного давления с наличием в разрезе скважины глинистых пластичных пород.

Рассмотрим схему, приведенную на рис. 1. В разрезе скважины имеется глинистый пропласток. В процессе бурения глинистый пропласток вскрыт долотом. Горизонтальное горное давление в нем Pгг, а со стороны скважины - давление Рскв. Так как Рскв <Pгг, то:

Ргг - Pскв = ?P

Перепад давлений ?Р, действующий на глинистый пропласток, может оказаться выше прочности глины. В этом случае глина вытекает в скважину, формируя вокруг нее зону пониженного горного давления. Кстати, поступление глины в скважину в процессе бурения является одной из причин неконтролируемого изменения качества бурового раствора.

Одним из основных параметров ГРП является давление разрыва горных пород, которое зависит как от горного давления, так и от прочности горных пород. Прочность горных пород даже одного объекта разработки может изменяться в значительных пределах в зависимости от типа породы, ее пористости, структуры порового пространства, минералогического состава, а также от наличия глинистых разностей. Следовательно, давление разрыва Рр является трудно рассчитываемой величиной, но принципиально оно может соотноситься с горным давлением Рг следующим образом:

PP Pг

В зависимости от соотношения PP/Pг в определенной степени зависит и ориентация в пространстве образующихся трещин. Таким образом, соотношение Ррг в реальных случаях может быть самым различным. Практика показывает, что во многих случаях PP Pг.

В общем случае давление разрыва зависит от следующих основных факторов:

- горного давления Рг;

- проницаемости ПЗС и наличия в ней микротрещин;

- прочности и упругих свойств горной породы;

- структуры порового пространства;

- свойств жидкости разрыва;

- геологического строения объекта;

- технологии проведения ГРП и др.

Разрыв осуществляют так называемой жидкостью разрыва, а заполнение образовавшихся или расширившихся трещин - закрепляющим материалом с жидкостью-носителем.

2. Механизм образования трещин

При реализации ГРП в призабойной зоне могут образовываться трещины различной пространственной, ориентации: горизонтальные, вертикальные или наклонные. На рис. 2 приведена схема горизонтальной и вертикальной трещин.

Рис. 2. Схема горизонтальной и вертикальной трещин

А. Образование горизонтальной трещины

Если в призабойную зону скважины нагнетать слабофильтрующуюся (среднефильтрующуюся) жидкость, то фильтрация начинается в наиболее проницаемые области ПЗС, определяемые, как правило, наличием трещин. Фильтрация возможна только при определенном перепаде давлений ?Рф, зависящем от ряда факторов:

?Pф = Pзаб - Pпл

В этом случае слабофильтрующаяся жидкость действует как клин, увеличивая длину и раскрытость горизонтальной трещины. При этом положительный результат может быть получен только при определенном темпе закачки жидкости разрыва. Минимальный темп закачки жидкости разрыва определяют по эмпирической зависимости:

,

Где Qмин.г - минимальная подача насосным агрегатом жидкости разрыва для образования горизонтальной трещины, м3/с;

Rт - радиус горизонтальной трещины, м;

щп - ширина трещины на стенке скважины, м (см. рис. 5.4);

м - вязкость жидкости разрыва, мПа с.

Принципиально возможно образование горизонтальной трещины и фильтрующейся жидкостью, что связано с существенным увеличением темпа и давления закачки.

Б. Образование вертикальной (наклонной) трещины

Если используется нефильтрующаяся жидкость разрыва, то по мере повышения давления закачки напряжение в горной породе возрастает. При определенном напряжении, превышающем предел прочности породы на сжатие, порода разрывается. Физически этот процесс протекает следующим образом. По мере роста давления закачки напряжение в горной породе возрастает и происходит ее сжатие. Сжатие происходит до определенного предела, определяемого прочностью на сжатие. После превышения этого предела порода не может сопротивляться увеличивающемуся сжатию и растрескивается. После снятия давления закачки возникают остаточные трещины (трещины разуплотнения), как правило, вертикальной или наклонной ориентации.

Минимальный темп закачки жидкости разрыва рассчитывают по следующей эмпирической зависимости:

,

где Qмин.в- минимальная подача насосным агрегатом жидкости разрыва для образования вертикальной трещины, м3/с;

h - толщина пласта, м.

Так как в процессе закачки определенная часть жидкости фильтруется в породу ?Qф, формируя вдоль трещин зоны инфильтрата, действительный темп закачки жидкости разрыва Qд должен быть выше такового, рассчитываемого по формулам (10.16) и (10.17):

3. Технологические основы ГРП

Процесс гидравлического разрыва пласта (ГРП) состоит из трех принципиальных операций: создание в коллекторе искусственных трещин (или расширение естественных); закачка по НКТ в ПЗС жидкости с наполнителем трещин; продавка жидкости с наполнителем в трещине для их закрепления. При этих операциях используют три категории различных жидкостей: жидкость разрыва, жидкость-песконоситель и продавочную жидкость. Каждая из этих жидкостей (рабочих агентов) должна удовлетворять определенным специфическим требованиям. Вместе с тем указанные рабочие агенты должны удовлетворять следующим общим требованиям:

Рабочие агенты (жидкости), закачиваемые в пласт, не должны уменьшать проницаемость ПЗС. При этом, в зависимости от категории скважины (добывающая; нагнетательная; добывающая, переводимая под нагнетание воды), используются различные по своей природе рабочие жидкости.

Контакт рабочих жидкостей с горной породой ПЗС или с пластовыми флюидами не должен вызывать никаких отрицательных физико-химических реакций, за исключением случаев применения специальных рабочих агентов с контролируемым и направленным действием.

Рабочие жидкости не должны содержать значительного количества посторонних механических примесей (т.е. их содержание регламентируется для каждого рабочего агента).

При использовании специальных рабочих агентов, например, нефтекислотной эмульсии, продукты химических реакций должны быть полностью растворимыми в продукции пласта и не снижать проницаемости ПЗС.

Вязкость используемых рабочих жидкостей должна быть стабильной и иметь низкую температуру застывания в зимнее время (в противном случае процесс ГРП должен проводиться с использованием подогрева).

Рабочие жидкости предпочтительно должны быть легкодоступными, недефицитными и недорогостоящими.

Технология проведения ГРП заключается в совокупности следующих операций:

1. Подготовка скважины - исследование на приток или приемистость, что позволяет получить данные для оценки давления разрыва, объема жидкости разрыва и других характеристик.

2. Промывка скважины - скважина промывается промывочной жидкостью с добавкой в нее определенных химических реагентов. При необходимости осуществляют декомпрессионную обработку, торпедирование или кислотное воздействие. При этом рекомендуется использовать насосно-компрессорные трубы диаметром 3-4" (трубы меньшего диаметра нежелательны, т.к. велики потери на трение).

3. Закачка жидкости разрыва. Жидкость разрыва - тот рабочий агент, закачкой которого создается необходимое для разрыва горной породы давление для образования новых и раскрытия существовавших в ПЗС трещин. В зависимости от свойств ПЗС и других параметров используют либо фильтрующиеся, либо слабофильтрующиеся жидкости. В качестве жидкостей разрыва можно использовать:

в добывающих скважинах

- дегазированную нефть;

- загущенную нефть, нефтемазутную смесь;

- гидрофобную нефтекислотную эмульсию;

- гидрофобную водонефтяную эмульсию;

- кислотно-керосиновую эмульсию и др.;

в нагнетательных скважинах

- чистую воду;

- водные растворы соляной кислоты;

- загущенную воду (крахмалом, полиакриламидом - ПАА, сульфит-спиртовой бардой - ССБ, карбоксиметилцеллюлозой КМЦ);

- загущенную соляную кислоту (смесь концентрированной соляной кислоты с ССБ) и др.

При выборе жидкости разрыва необходимо учитывать и предотвращать набухаемость глин, вводя в нее химические реагенты, стабилизирующие глинистые частицы при смачивании (гидрофобизация глин).

Как уже отмечалось, давление разрыва не является постоянной величиной и зависит от ряда факторов.

Повышение забойного давления и достижение величины давления разрыва возможно при соблюдении следующего. Объемная скорость закачки жидкости разрыва определенной вязкости и проницаемость ПЗС должны удовлетворять в каждый момент времени закачки условию, когда скорость закачки опережает скорость поглощения жидкости пластом. Из данного условия очевидно, что в случае низкопроницаемых пород давление разрыва может быть достигнуто при использовании в качестве жидкости разрыва жидкостей невысокой вязкости при ограниченной скорости их закачки. Если породы достаточно хорошо проницаемы, то при использовании маловязких жидкостей закачки требуется большая скорость закачки; при ограниченной скорости закачки необходимо использовать жидкости разрыва повышенной вязкости. Если ПЗС представлена коллектором высокой проницаемости, то следует применять большие скорости закачки и высоковязкие жидкости. Совершенно очевидно, что при этом должна учитываться и толщина продуктивного горизонта (пропластка), определяющая приемистость скважины.

Важным технологическим вопросом является определение момента образования трещины и его признаки. Момент образования трещины в монолитном коллекторе характеризуется изломом на зависимости «объемный расход жидкости закачки - давление закачки» и значительным снижением давления закачки. Раскрытие уже существовавших в ПЗС трещин характеризуется плавным изменением зависимости «расход - давление», но снижения давления закачки не отмечается. В обоих случаях признаком раскрытия трещин является увеличение коэффициента приемистости скважины. Практика проведения ГРП показывает, что раскрытие естественных трещин достигается при существенно меньших давлениях закачки, чем это происходит в монолитных породах.

4. Закачка жидкости-песконосителя. Песок или любой другой материал, закачиваемой в трещину, служит наполнителем трещины, являясь, по существу, каркасом внутри нее и предотвращает смыкание трещины после снятия (снижения) давления. Жидкость-песконоситель выполняет транспортную по отношению к наполнителю функцию.

Основными требованиями к жидкости-песконосителю являются высокая пескоудерживающая способность и низкая фильтруемость.

Указанные требования диктуются условиями эффективного заполнения трещин наполнителем и исключением возможного оседания наполнителя в отдельных элементах транспортной системы (устье, НКТ, забой), а также преждевременной потерей наполнителем подвижности в самой трещине. Низкая фильтруемость предотвращает фильтрацию жидкости-песконосителя в стенки трещины, сохраняя постоянную концентрацию наполнителя в трещине и предотвращая закупорку трещины наполнителем в ее начале, В противном случае концентрация наполнителя в начале трещины возрастает за счет фильтрации жидкости-песконосителя в стенки трещины, и перенос наполнителя в трещине становится невозможным (закупорка трещины).

В качестве жидкостей-песконосителей в добывающих скважинах используются вязкие жидкости или нефти, желательно со структурными свойствами; нефтемазутные смеси; гидрофобные водонефтяные эмульсии; загущенная соляная кислота и др. В нагнетательных скважинах в качестве жидкостей-песконосителей используются растворы ССБ; загущенная соляная кислота; гидрофильные нефтеводяные эмульсии; крахмально-щелочные растворы; нейтрализованный черный контакт (НЧК) и др.

Для снижения потерь на трение при движении этих жидкостей с наполнителем по НКТ используют специальные добавки (депрессоры) - растворы на мыльной основе; высокомолекулярные полимеры и т.п.

5. Закачка продавочной жидкости. Основной целью этой жидкости является продавка жидкости-песконосителя до забоя и задавка ее в трещины. С целью предотвращения образования пробок из наполнителя, как показывает практика, должно соблюдаться следующее условие:

х?м 1,

где х - скорость движения жидкости-песконосителя в колонне НКТ, м/с;

м - вязкость жидкости-песконосителя, мПа с.

Как правило, в качестве продавочных используются жидкости с минимальной вязкостью. В добывающих скважинах часто используют собственную дегазированную нефть (при необходимости ее разбавляют керосином или соляркой); в нагнетательных скважинах используется вода, как правило, подтоварная.

Более подробные сведения о рабочих агентах и их свойствах приведены в специальной литературе.

В качестве наполнителя трещин могут использоваться:

- кварцевый отсортированный песок с диаметром песчинок 0,5 +1,2 мм, который имеет плотность около 2600 кг/м3. Так как плотность песка существенно больше плотности жидкости-песконосителя, то песок может оседать, что предопределяет высокие скорости закачки;

- стеклянные шарики;

- зерна агломерированного боксита;

- полимерные шарики;

- специальный наполнитель - проппант. Основные требования к наполнителю:

- высокая прочность на сдавливание (смятие);

- геометрически правильная шарообразная форма.

Совершенно очевидно, что наполнитель должен быть инертным по отношению к продукции пласта и длительное время не изменять своих свойств. Практически установлено, что концентрация наполнителя изменяется от 200 до 300 кг на 1 м3 жидкости-песконосителя.

6. После закачки наполнителя в трещины скважина оставляется под давлением. Время выстойки скважины под давлением должно быть достаточным, чтобы система (ПЗС) перешла из неустойчивого в устойчивое состояние, при котором наполнитель будет прочно зафиксирован в трещине. В противном случае в процессе вызова притока, освоения и эксплуатации скважины наполнитель выносится из трещин в скважину. Если при этом скважина эксплуатируется насосным способом, вынос наполнителя приводит к выходу из строя погружной установки, не говоря об образовании на забое пробок из наполнителя. Вышесказанное является чрезвычайно важным технологическим фактором, пренебрежение которым резко снижает эффективность ГРП вплоть до отрицательного результата.

7. Вызов притока, освоение скважины и ее гидродинамическое исследование. Следует подчеркнуть, что проведение гидродинамического исследования является обязательным элементом технологии, т.к. его результаты служат критерием технологической эффективности процесса.

Принципиальная схема оборудования скважины для проведения ГРП представлена на рис. 3. При проведении ГРП колонна НКТ должна быть запакерована и заякорена.

Важными вопросами при проведении ГРП являются вопросы определения местоположения, пространственной ориентации и размеров трещин. Такие определения должны быть обязательными при производстве ГРП в новых регионах, т.к. позволяют разработать наилучшую технологию процесса. Перечисленные задачи решаются на основе метода наблюдения за изменением интенсивности гамма-излучения из трещины, в которую закачана порция наполнителя, активированная радиоактивным изотопом, например, кобальта, циркония, железа. Сущность данного метода заключается в добавлении к чистому наполнителю определенной порции активированного наполнителя и в проведении гамма-каротажа сразу после образования трещин и закачки в трещины порции активированного наполнителя; сравнивая эти результаты гамма-каротажа, судят о количестве, местоположении, пространственной ориентации и размерах образовавшихся трещин. Указанные исследования выполняются специализированными промыслово-геофизическими организациями.

Рис. 3. Принципиальная схема оборудования скважины для проведения ГРП: 1 - продуктивный пласт; 2 - трещина; 3 - хвостовик; 4 - пакер; 5 - якорь; 6 - обсадная колонна; 7 - колонна НКТ; 8 - устьевое оборудование; 9 - жидкость разрыва; 10 - жидкость-песконоситель; 11 - жидкость продавки; 12 - манометр

Размещено на Allbest.ru

...

Подобные документы

  • Основные представления о механизме, выбор скважины и технологии проведения гидравлического разрыва пласта. Расчет потребного технического обеспечения процесса и современного оборудования. Оценка экономической эффективности и безопасности гидроразрыва.

    курсовая работа [3,3 M], добавлен 12.03.2015

  • Российский комплекс гидравлического разрыва нефтяных и газовых пластов. Предназначение комплекса ГРП для вовлечения в разработку трудноизвлекаемых запасов углеводородов и повышения эффективности их добычи. Технические характеристики и состав комплекса.

    презентация [8,0 M], добавлен 12.10.2015

  • История бурения скважин и добычи нефти и газа. Происхождение термина "нефть", ее состав, значение, образование и способы добычи; первые упоминания о газе. Состав нефтегазовой промышленности: значение; экономическая характеристика основных газовых баз РФ.

    курсовая работа [1,6 M], добавлен 14.07.2011

  • Средства, методы и погрешности измерений. Классификация приборов контроля технологических процессов добычи нефти и газа; показатели качества автоматического регулирования. Устройство и принцип действия термометров сопротивления и глубинного манометра.

    контрольная работа [136,3 K], добавлен 18.03.2015

  • Эксплуатационные показатели скважинного электронасосного агрегата. Параметры, характеризующие скважину: статический и динамический уровень жидкости, понижение уровня жидкости, дебит и удельный дебит скважины. Подготовка электронасоса к использованию.

    курсовая работа [598,5 K], добавлен 25.07.2014

  • Нефть как природная маслянистая горючая жидкость. Углеводороды как основные компоненты нефти и природного газа. Анализ технологии добычи и переработки нефти. Первичный и вторичный процесс. Термический крекинг, каталитический реформинг, гидроочистка.

    презентация [2,5 M], добавлен 29.09.2013

  • Физико-химические свойства нефти, газа, воды исследуемых месторождений нефти. Технико-эксплуатационная характеристика установки подготовки нефти Черновского месторождения. Снижение себестоимости подготовки 1 т. нефти подбором более дешевого реагента.

    дипломная работа [1,5 M], добавлен 28.03.2017

  • Теоретические основы гидравлического расчета сифонных сливов и сложных трубопроводов. Определение расхода жидкости через сифонный слив и проверка его работоспособности. Исследование возможности увеличения расхода жидкости путем изменения ее температуры.

    контрольная работа [225,4 K], добавлен 24.03.2015

  • Назначение и описание процессов переработки нефти, нефтепродуктов и газа. Состав и характеристика сырья и продуктов, технологическая схема с учетом необходимой подготовки сырья (очистка, осушка, очистка от вредных примесей). Режимы и стадии переработки.

    контрольная работа [208,4 K], добавлен 11.06.2013

  • Расчет показателей процесса одномерной установившейся фильтрации несжимаемой жидкости в однородной пористой среде. Схема плоскорадиального потока, основные характеристики: давление по пласту, объемная скорость фильтрации, запасы нефти в элементе пласта.

    курсовая работа [708,4 K], добавлен 25.04.2014

  • Схема добычи, транспортировки, хранения газа. Технологический процесс закачки, отбора и хранения газа в пластах-коллекторах и выработках-емкостях. Базисные и пиковые режимы работы подземных хранилищ газа. Газоперекачивающие агрегаты и их устройство.

    курсовая работа [3,8 M], добавлен 14.06.2015

  • Характеристика современного состояния нефтегазовой промышленности России. Стадии процесса первичной переработки нефти и вторичная перегонка бензиновой и дизельной фракции. Термические процессы технологии переработки нефти и технология переработки газов.

    контрольная работа [25,1 K], добавлен 02.05.2011

  • Разработка конструкции скважины №8 Пинджинского месторождения; обеспечение качества буровых, тампонажных работ, повышение нефтеносности. Технология первичного вскрытия продуктивного пласта. Расчет обсадной колонны и режима закачки; крепление, испытание.

    курсовая работа [1,7 M], добавлен 05.12.2013

  • Низкотемпературная сепарация газа, особенности данной технологии, используемое оборудование и материалы. Способ сепарации газожидкостной смеси, подготовка ее к транспорту. Основные факторы, влияющие на исследуемый процесс, его достоинства и недостатки.

    курсовая работа [246,8 K], добавлен 22.01.2015

  • Способы разделки труб перед сваркой. Центраторы для сборки и центровки трубопроводов. Технология газовой сварки различных швов. Особенности сварки горизонтальных, вертикальных, потолочных, наклонных швов. Техника безопасности при выполнении огневых работ.

    курсовая работа [3,4 M], добавлен 08.10.2014

  • История предприятия ОАО АНК "Башнефть". Обязанности мастера по контрольно-измерительным приборам и средствам автоматики. Технологический процесс промысловой подготовки нефти. Его регулирование с помощью первичных датчиков и исполнительных механизмов.

    отчет по практике [171,1 K], добавлен 09.04.2012

  • Экономическая эффективность зарезки боковых стволов на нефтегазовом месторождении "Самотлор". Выбор способа и интервала зарезки. Характеристика и анализ фонда скважин месторождения. Устьевое и скважинное оборудование. Состав и свойства нефти и газа.

    дипломная работа [1,3 M], добавлен 21.06.2013

  • Особенности проведения выработок буровзрывным способом. Устройство проходческих комплексов с комбайнами избирательного действия. Агрегаты для добычи полезного ископаемого. Способы разработки угольных пластов без присутствия людей в очистном забое.

    реферат [1,1 M], добавлен 25.08.2013

  • Подготовка металла, наложение сварных швов, режимы сварки. Мероприятия по уменьшению деформации. Контроль сварного изделия. Регулирование сварочного тока. Уменьшение внутренних напряжений и предупреждение образования трещин. Осмотр готовых изделий.

    реферат [523,6 K], добавлен 27.05.2014

  • Характеристика месторождения Акшабулак Восточный. Необходимость обеспечения заданного отбора нефти при максимальном использовании естественной пластовой энергии и минимально возможной себестоимости нефти. Выбор способа механизированной добычи нефти.

    дипломная работа [3,0 M], добавлен 19.09.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.