Производство стали

Электрометаллургия стали. Преимущества плавильных электропечей по сравнению с другими плавильными агрегатами. Режимы для внешнего теплообмена. Производство стали в дуговых печах. Область применения и назначение конструкционных и инструментальных сталей.

Рубрика Производство и технологии
Вид контрольная работа
Язык русский
Дата добавления 05.06.2013
Размер файла 111,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Производство стали в электропечах

Электрометаллургия стали

Плавильные электропечи имеют преимущества по сравнению с другими плавильными агрегатами:

а) легко регулировать тепловой процесс, изменяя параметры тока;

б) можно получать высокую температуру металла,

в) возможность создавать окислительную, восстановительную, нейтральную атмосферу и вакуум, что позволяет раскислять металл с образованием минимального количества неметаллических включений.

Первая дуговая сталеплавильная печь в России была установлена в 1910 г., а в конце 1917 г. под Москвой стал работать электрометаллургический завод с несколькими электропечами.

В основе превращения электрической энергии в тепловую могут лежать процессы теплогенерации, происходящие:

1) при прохождении электрического тока через газ;

2) при воздействии электрического тока на магнитное поле и создании вихревых токов в металле;

3) при перемагничивании и поляризации диэлектриков;

4) при прохождении электрического тока через твердое (а иногда и жидкое) тело, обладающее электропроводностью;

5) за счет кинетической энергии электронов среды, участвующей в процессе.

Обычно в печах передача тепла происходит двухступенчато - от теплоносителя (электрической дуги и др.) к поверхности материала и от поверхности внутрь его. Первая ступень соответствует так называемой внешней задаче, вторая - внутренней задаче.

В условиях внешней задачи теплопередача осуществляется главным образом в результате теплового излучения и конвекции.

В условиях внутренней задачи теплообмен происходит главным образом в результате теплопроводности (кондукции). Однако в последнем случае при нагреве жидкости преобладает конвективный теплообмен. Ниже несколько подробнее рассматриваются режимы, характерные для внешнего теплообмена.

В связи с тем, что основным способом выплавки стали является кислородно-конвертерный, потребляющий меньшее количество лома по сравнению с мартеновским, возникли предпосылки для более быстрого развития электросталеплавильного производства, работающего на твердой шихте. Вторая важная причина развития выплавки стали в электропечах - все возрастающая потребность в легированных сталях и чистом металле из металлизованных окатышей. Развитие электросталеплавильного способа производства стали будет идти параллельно с кислородно-конвертерным.

На металлургических предприятиях с большим объемом производства низколегированной и трансформаторной сталей в основном применяют дуговые трехфазные электропечи вместимостью 50, 100 и 200т. На специализированных заводах по производству высококачественной и специальной сталей применяют дуговые электропечи вместимостью 3-100 т, индукционные электропечи обычных конструкций и вакуумные.

Высококачественные слитки (по структуре и поверхности) получают в вакуумных электропечах с расходуемым электродом и в печах электрошлакового переплава. В последнее время для получения сталей для атомной и ракетной техники применяют электронно-лучевые плазменные печи. Ферросплавы выплавляют в дуговых электропечах на специализированных заводах.

2. Производство стали в дуговых печах

Дуговая печь питается трёхфазным переменным током. Имеет три цилиндрических электрода из графитизированной массы, закреплённых в электрододержателях, к которым подводится электрический ток по кабелям. Между электродом и металлической шихтой 3 возникает электрическая дуга. Корпус печи имеет форму цилиндра.

Снаружи он заключён в прочный стальной кожух, внутри футерован основным или кислым кирпичом. Плавильное пространство ограничено стенками 5, подиной 12 и сводом 6.

Рис. 1. Схема дуговой плавильной печи

Съёмный свод 6 имеет отверстия для электродов. В стенке корпуса рабочее окно 10 (для слива шлака, загрузки ферросплавов, взятия проб), закрытое при плавке заслонкой. Готовую сталь выпускают через сливное отверстие со сливным желобом 2. Печь опирается на секторы и имеет привод 11 для наклона в сторону рабочего окна или желоба. Печь загружают при снятом своде.

Вместимость печей составляет 0,5…400 тонн. В металлургических цехах используют электропечи с основной футеровкой, а в литейных - с кислой.

В основной дуговой печи осуществляется плавка двух видов:

а) на шихте из легированных отходов (методом переплава),

б) на углеродистой шихте (с окислением примесей).

Плавку на шихте из легированных отходов ведут без окисления примесей. После расплавления шихты из металла удаляют серу, наводя основной шлак, при необходимости науглероживают и доводят металл до заданного химического состава. Проводят диффузионное раскисление, подавая на шлак измельченные ферросилиций, алюминий, молотый кокс. Так выплавляют легированные стали из отходов машиностроительных заводов.

Плавку на углеродистой шихте применяют для производства конструкционных сталей. В печь загружают шихту: стальной лом, чушковый передельный чугун, электродный бой или кокс, для науглероживания металлов и известь. Опускают электроды, включают ток. Шихта под действием электродов плавится, металл накапливается в подине печи. Во время плавления шихты кислородом воздуха, оксидами шихты и окалины окисляются железо, кремний, фосфор, марганец, частично, углерод. Оксид кальция из извести и оксид железа образуют основной железистый шлак, способствующий удалению фосфора из металла. После нагрева до 1500…1540 0C загружают руду и известь, проводят период «кипения» металла, происходит дальнейшее окисление углерода. После прекращения кипения удаляют шлак. Затем приступают к удалению серы и раскислению металла заданного химического состава. Раскисление производят осаждением и диффузионным методом. Для определения химического состава металла берут пробы и при необходимости вводят в печь ферросплавы для получения заданного химического состава. Затем выполняют конечное раскисление алюминием и силикокальцием, выпускают сталь в ковш.

При выплавке легированных сталей в дуговых печах в сталь вводят легирующие элементы в виде ферросплавов.

В дуговых печах выплавляют высококачественные углеродистые стали - конструкционные, инструментальные, жаростойкие и жаропрочные.

3. Область применения и назначение конструкционных и инструментальных сталей

Сталь - это сплав железа с углеродом, содержащий до 1,8% углерода.

Стали относятся к пластичным металлам, которым деформированием можно придать необходимую форму. По химическому составу они делятся на углеродистые и легированные; по назначению - на конструкционные, инструментальные, особого назначения (нержавеющие, жаропрочные и др.).

Углеродистые конструкционные стали подразделяются на обыкновенного качества, качественные и автоматные. Стали обыкновенного качества обозначаются буквами Ст и цифрами о 0 до 7. Качественные имеют меньше посторонних примесей. Они маркируются цифрами 08, 10, 15, 20 и так далее до 60, указывающие содержание углерода в сотых долях процента. Выпускаются две группы таких сталей: I - с нормальным и II - с повышенным содержанием марганца. Последние в конце маркировки имеют букву Г - марганец. Качественные стали группы II обладают повышенной прочностью и упругостью.

Легированные конструкционные стали, кроме обычного состава, содержат хром, ванадий, вольфрам, никель, алюминий и др. Эти элементы придают стали определенные свойства: прочность, твердость, прокаливаемость, износостойкость и т.д.

Марки легированных сталей обозначают буквами и цифрами. Первые две цифры указывает среднее содержание углерода в сотых долях процента; затем следуют цифры, обозначающие легирующий элемент; цифры после букв - примерное содержание легирующего элемента в процентах. Если содержание элемента близко к 1%, цифра после буквы не ставится.

В маркировке приняты следующие буквенные обозначения элементов: Г - марганец, С - кремний, Х - хром, Н - никель, М - молибден, В-вольфрам, Ф - ванадий, К - кобальт, Ю - алюминий, Т - титан, Д - медь.

Буква А в конце марки означает, что сталь высококачественная.

Инструментальные стали делятся на углеродистые, легированные и быстрорежущие.

Углеродистые инструментальные стали содержат углерода от 0,65 до 1,35%, обладают высокой прочностью, твердостью в закаленном состоянии 63-65 HRCэ и теплостойкостью до 200-250 градусов С.

Они делятся на качественные и высококачественные. Последние содержат меньше серы, фосфора и остаточных примесей. Марки этих сталей обозначают буквой У - углеродистая, а цифры после нее указывают среднее содержание углерода в десятых долях процента. У высококачественных сталей в конце маркировки указывается буква А. Углерод существенно влияет на свойства стали. С повышением его содержания твердость, износостойкость и хрупкость стали увеличиваются, но вместе с тем ухудшается его обработка резанием.

Конструкционные стали - это стали, применяемые в строительстве и машиностроении для создания механизмов и различных конструкций. Принято выделять несколько основных видов конструкционных сталей:

- конструкционная углеродистая сталь;

- строительная сталь;

- цементуемая конструкционная сталь;

- конструкционная улучшаемая сталь;

- высокопрочная сталь;

- сталь конструкционная рессорно пружинная;

- подшипниковая конструкционная сталь;

- износостойкая сталь.

Марки конструкционных сталей включают в себя название материала «Сталь» или его сокращенный вариант «Ст», а также число, указывающее на процентное содержание углерода в материале. Например, Ст30. Следует учесть, что процентное содержание принято указывать в сотых долях процента, то есть сталь марки Ст30 будет содержать в своем составе 0,3% углерода.

Углеродистые конструкционные стали (автоматные) используются для создания крепежей станков-автоматов. Они отличаются высокой степенью обрабатываемости резанием, полученной благодаря высокому содержанию серы и фосфора. Маркировка конструкционных сталей этого вида состоит из литеры «А» и числа, обозначающего сотые доли процентного содержания углерода. Например, Сталь А12.

Строительные стали используются при создании конструкций, предназначенных для нефте- и газопроводов, мостов, ферм и т.п. Отличительные свойства конструкционных сталей этого вида - хорошая свариваемость. В эту же группу входит арматурная сталь, используемая для создания напряженных железобетонных конструкций. Если строительная конструкционная сталь подвергалась дополнительной обработке, то к ее условному обозначению впереди приставляется литера «М». Например, Ст М4.

К цементуемым относятся специальные конструкционные стали, использующиеся для изготовления деталей, испытывающих огромные нагрузки, имеющих большие размеры и сложную конфигурацию, например, зубчатых колес или осей.

Улучшаемыми принято называть среднеуглеродистые стали, подвергшиеся процедурам улучшения: закалке и быстрому отпуску при температуре 550-650 °С. Содержание углерода в них составляет от 0,3% до 0,5%.

Высокопрочные стали способны выдерживать колоссальные нагрузки. Их временное сопротивление превышает 1500 МПа. При этом такие конструкционные стали обладают высокой вязкостью. Применяются они для изготовления деталей машин, испытывающих сильную нагрузку.

По названию рессорно-пружинных сталей ясно, что это чрезвычайно упругие материалы, применяющиеся для изготовления пружин и деталей, необходимых для компенсации давления на них и исптывающих переменные нагрузки.

К подшипниковым относятся высокоуглеродистые или низкоуглеродистые стали, которые находятся в цементованном состоянии. Их особенность - высокая твердость.

Износостойкие стали образуются в результате графитизации, наклепа и использования наплавов. В результате получается конструкционная сталь с очень твердой поверхностью и устойчивая к износу.

К общим свойствам конструкционных сталей можно отнести:

- высокую прочность, вязкость и пластичность;

- отличную обрабатываемость резанием, давлением;

- высокие показатели свариваемости;

- отсутствие снижения содержания углерода при термической обработке;

- минимальную склонность к деформации и растрескиванию;

- максимальную износостойкость.

Область применения конструкционных углеродистых сталей зависит от их характеристик. Так, например, стали марок СТ1 и Ст2 чаще всего используются для изготовления проволоки и гвоздей. Для сталей марок Ст3 и Ст4 больше подходит фасонный прокат. Из них же часто делают крепежные детали. Ст5 и Ст6 преимущественно применяется для производства слабонагруженных осей и валов.

Стали повышенного качества (марки от Ст10 до Ст70) используются для изготовления более ответственных деталей машин и конструкций. Так, сталь 20 и сталь 25 преимущественно применяются для создания цельнотянутых труб и сварных узлов. А Ст50-70 подходят для осей, валов, винтов, муфт и втулок.

Легированную инструментальную сталь получают введением в высокоуглеродистую сталь хрома, вольфрама, ванадия и других элементов, которые повышают ее режущие свойства. Благодаря легирующим элементам эта сталь приобретает повышенную вязкость и износостойкость в закаленном состоянии, меньшую склонность к деформациям и трещинам при закалке, более высокую теплостойкость (до 300-350 градусов С) и твердость в состоянии поставки. Легированные инструментальные стали маркируются аналогично конструкционным с той лишь разницей., что первая цифра в начале марки означает содержание углерода в десятых долях процента.

Быстрорежущие стали представляют собой легированные инструментальные стали с высоким содержанием вольфрама (до 18%). После термообработки (закалки и многократного отпуска) они приобретают высокую красностойкость до 600 градусов С, твердость 63-66 HRC и износостойкость.

Быстрорежущие стали маркируются буквами и цифрами. Первая буква Р означает, что сталь быстрорежущая. Цифры после нее указывают среднее содержание вольфрама в процентах. Остальные буквы и цифры означают то же, что и в марках легированных сталей.

Быстрорежущие стали, легированные ванадием и кобальтом, имеют повышенные режущие свойства. Они предусмотрены для труднообрабатываемых сталей и сплавов высокой прочности и вязкости.

Примерное назначение и свойства быстрорежущих сталей

Марка стали

прочность, износостойкость, особенности стали

Назначение

Р18

Удовлетворительная прочность и повышенная шлифуемость, широкий интервал закалочных температур

Для всех видов инструментов, особенно подвергаемых значительному шлифованию, при обработке конструкционных материалов прочностью до 1000 МПа

Р9

Повышенная износостойкость, более узкий интервал оптимальных закалочных температур, повышенная пластичность при горячей пластической деформации.

Для изготовления инструментов простой формы, не требующих большого объема шлифования, применяемых для обработки конструкционных материалов

Р6М5

Повышенная прочность, более узкий интервал закалочных температур, повышенная склонность к обезуглероживанию. Шлифуемость удовлетворительная

Для всех видов инструментов при обработке конструкционных материалов прочностью до 1000 МПа.

Р12Ф3

Повышенная износостойкость, удовлетворительная прочность. Шлифуемость пониженная.

Для чистовых инструментов (резцов, зенкеров, разверток, сверл, протяжек и др.) при обработке на средних режимах резания вязких аустенитных сталей, а также материалов, обладающих повышенными режущими свойствами.

Р6М5Ф3

Повышенная износостойкость, удовлетворительная прочность. Шлифуемость пониженная

Для чистовых и получистовых инструментов (фасонных резцов, разверток, фрез, протяжек и др.). Предназначенных для работы на средних скоростях резания, преимущественно обрабатывающих углеродистые и легированные инструментальные стали

Р9К5, Р6М5К5, Р18К5Ф2

Повышенная вторичная твердость, теплостойкость, удовлетворительная прочность и вязкость. Шлифуемость пониженная

Для изготовления черновых и получистовых инструментов (фрез, долбяков, метчиков, сверл и т.п.), предназначенных для обработки углеродистых и легированных конструкционных сталей на повышенных режимах резания, а также некоторых труднообрабатываемых материалов

Литература

сталь плавильный печь дуговой

1. Кнорозов Б.В. и др. Технология металлов и материаловедение, - М.: Металлургия, 1987.

2. Соколов. Г.А. Производство стали. М.: Металлургия, 1987.

3. Дальский А.М и др. Технология конструкционных материалов. Учебник для вузов. - М.: Машиностроение, 1987.

4. Целиков А.И., Полухин П.И., Гребеник В.М. и др. Машины и агрегаты металлургических заводов. Том 2. Машины и агрегаты сталеплавильного производства. Учебник для вузов - М.: «Металлургия», 1988. - 432 с.

5. Сивак Б., Протасов А. Современное состояние и перспективы разхвития минизаводов по производству сортового проката // Национальная металлургия, 2002, №2, с. 38-43.

6. Ганьжин В. Киселев Ю. Технология XXI века. Перспективы России // Национальная металлургия, 2003, №1, с. 77-87.

Размещено на Allbest.ru

...

Подобные документы

  • Строение и свойства стали, исходные материалы. Производство стали в конвертерах, в мартеновских печах, в дуговых электропечах. Выплавка стали в индукционных печах. Внепечное рафинирование стали. Разливка стали. Специальные виды электрометаллургии стали.

    реферат [121,3 K], добавлен 22.05.2008

  • Металлургия стали как производство. Виды стали. Неметаллические включения в стали. Раскисление и легирование стали. Шихтовые материалы сталеплавильного производства. Конвертерное, мартеновское производство стали. Выплавка стали в электрических печах.

    контрольная работа [37,5 K], добавлен 24.05.2008

  • Классификация и маркировка стали. Характеристика способов производства стали. Основы технологии выплавки стали в мартеновских, дуговых и индукционных печах. Универсальный агрегат "Conarc". Отечественные агрегаты ковш-печь для внепечной обработки стали.

    курсовая работа [2,1 M], добавлен 11.08.2012

  • Особенности технологии выплавки стали. Разработка способов получения стали из чугуна. Кислородно-конвертерный процесс выплавки стали. Технологические операции кислородно-конверторной плавки. Производство стали в мартеновских и электрических печах.

    лекция [605,2 K], добавлен 06.12.2008

  • Производство стали в кислородных конвертерах. Легированные стали и сплавы. Структура легированной стали. Классификация и маркировака стали. Влияние легирующих элементов на свойства стали. Термическая и термомеханическая обработка легированной стали.

    реферат [22,8 K], добавлен 24.12.2007

  • Основные способы производства стали. Конвертерный способ. Мартеновский способ. Электросталеплавильный способ. Разливка стали. Пути повышения качества стали. Обработка жидкого металла вне сталеплавильного агрегата. Производство стали в вакуумных печах.

    курсовая работа [1,5 M], добавлен 02.01.2005

  • Исследование особенностей сварки и термообработки стали. Технология выплавки стали в дуговых сталеплавильных печах. Анализ порядка легирования сталей. Применение синтетического шлака и порошкообразных материалов. Расчёт ферросплавов для легирования стали.

    курсовая работа [201,2 K], добавлен 16.11.2014

  • Классификация и маркировка сталей. Сопоставление марок стали типа Cт и Fe по международным стандартам. Легирующие элементы в сплавах железа. Правила маркировки легированных сталей. Характеристики и применение конструкционных и инструментальных сталей.

    презентация [149,9 K], добавлен 29.09.2013

  • Сущность процессов спекания изделий из порошков. Особенности получения отливок из медных сплавов. Технологический процесс ковки, ее основные операции. Производство стали в дуговых электрических печах. Способы электрической контактной сварки металлов.

    контрольная работа [208,1 K], добавлен 23.05.2013

  • Производство чугуна и стали. Конверторные и мартеновские способы получения стали, сущность доменной плавки. Получение стали в электрических печах. Технико-экономические показатели и сравнительная характеристика современных способов получения стали.

    реферат [2,7 M], добавлен 22.02.2009

  • Основы металлургического производства. Производство чугуна и стали. Процессы прямого получения железа из руд. Преимущество плавильных печей. Способы повышения качества стали. Выбор метода и способа получения заготовки. Общие принципы выбора заготовки.

    курс лекций [5,4 M], добавлен 20.02.2010

  • Характеристика рельсовой стали - углеродистой легированной стали, которая легируется кремнием и марганцем. Химический состав и требования к качеству рельсовой стали. Технология производства. Анализ производства рельсовой стали с применением модификаторов.

    реферат [1022,5 K], добавлен 12.10.2016

  • Классификация материалов по функциональному назначению. Схема устройства дуговой электросталеплавильной печи. Процесс плавки стали на углеродистой шихте и преимущества электрических печей перед другими плавильными агрегатами. Особенности сварки меди.

    реферат [1007,0 K], добавлен 18.05.2011

  • Назначение и особенности эксплуатации инструментальных сталей и сплавов, меры по обеспечению их износостойкости. Требования к сталям для измерительного инструмента. Свойства углеродистых и штамповых сталей для деформирования в различных состояниях.

    контрольная работа [432,5 K], добавлен 20.08.2009

  • Изменение механических, физических и химических свойств углеродистых конструкционных и инструментальных сталей в результате химико–термической обработки. Марки сталей, их назначение и свойства. Структурные превращения при нагреве и охлаждении стали.

    контрольная работа [769,1 K], добавлен 06.04.2015

  • Определение классификации конструкционных сталей. Свойства и сфера использования углеродистых, цементуемых, улучшаемых, высокопрочных, пружинных, шарикоподшипниковых, износостойких, автоматных сталей. Стали для изделий, работающих при низких температурах.

    презентация [1,8 M], добавлен 14.10.2013

  • Стали как наиболее многочисленные сплавы, которые широко применяются во многих отраслях народного хозяйства. Особенности инструментальных, пружинно-рессорных и быстрорежущих сталей. Система обозначения марок стали и сплавов. Схема работы мартена.

    презентация [1,6 M], добавлен 10.03.2015

  • Кристаллизация стального слитка. Строение механически закупоренных слитков кипящей стали. Преимущества и недостатки использования полуспокойной стали по сравнению с кипящей. Футеровка сталеразливочных ковшей. Влияние скорости разливки на качество стали.

    курс лекций [4,7 M], добавлен 30.05.2014

  • Особенности обработки на штамповочных молотах, его конструктивная схема. Производство стали в кислородных конверторах. Устройство и принцип работы конвертора. Исходные материалы и виды выплавляемых сталей. Характеристика кислородно-конвертерного процесса.

    контрольная работа [931,1 K], добавлен 01.04.2013

  • Исходные материалы для выплавки чугуна. Устройство доменной печи. Выплавка стали в кислородных конвертерах, мартеновских, электрических печах. Продукты доменного производства. Производство меди, алюминия. Термическая и химико-термическая обработка стали.

    учебное пособие [7,6 M], добавлен 11.04.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.