Материаловедение

Механические свойства металлов. Упругая и пластическая деформация, процесс разрушение металлического материала. Общие сведения о магнитных свойствах материалов. Электрическая изоляция ферромагнитных частиц. Материалы с высокой индукцией насыщения.

Рубрика Производство и технологии
Вид контрольная работа
Язык русский
Дата добавления 12.06.2013
Размер файла 28,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Российской Федерации

Федеральное агентство по образованию

ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Заочно-вечерний факультет

КОНТРОЛЬНАЯ РАБОТА

по дисциплине «Материаловедение»

Вариант 9

Выполнила: Иванова А.А.

студентка гр. ЭУПзу 10-2

Иркутск 2011

СОДЕРЖАНИЕ

I. ДЕФОРМАЦИЯ И РАЗРУШЕНИЕ МЕТАЛЛОВ, СВОЙСТВА ДЕФОРМИРОВАННЫХ МЕТАЛЛОВ

1.1 Механические свойства металлов

1.2 Упругая и пластическая деформация, разрушение

II. МАТЕРИАЛЫ С ОСОБЫМИ МАГНИТНЫМИ СВОЙСТВАМИ

2.1 Общие сведения о магнитных свойствах материалов

2.2 Магнитомягкие материалы

ЛИТЕРАТУРА

I. ДЕФОРМАЦИЯ И РАЗРУШЕНИЕ МЕТАЛЛОВ, СВОЙСТВА ДЕФОРМИРОВАННЫХ МЕТАЛЛОВ

1.1 Механические свойства металлов

Когда на металлический образец действует сила или система сил, он реагирует на это, изменяя свою форму (деформируется). Различные характеристики, которыми определяются поведение и конечное состояние металлического образца в зависимости от вида и интенсивности сил, называются механическими свойствами металла.

Интенсивность силы, действующей на образец, называется напряжением и измеряется как полная сила, отнесенная к площади, на которую она действует. Под деформацией понимается относительное изменение размеров образца, вызванное приложенными напряжениями.

1.2 Упругая и пластическая деформация, разрушение

Если напряжение, приложенное к металлическому образцу, не слишком велико, то его деформация оказывается упругой - стоит снять напряжение, как его форма восстанавливается. Некоторые металлические конструкции намеренно проектируют так, чтобы они упруго деформировались. Так, от пружин обычно требуется довольно большая упругая деформация. В других случаях упругую деформацию сводят к минимуму. Мосты, балки, механизмы, приборы делают по возможности более жесткими. Упругая деформация металлического образца пропорциональна силе или сумме сил, действующих на него. Это выражается законом Гука, согласно которому напряжение равно упругой деформации, умноженной на постоянный коэффициент пропорциональности, называемый модулем упругости: ( = (E, где ( - напряжение, ( - упругая деформация, а E - модуль упругости (модуль Юнга).

Когда к металлическому образцу прикладываются напряжения, превышающие его предел упругости, они вызывают пластическую (необратимую) деформацию, приводящую к необратимому изменению его формы. Более высокие напряжения могут вызвать разрушение материала.

Важнейшим критерием при выборе металлического материала, от которого требуется высокая упругость, является предел текучести. У самых лучших пружинных сталей практически такой же модуль упругости, как и у самых дешевых строительных, но пружинные стали способны выдерживать гораздо большие напряжения, а следовательно, и гораздо большие упругие деформации без пластической деформации, поскольку у них выше предел текучести.

Пластические свойства металлического материала (в отличие от упругих свойств) можно изменять путем сплавления и термообработки. Так, предел текучести железа подобными методами можно повысить в 50 раз. Чистое железо переходит в состояние текучести уже при напряжениях порядка 40 МПа, тогда как предел текучести сталей, содержащих 0,5% углерода и несколько процентов хрома и никеля, после нагревания до 950° С и закалки может достигать 2000 МПа.

Когда металлический материал нагружен с превышением предела текучести, он продолжает деформироваться пластически, но в процессе деформирования становится более твердым, так что для дальнейшего увеличения деформации требуется все больше повышать напряжение. Такое явление называется деформационным или механическим упрочнением (а также наклепом). Его можно продемонстрировать, скручивая или многократно перегибая металлическую проволоку. Деформационное упрочнение металлических изделий часто осуществляется на заводах. Листовую латунь, медную проволоку, алюминиевые стержни можно холодной прокаткой или холодным волочением довести до уровня твердости, который требуется от окончательной продукции.

Растяжение. Соотношение между напряжением и деформацией для материалов часто исследуют, проводя испытания на растяжение, и при этом получают диаграмму растяжения - график, по горизонтальной оси которого откладывается деформация, а по вертикальной - напряжение. Хотя при растяжении поперечное сечение образца уменьшается (а длина увеличивается), напряжение обычно вычисляют, относя силу к исходной площади поперечного сечения, а не к уменьшенной, которая давала бы истинное напряжение. При малых деформациях это не имеет особого значения, но при больших может приводить к заметной разнице.

Сжатие. Упругие и пластические свойства при сжатии обычно весьма сходны с тем, что наблюдается при растяжении. Кривая соотношения между условным напряжением и условной деформацией при сжатии проходит выше соответствующей кривой для растяжения только потому, что при сжатии поперечное сечение образца не уменьшается, а увеличивается. Если же по осям графика откладывать истинное напряжение и истинную деформацию, то кривые практически совпадают, хотя при растяжении разрушение происходит раньше.

Твердость. Твердость материала - это его способность сопротивляться пластической деформации. Поскольку испытания на растяжение требуют дорогостоящего оборудования и больших затрат времени, часто прибегают к более простым испытаниям на твердость. При испытаниях по методам Бринелля и Роквелла в поверхность металла при заданных нагрузке и скорости нагружения вдавливают «индентор» (наконечник, имеющий форму шара или пирамиды). Затем измеряют (часто это делается автоматически) размер отпечатка, и по нему определяют показатель (число) твердости. Чем меньше отпечаток, тем больше твердость. Твердость и предел текучести - это в какой-то мере сравнимые характеристики: обычно при увеличении одной из них увеличивается и другая.

Может сложиться впечатление, что в металлических материалах всегда желательны максимальные предел текучести и твердость. На самом деле это не так, и не только по экономическим соображениям (процессы упрочнения требуют дополнительных затрат).

Во-первых, материалам необходимо придавать форму различных изделий, а это обычно осуществляется с применением процессов (прокатки, штамповки, прессования), в которых важную роль играет пластическая деформация. Даже при обработке на металлорежущем станке очень существенна пластическая деформация. Если твердость материала слишком велика, то для придания ему нужной формы требуются слишком большие силы, вследствие чего режущие инструменты быстро изнашиваются. Такого рода трудности можно уменьшить, обрабатывая металлы при повышенной температуре, когда они становятся мягче. Если же горячая обработка невозможна, то используется отжиг металла(медленный нагрев и охлаждение).

Во-вторых, по мере того как металлический материал становится тверже, он обычно теряет пластичность. Иначе говоря, материал становится хрупким, если его предел текучести столь велик, что пластическая деформация не происходит вплоть до тех напряжений, которые сразу же вызывают разрушение. Конструктору обычно приходится выбирать какие-то промежуточные уровни твердости и пластичности.

Ударная вязкость и хрупкость. Вязкость противоположна хрупкости. Это способность материала сопротивляться разрушению, поглощая энергию удара. Например, стекло хрупкое, потому что оно не способно поглощать энергию за счет пластической деформации. При столь же резком ударе по листу мягкого алюминия не возникают большие напряжения, так как алюминий способен к пластической деформации, поглощающей энергию удара.

Существует много разных методов испытания металлов на ударную вязкость. При использовании метода Шарпи призматический образец металла с надрезом подставляют под удар отведенного маятника. Работу, затраченную на разрушение образца, определяют по расстоянию, на которое маятник отклоняется после удара. Такие испытания показывают, что стали и многие металлы ведут себя как хрупкие при пониженных температурах, но как вязкие - при повышенных. Переход от хрупкого поведения к вязкому часто происходит в довольно узком температурном диапазоне, среднюю точку которого называют температурой хрупко-вязкого перехода. Другие испытания на ударную вязкость тоже указывают на наличие такого перехода, но измеренная температура перехода изменяется от испытания к испытанию в зависимости от глубины надреза, размеров и формы образца, а также от метода и скорости ударного нагружения. Поскольку ни в одном из видов испытаний не воспроизводится весь диапазон рабочих условий, испытания на ударную вязкость ценны лишь тем, что позволяют сравнивать разные материалы. Тем не менее, они дали много важной информации о влиянии сплавления, технологии изготовления и термообработки на склонность к хрупкому разрушению. Температура перехода для сталей, измеренная по методу Шарпи с V-образным надрезом, может достигать +90°С, но соответствующими легирующими присадками и термообработкой ее можно понизить до -130° С.

Хрупкое разрушение стали было причиной многочисленных аварий, таких, как неожиданные прорывы трубопроводов, взрывы сосудов давления и складских резервуаров, обвалы мостов. Среди самых известных примеров - большое количество морских судов типа «Либерти», обшивка которых неожиданно расходилась во время плавания. Как показало расследование, выход из строя судов «Либерти» был обусловлен, в частности, неправильной технологией сварки, оставлявшей внутренние напряжения, плохим контролем за качеством сварного шва и дефектами конструкции. Сведения, полученные в результате лабораторных испытаний, позволили существенно уменьшить вероятность таких аварий. Температура хрупко-вязкого перехода некоторых материалов, например вольфрама, кремния и хрома, в обычных условиях значительно выше комнатной. Такие материалы обычно считаются хрупкими, и придавать им нужную форму за счет пластической деформации можно только при нагреве. В то же время медь, алюминий, свинец, никель, некоторые марки нержавеющих сталей и другие металлы и сплавы вообще не становятся хрупкими при понижении температуры. Хотя многое уже известно о хрупком разрушении, это явление нельзя еще считать полностью изученным.

Усталость. Усталостью называется разрушение конструкции под действием циклических нагрузок. Когда деталь изгибается то в одну, то в другую сторону, ее поверхности поочередно подвергаются то сжатию, то растяжению. При достаточно большом числе циклов нагружения разрушение могут вызывать напряжения, значительно более низкие, чем те, при которых происходит разрушение в случае однократного нагружения. Знакопеременные напряжения вызывают локализованные пластическую деформацию и деформационное упрочнение материала, в результате чего с течением времени возникают малые трещины. Концентрация напряжений вблизи концов таких трещин заставляет их расти. Сначала трещины растут медленно, но по мере уменьшения поперечного сечения, на которое приходится нагрузка, напряжения у концов трещин увеличиваются. При этом трещины растут все быстрее и, наконец, мгновенно распространяются на все сечение детали.

Усталость, несомненно, является самой распространенной причиной выхода конструкций из строя в условиях эксплуатации. Особенно подвержены этому детали машин, работающие в условиях циклического нагружения. В авиастроении усталость оказывается очень важной проблемой из-за вибрации. Во избежание усталостного разрушения приходится часто проверять и заменять детали самолетов и вертолетов.

Ползучесть. Ползучестью (или крипом) называется медленное нарастание пластической деформации металла под действием постоянной нагрузки. С появлением воздушно-реактивных двигателей, газовых турбин и ракет стали приобретать все более важное значение свойства материалов при повышенных температурах. Во многих областях техники дальнейшее развитие сдерживается ограничениями, связанными с высокотемпературными механическими свойствами материалов.

При нормальных температурах пластическая деформация устанавливается почти мгновенно, как только прикладывается соответствующее напряжение, и в дальнейшем мало увеличивается. При повышенных же температурах металлы не только становятся мягче, но и деформируются так, что деформация продолжает нарастать со временем. Такая зависящая от времени деформация, или ползучесть, может ограничивать срок службы конструкций, которые должны длительное время работать при повышенных температурах.

Чем больше напряжения и чем выше температура, тем больше скорость ползучести. После начальной стадии быстрой (неустановившейся) ползучести эта скорость уменьшается и становится почти постоянной. Перед разрушением скорость ползучести вновь увеличивается. Температура, при которой ползучесть

становится критической, неодинакова для разных металлов. Предметом забот телефонных компаний является ползучесть подвесных кабелей в свинцовой оболочке, работающих при обычных температурах окружающей среды; в то же время некоторые специальные сплавы могут работать при 800° С, не обнаруживая чрезмерной ползучести.

После стадии быстрой неустановившейся ползучести скорость ползучести уменьшается и становится почти постоянной, а затем наступает стадия ускоренной ползучести, которая завершается разрушением.

Срок службы деталей в условиях ползучести может определяться либо предельно допустимой деформацией, либо разрушением, и конструктор должен всегда иметь в виду эти два возможных варианта. Пригодность материалов для изготовления изделий, рассчитанных на длительную работу при повышенных температурах, например, лопаток турбин, трудно оценить заранее. Испытания за время, равное предполагаемому сроку службы, зачастую практически невозможны, а результаты кратковременных (ускоренных) испытаний не так просто экстраполировать на более длительные сроки, поскольку может измениться характер разрушения. Хотя механические свойства жаропрочных сплавов постоянно улучшаются, перед металлофизиками и материаловедами всегда будет стоять задача создания материалов, способных выдерживать еще более высокие температуры.

II. МАТЕРИАЛЫ С ОСОБЫМИ МАГНИТНЫМИ СВОЙСТВАМИ

2.1 Общие сведения о магнитных свойствах материалов

Любое вещество, помещенное в магнитное поле, приобретает магнитный момент. Намагничивание вещества характеризуют: магнитная индукция В (Тл), напряженность магнитного поля Н (А/м), намагниченность J (А/м), магнитная восприимчивость km, магнитная проницаемость м, магнитный поток Ф (Вб).

Намагниченность связана с напряженностью магнитного поля соотношением:

Магнитная индукция в веществе определяется суммой индукции внешнего и собственного магнитных полей: где м0 = 4р·107 - магнитная постоянная, Гн/м.

Объединив выражения, получим: где мr = 1 + km или мr = В/(м0Н) - относительная магнитная проницаемость.

В соответствии с магнитными свойствами все материалы делятся на диамагнитные (диамагнетики), парамагнитные (парамагнетики), ферромагнитные (ферромагнетики), антиферромагнитные (антиферромагнетики), ферримагнитные (ферримагнетики).

Диамагнетики - вещества, которые намагничиваются противоположно приложенному полю и ослабляют его, т.е. имеют kм 0 (от 10-4 до 10-7). Диамагнетизм присущ всем веществам, но выражен слабо, к диамагнетикам относятся все инертные газы, переходные металлы (бериллий, цинк, свинец, серебро), полупроводники (германий, кремний), диэлектрики (полимеры, стекла), сверхпроводники.

Парамагнетики - вещества, которые имеют kм 0 (от 10-2 до 10-5) и слабо намагничиваются внешним магнитным полем. К парамагнетикам относятся металлы, атомы которых имеют нечетное число валентных электронов (калий, натрий, алюминий), переходные металлы (молибден, вольфрам, титан, платина) с недостроенными электронными оболочками атомов.

Ферромагнетики - вещества между атомами которых возникает обменное взаимодействие. В результате такого взаимодействия энергетически выгодным в зависимости от расстояния становится параллельная ориентация магнитных моментов соседних атомов (ферромагнетизм) или антипараллельная (антиферромагнетизм). Пол действием обменных сил параллельная ориентация магнитных моментов атомов ферромагнитного вещества происходит в определенных областях, называемых доменами. В пределах домена материал в отсутствии внешнего поля намагничен до насыщения благодаря обменному взаимодействию отдельных атомов. Это взаимодействие длится только до определенной температуры, которая называется температурой точки Кюри. Выше этой температуры домены разрушаются, и ферромагнетик переходит в парамагнитное состояние. Ферромагнитные материалы легко намагничиваются в слабых магнитных полях, характеризуются большим значением магнитной восприимчивости (до 106), а также ее нелинейной зависимостью от напряженности поля и температуры. Железо, никель, кобальт и редкоземельный металл гадолиний относятся к ферромагнитным металлам.

Антиферромагнетиками называют материалы, в которых во время обменного взаимодействия соседних атомов происходит антипараллельная ориентация их магнитных моментов. Так как магнитные моменты соседних атомов взаимно компенсируются, антиферромагнетики не обладают магнитным моментом, а характеризуются магнитной восприимчивостью, которая близка к восприимчивости парамагнетоков. При температуре выше некоторой критической, которая получила название температуры Нееля (аналогична температуре Кюри), магнитоупорядоченное состояние антиферромагнетика разрушается, и он переходит в парамагнитное состояние.

К ферримагнетикам относят вещества, в которых обменное взаимодействие осуществляется не непосредственно между магнитоактивными атомами, как в случае ферромагнетизма, а через немагнитный ион кислорода. Такое взаимодействие называют косвенным обменным или сверхобменным. Это взаимодействие в большинстве случаев приводит к антипараллельной ориентации магнитных моментов соседних ионов (т.е. к антиферромагнитному упорядочению). Однако магнитные моменты ионов не полностью компенсируются, и ферримагнитные вещества обладают магнитным моментом и имеют доменную структуру. Ферримагнетики наряду с ферромагнетиками относятся к сильномагнитным материалам.

2.2 Магнитомягкие материалы

Намагничиваются в слабых полях (Н 5 104 А/м) вследствие большой магнитной проницаемости (Н 88 мГн/м и мах 300 мГн/м) и малых потерь на перемагничивание. Такие материалы применяют для изготовления сердечников катушек, электромагнитов, трансформаторов, листов статоров и роторов электрических машин.

По величине потерь на перемагничивание определяются допустимые рабочие частоты магнито-мягких материалов и они подразделяются на низко- и высокочастотные.

Низкочастотные в свою очередь подразделяются на низкочастотные с высокой индукцией насыщения ВS и низкочастотные с высокой магнитной проницаемостью (начальной и максимальной).

Материалы с высокой индукцией насыщения: железо, нелегированные и легированные электротехнические стали. Их применяют для магнитных полей напряженностью от 102 до 104 А/м. Наиболее чистое от углерода и примесей - карбонильное железо получают термическим разложением в вакууме Fе(СО)5 - карбонила, с последующим спеканием порошка железа. Электролитическое железо и карбонильное - дорогие и используются только в небольших изделиях. Техническое железо содержит больше примесей, получают его прокатом, а затем отжигают в вакууме или в среде водорода.

Стали нелегированные электротехнические имеют низкое удельное электрическое сопротивление и большие тепловые потери при перемагничивании. Электрическое сопротивление электротехнических сталей повышают легированием кремнием, предельное содержание кремния не выше 5,1%, так как при его большем содержании стали становятся более хрупкими и непригодны для штамповки.

Свойства стали можно значительно улучшить в результате холодной прокатки, которая вызывает преимущественную ориентацию кристаллитов, с последующим отжигом в среде водорода, снимающего остаточные напряжения и способствующего укрупнению зерна. Оси легкого намагничивания кристаллитов ориентируются вдоль направления проката (сталь приобретает текстуру).

Наибольшее значение магнитной индукции насыщения имеют высоколегированные кобальтовые сплавы (железо - кобальт - ванадий), например, сплав 50КФ2 обладает индукцией насыщения 2,3 Тл в магнитном поле напряженностью 8 кА/м; железо - 1,5 Тл.

Материалы с высокой магнитной проницаемостью. Для достижения больших значений индукций в очень слабых магнитных полях (меньше 100 А/м) применяют сплавы, отличающиеся большой начальной проницаемостью - пермаллои. Это железо - никелевые сплавы и характеризуются тем, что значения магнитной анизотропии и магнитострикции равны нулю; это является причиной особенно легкого намагничивания пермаллоев. В пермаллоях содержание никеля от 45 до 80% , н больше 80 мГн/м; мах больше 300 мГн/м, что обеспечивает их намагничивание в слабых полях; повышенное удельное электрическое сопротивление (по сравнению с чистыми металлами) позволяет их использовать при частотах до 25 кГц; малая Нс, меньше 16 А/м, уменьшает потери на гистерезис. Пермаллои отличаются хорошей пластичностью - прокатываются в тонкие листы и проволоку. Магнитные свойства сильно зависят от деформации - магнитная проницаемость уменьшается, а коэрцитивная сила возрастает, поэтому обязательна термическая обработка. Особую группу составляют пермаллои с прямоугольной петлей гистерезиса (большая остаточная индукция, близкая к индукции насыщения). Существует два способа создания материала с прямоугольной петлей гистерезиса: создание кристаллографической или магнитной текстуры. Кристаллографическая текстура достигается холодной пластической деформацией при прокатке с высокими степенями обжатия. Магнитная текстура создается в результате охлаждения материала при закалке в магнитном поле (термомагнитная обработка), при этом векторы напряженности ориентируются вдоль поля и при последующем намагничивании в том же направлении вращение векторов отсутствует.

Альсиферы - тройные сплавы, состоящие из алюминия, кремния и железа. Альсиферы дешевле пермаллоев, но обладают высокая твердостью и хрупкостью, поэтому изделия из альсиферов изготавливают методами литья или прессования из порощков.

Магнитные сплавы с особыми свойствами. В ряде случаев требуются материалы с повышенным постоянством магнитной проницаемости в слабых магнитных полях. Материалы с такими свойствами необходимы для создания магнитных элементов с большим магнитным потоком, в частности в некоторых дросселях, трансформаторах тока, аппаратуре телефонной связи, измерительных приборов и др. Магнитная проницаемость может быть обусловлена обратимыми и необратимыми процессами намагничивания. Проницаемость постоянна при обратимых процессах намагничивания, следовательно, такие материалы должны обладать обратимой проницаемостью в различных магнитных полях.

Аморфные магнитные материалы (АММ). Особенностью АММ является отсутствие в них дальнего порядка в расположении атомов. Однако, несмотря на отсутствие периодичности в расположении атомов, АММ обладают упорядоченным расположением магнитных моментов. АММ во многом подобны стеклам и металлическим расплавам. Такие материалы получаются быстрым охлаждением из расплавленного состояния, кристаллизация при этом не успевает осуществиться.

Аморфная структура получается при скорости охлаждения расплава до 105... 108 K/c, в изделиях в виде проволоки или ленты.

Для повышения характеристик термическую обработку АММ проводят во внешнем магнитном поле, что обеспечивает более высокую магнитную проницаемость, малую коэрцитивную силу, повышенные значения индукции насыщения и удельного электрического сопротивления. Производство АММ дешевле, чем производство металлических листовых магнитомягких материалов. Металлические магнитомягкие АММ состоят из 75...85% смеси (или одного) из металлов - железа, кобальта, никеля и 15... 25% неметаллов (легкоплавкого компонента-стеклообразующего). Перспективными высокопроницаемыми материалами являются аморфные сплавы железа и никеля и кобальта. Для улучшения отдельных свойств АММ дополнительно легируют хромом, молибденом, алюминием, марганцем, ванадием и др. Неметаллы ухудшают магнитные и температурные параметры АММ, но увеличивают удельное электрическое сопротивление.

Аморфные магнитные материалы используются в технике магнитной записи и воспроизведения, различных типах специальных трансформаторов, импульсных источниках питания и преобразователях постоянного напряжения на частотах до нескольких мегагерц, магнитных усилителях, магниторезистивных головках с высокой плотностью записи, электродвигателях с высоким КПД.

Магнитодиэлектрики. Эти материалы состоят из конгломерата мелкодисперсных частиц ферро- или ферримагнитного материала, изолированных между собой органическим или неорганическим диэлектриком - связующим элементом. Благодаря тому, что частицы магнитной фазы изолированы, магнитодиэлектрики обладают высоким удельным сопротивлением и малыми потерями на вихревой ток, но имеют пониженное значение магнитной проницаемости. Магнитодиэлектрики характеризуются незначительными потерями на гистерезис и высокой стабильностью проницаемости.

Электрическая изоляция ферромагнитных частиц обеспечивается жидким стеклом, различными смолами, например полистиролом, фенолформальдегидной смолой.

Наиболее широкое распространение получили магнитодиэлектрики на основе карбонильного железа, альсифера и молибденового пермаллоя.

Высокочастотные, при высоких частотах растут тепловые потери, что сопровождается ухудшением магнитных свойств, уменьшением магнитной проницаемости. Эффективный способ снижения тепловых потерь - применение материалов с высоким электрическим сопротивление - диэлектриков. К таким материалам относятся - ферриты.

Ферриты. Основным достоинством ферритов является сочетание высоких магнитных параметров с большим электрическим сопротивлением, которое превышает сопротивление ферромагнитных металлов и сплавов в 103... 1013 раз, и, следовательно, они имеют относительно малые потери в области повышенных частот, что позволяет использовать их в высокочастотных электромагнитных устройствах.

ЛИТЕРАТУРА

металл деформация разрушение магнитный

1. Бернштейн М.Л., Займовский В.А. Механические свойства металлов. М., 1979

2. Уайэтт О.Г., Дью-Хьюз Д. Металлы, керамики, полимеры. М., 1979

3. Павлов П.А. Механические состояния и прочность материалов. Л., 1980

4. Соболев Н.Д., Богданович К.П. Механические свойства материалов и основы физики прочности. М., 1985

5. Жуковец И.И. Механические испытания металлов. М., 1986

6. Бобылев А.В. Механические и технологические свойства металлов. М., 1987

Размещено на Allbest.ru

...

Подобные документы

  • Деформация – изменение формы и размеров твердого тела под воздействием приложенных к нему нагрузок. Упругой деформацией называют такую, при которой тело восстанавливает свою первоначальную форму, а при пластической деформации тело не восстанавливается.

    реферат [404,2 K], добавлен 18.01.2009

  • Материаловедение. Общие сведения о строении вещества. Классическое строение, дефекты. Материалы высокой проводимости. Алюминий, свойства, марки, применение. Изоляционные лаки, эмали, компаунды. Полупроводниковые химические соединения. Диэлектрики.

    контрольная работа [23,8 K], добавлен 19.11.2008

  • Пластическая деформация и механические свойства сплавов. Временные и внутренние остаточные напряжения. Два механизма пластической деформации, структурные изменения. Общее понятие о наклепе. Схема смещения атомов при скольжении. Отдых и полигонизация.

    лекция [2,9 M], добавлен 29.09.2013

  • Понятие, классификация и механизм проявления деформации материалов. Современные представления про теорию разрушения материалов. Факторы, которые влияют на деформацию. Упругопластические деформации металлов и их износ. Особенности разрушения металлов.

    курсовая работа [1,4 M], добавлен 08.12.2010

  • Влияние холодной пластической деформации и рекристаллизации на микроструктуру и механические свойства низкоуглеродистой стали. Пластическая деформация и ее влияние на свойства металлических материалов. Влияние температуры нагрева на микроструктуру.

    контрольная работа [370,2 K], добавлен 12.06.2012

  • Сущность и признаки упругой и пластической деформации металлов - изменения формы и размеров тела, которое может вызываться воздействием внешних сил, а также другими физико-механическими процессами, которые происходят в теле. Виды разрушения металла.

    контрольная работа [23,5 K], добавлен 12.02.2012

  • Особенности поликристаллических и тонкопленочных металлов. Функции металлов в радио-, опто- и микроэлектронике. Проводники толстопленочных геоинформационная систем – стеклоэмали и пленочные материалы. Сверхпроводниковые материалы, их основные свойства.

    контрольная работа [529,4 K], добавлен 15.12.2015

  • Крупные изобретения конца XVIII в. в металлургии. Экономичность процесса производства прессованием профилей сложной формы и сечений. Упругая, пластическая и холодная деформация металла. Классификация методов обработки металлов давлением. Роль силы трения.

    курсовая работа [2,0 M], добавлен 08.05.2012

  • Сущность процессов упругой (обратимой) и пластической (необратимой) деформаций металла. Характеристика процессов холодной и горячей деформации. Технологические процессы обработки металла давлением: прессование, ковка, штамповка, волочение, прокат.

    реферат [122,4 K], добавлен 18.10.2013

  • Основные физико-механические свойства древесины. Процесс вулканизации синтетических каучуков. Технология получения бетонов – искусственных камневидных материалов. Материалы на основе пластмасс и их применение. Расшифровка марки стали 50А, чугуна ЧХ28.

    контрольная работа [31,9 K], добавлен 02.02.2015

  • Свойства металлов и сплавов. Коррозионная стойкость, холодостойкость, жаростойкость, антифринционность. Механические свойства металлов. Диаграмма растяжения образца. Испытание на удар. Физический смысл упругости. Виды изнашивания и прочность конструкции.

    контрольная работа [1006,5 K], добавлен 06.08.2009

  • Перемещение дислокаций при любых температурах и скоростях деформирования в основе пластического деформирования металлов. Свойства пластически деформированных металлов, повышение прочности, рекристаллизация. Структура холоднодеформированных металлов.

    контрольная работа [1,2 M], добавлен 12.08.2009

  • Назначение и свойства электротехнических материалов, которые представляют собой совокупность проводниковых, электроизоляционных, магнитных и полупроводниковых материалов, предназначенных для работы в электрических и магнитных полях. Пермаллои и ферриты.

    реферат [41,3 K], добавлен 02.03.2011

  • Физические свойства металлов. Способность металлов отражать световое излучение с определенной длиной волны. Плотность металла и температура плавления. Значение теплопроводности металлов при выборе материала для деталей. Характеристика магнитных свойств.

    курс лекций [282,5 K], добавлен 06.12.2008

  • Современные тенденции в развитии материаловедения мебельной промышленности. Древесные породы, применяемые в плотничных работах. Физические и механические свойства древесины. Круглые лесоматериалы, клееные деревянные конструкции, полимерные материалы.

    курсовая работа [518,0 K], добавлен 10.02.2016

  • Влияние времени на деформацию. Упругое последействие, влияние температуры на свойства материалов. Механические свойства материалов. Особенности испытаний на сжатие. Зависимость предела прочности пластмасс от температуры, неоднородность материалов.

    реферат [2,5 M], добавлен 01.12.2008

  • Виды теплоизоляционных материалов, которые предназначены для тепловой изоляции конструкций зданий и сооружений, а также различных технических применений. Классификация, свойства. Органические материалы. Материалы на основе природного органического сырья.

    презентация [5,0 M], добавлен 23.04.2016

  • Общие сведения о композиционных материалах. Свойства композиционных материалов типа сибунита. Ассортимент пористых углеродных материалов. Экранирующие и радиопоглощающие материалы. Фосфатно-кальциевая керамика – биополимер для регенерации костных тканей.

    реферат [1,6 M], добавлен 13.05.2011

  • Многослойные и комбинированные пленочные материалы. Адгезионная прочность композиционного материала. Характеристика и общее описание полимеров, их свойства и отличительные признаки от большинства материалов. Методы и этапы испытаний полимерных пленок.

    дипломная работа [1,7 M], добавлен 21.11.2010

  • Положительные свойства древесины как конструкционного материала. Химический состав и структура древесины. Классификация древесных пород на ядровые и заболонные. Механические свойства текстильных материалов, их использование в производстве швейных изделий.

    контрольная работа [35,2 K], добавлен 12.12.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.