Цветные металлы и сплавы

Процесс получение алюминия и сферы его применения. Деформируемые и литейные алюминиевые сплавы. Механические свойства чистой отожженной меди, латуней, бронз. Процесс производства титана, олова, свинца, цинка, их основные характеристики и разновидности.

Рубрика Производство и технологии
Вид реферат
Язык русский
Дата добавления 14.06.2013
Размер файла 29,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ЦВЕТНЫЕ МЕТАЛЛЫ И СПЛАВЫ

АЛЮМИНИЙ И АЛЮМИНИЕВЫЕ СПЛАВЫ

Получение алюминия. Из руд для промышленного получения алюминия используют преимущественно бокситы и нефелины. Производство алюминия состоит из двух основных процессов: получения глинозема Al2O3 из бокситов и восстановления металлического алюминия электролизом из раствора глинозема в расплавленном криолите (Na3AlF6). Электролитом служит криолит с добавлением 8--10% глинозема, а также A1F3 и NaF. Образующийся в результате электролиза жидкий алюминий собирается на дне ванны подслоем электролита. Его называют алюминием-сырцом.

Первичный алюминий делят натри группы: алюминий особой чистоты (маркаА999), высокой чистоты (четыре марки) и технической чистоты. Предусмотрено восемь марок, допускающих содержание примесей 0,15-1%. Название марки указывает ее чистоту. Например, марка А8 обозначает, что в металле содержится 99,8% алюминия, а в марке А99--99,99% алюминия. Алюминий технической чистоты получают в электролизных ваннах. Путем электролитического рафинирования алюминия-сырца получают алюминий марок высокой чистоты.

Алюминий - легкий металл серебристо-белого цвета с высокой электро- и теплопроводностью; плотность его 2700кг/м^3, температура плавления в зависимости от чистоты колеблется в пределах 660--667°С. В отожженном состоянии алюминий имеет малую прочность (ув=80--100 МПа), низкую твердость (НВ 20-40), но обладает высокой пластичностью (в=35-40%).

Алюминий хорошо обрабатывается давлением, сваривается, но плохо поддается резанию. Имеет высокую стойкость против атмосферной коррозии и в пресной воде. На воздухе алюминий быстро окисляется, покрываясь тонкой плотной пленкой окиси, которая не пропускает кислород в толщу металла, что и обеспечивает его защиту от коррозии.

В качестве конструкционных материалов алюминий широко применяют в виде сплавов с другими металлами и неметаллами (медь, марганец, магний, кремний, железо, никель, титан, бериллий и др.). Алюминиевые сплавы сочетают в себе лучшие свойства чистого алюминия и повышенные прочностные характеристики легирующих добавок. Так, железо, никель, титан повышают жаропрочность алюминиевых сплавов. Медь, марганец, магний обеспечивают упрочняющую термообработку алюминиевых сплавов. В результате легирования и термической обработки удается в несколько раз повысить прочность (уВ с 100 до 500 МПа) и твердость (НВ с 20 до 150) алюминия. Все сплавы алюминия подразделяют на деформируемые и литейные.

Деформируемые алюминиевые сплавы. Деформируемые алюминиевые сплавы применяют для получения листов, ленты, фасонных профилей, проволоки и различных деталей штамповкой, прессованием, ковкой. В зависимости от химического состава деформируемые алюминиевые сплавы делят на 7 групп; содержат 2--3 и более легирующих компонента в количестве 0,2--4% каждого. Например, сплавы алюминия с магнием и марганцем; алюминия с медью, магнием, марганцем и др.

Деформируемые сплавы разделяют на сплавы, упрочняемые и не упрочняемые термической обработкой. Деформируемые сплавы, подвергаемые механической и термической обработке, имеют буквенные обозначения, указывающие на характер обработки.

Термически не упрочняемые сплавы -- это сплавы алюминия с марганцем (Амц) и алюминия с магнием и марганцем (Амг). Он и обладают умеренной прочностью, высокой коррозионной стойкостью, хорошей свариваемостью и пластичностью.

Термически упрочняемые сплавы приобретают высокие механические свойства и хорошую сопротивляемость коррозии только в результате термической обработки. Наиболее распространены сплавы алюминия с медью, магнием, марганцем (дюралюмины) и алюминия с медью, магнием, марганцем и цинком (сплавы высокой прочности).

Дюралюмины маркируют буквой Д, после которой стоит цифра, обозначающая условный номер сплава. Термическая обработка дюралюминов состоит в закалке, естественном или искусственном старении. Для закалки сплавы нагревают до 500°С и охлаждают в воде. Естественное старение производят при комнатной температуре в течение 5--7 сут.

Деформируемые алюминиевые сплавы

Марка

Толщина

листов,

мм

Предел прочности растяжения

ув Мпа

Относительное

удлинение

Дв. %

Назначение

Термически не упрочняемые

АМцМ

АМг2М

АМгЗН

АМгЗМ

0,5-10

0,5-10

0,5-10

0,8-10

90

170

270

190-200

18-22

16-18

3-4

15

Малонагруженные детали, сварные и клепаные конструкции, детали,

получаемые глубокой вытяжкой

АМг5М

0,8-10

280

15

Средненагруженные детали сварных и

клепаных конструкций, конструкций.

с высокой коррозионной стойкостью

Термически упрочняемые

Д1А

5-10,5

360

12

Детали и конструкции средней прочности

Д16А Д16АТ

5-10,5 0,5-10

420

435

10

Детали и конструкции повышенной прочности, работающие при переменных нагрузках

В95А

5-10,5

500

6

Детали нагружаемых конструкций, работающие при температуре до 100"С

Примечание: 1. В зависимости от состояния поставки в обозначение марки добавляют следующие буквы: М -- отожженные, Н -- нагартованные, Т -- закаленные и естественно состаренные. 2. Листы из сплавов Д1, Д16, В95 с нормальной плакировкой дополнительно маркируют буквой А

Искусственное старение проводят при 150-180°С в течение 2-4 ч. При одинаковой прочности дюралюмины, подвергнутые естественному старению, более пластичны и коррозионностойки, чем подвергнутые искусственному старению. Особенностью нагрева алюминиевых сплавов при закалке является строгое поддержание температуры (±5°С), чтобы не допустить пережога и достичь наибольшего эффекта термической обработки.

Дюралюмины не обладают необходимой коррозионной стойкостью, поэтому их подвергают плакированию. Дюралюмины выпускают в виде листов, прессованных и катаных профилей, прутков, труб. Особенно широко применяют дюралюмины в авиационной промышленности и строительстве.

Литейные алюминиевые сплавы. Литейные сплавы содержат почти те же легирующие компоненты, что и деформируемые сплавы, но в значительно большем количестве (до 9--13% по отдельным компонентам). Литейные сплавы предназначены для изготовления фасонных отливок. Выпускают 35 марок литейных алюминиевых сплавов (АЛ), которые по химическому составу можно разделить на 5 групп. Например, алюминий с кремнием (АЛ2, АЛ4, АЛ9) или алюминий с магнием (АЛ8,АЛ13,АЛ22 и др.).

Алюминиевые литейные сплавы маркируют буквами АЛ и цифрой, указывающей условный номер сплава. Сплавы на основе алюминия и кремния называют силуминами. Силумины обладают высокими механическими и литейными свойствами: высокой жидкотекучестью, небольшой усадкой, достаточно высокой прочностью и удовлетворительной пластичностью. Сплавы на основе алюминия и магния имеют высокую удельную прочность, хорошо обрабатываются резанием и имеют высокую коррозионную стойкость.

Свойства алюминиевых литейных сплавов существенно зависят от способа литья и вида термической обработки. Важное значение при литье имеет скорость охлаждения затвердевающей отливки и скорость охлаждения ее при закалке. В общем случае увеличение скорости отвода тепла вызывает повышение прочностных свойств.

Литейные алюминиевые сплавы имеют более грубую и крупнозернистую структуру, чем деформируемые. Это определяет режимы их термической обработки. Для закалки силумины нагревают до температуры 520--540"С и дают длительную выдержку (5--10 ч.), для того чтобы полнее растворить включения. Искусственное старение проводят при 150--180°С в течение 10--20ч.

Для улучшения механических свойств силумины, содержащие более 5% кремния, модифицируют натрием. Для этого в расплав добавляют 1--3% от массы сплава соли натрия (2/3NaF+1/3NaCI). При этом снижается температура кристаллизации сплава и измельчается его структура.

МЕДЬ И МЕДНЫЕ СПЛАВЫ

Получение меди и ее сплавов. В настоящее время медь получают из сульфидных руд, содержащих медный колчедан (CuFeS2). Обогащенный концентрат медных руд (содержащий 11-35% Сu), сначала обжигают для снижения содержания серы, а затем плавят на медный штейн. Цель плавки на штейн - отделение сернистых соединений меди и железа от рудных примесей. Штейны содержат до 16-60% Сu. Медные штейны переплавляют в медеплавильном конвертере с продувкой воздухом и получают черновую медь, содержащую 1 -2% примесей железа, цинка, никеля мышьяка и др. Черновую медь рафинируют для удаления примесей. Содержание меди после рафинирования возрастает до 99,5-99,99% (медь первичная - технически чистая). Чистая медь имеет 11 марок (МООб, МОб, М1б, М1у, М1, М1р, М1ф, М2р, МЗр, М2 и МЗ). Суммарное количество примесей в лучшей марке МООб - 0,01%, а в марке МЗ - 0,5%

Механические свойства чистой отожженной меди: ув=220-240 МПа НВ 40-50,д=45-50%. Чистую медь применяют для электротехнических целей и поставляют в виде полуфабрикатов - проволоки, прутков лент листов, полос и труб. Из-за малой механической прочности чистую медь не используют как конструкционный материал, а применяют ее сплавы с цинком, оловом, алюминием, кремнием, марганцем, свинцом Легирование меди обеспечивает повышение ее механических, технологических и эксплуатационных свойств. Различают три группы медных сплавов: латуни, бронзы, сплавы меди с никелем.

Латуни. Латунями называют двойные или многокомпонентные сплавы на основе меди, в которых основным легирующим элементом является цинк. При введении других элементов (кроме цинка) латуни называют специальными по наименованию элементов, например железофосфорномарганцевая латунь и т.п.

В сравнении с медью латуни обладают большей прочностью коррозионной стойкостью и лучшей обрабатываемостью (резанием литьем давлением). Латуни содержат до 40-45% цинка. При большем содержании цинка снижается прочность латуни и увеличивается ее хрупкость

Содержание легирующих элементов в специальных латунях не превышает 7-9%.

Сплав обозначают начальной буквой Л - латунь. Затем следуют первые буквы основных элементов образующих сплавов: Ц-цинк 0-олово, Мц - марганец, Ж - железо, Ф - фосфор, Б - бериллий и т.д. Цифры следующие за буквами, указывают на количество легирующего элемента в процентах. Например, ЛАЖМцбб-6-3-2 алюминиевожелезомарганцовистая латунь, содержащая 66% меди, 6% алюминия, 3% железа, и 2% марганца, остальное - цинк.

По технологическому признаку латуни, как и все сплавы цветных металлов, подразделяют на литейные и деформируемые. Литейные латуни предназначены для изготовления фасонных отливок, их поставляют в виде чушек .

Деформируемые латуни выпускают в виде простых латуней, например Л90 (томпак), Л80 (полутомпак), и сложных латуней, например ЛАЖ60-1-1,

Механические свойства латуней

Марка

Предел прочности растяжения

ув,МПа

Относительное

удлинение

дв,%

Твердость, НВ

Назначение

Деформируемые латуни

Л90

Л80

Л68

260

320

320

45

52

55

53

53'

55

Детали трубопроводов, фланцы,бобышки

Теплообменные аппараты,

работающие при температуре 250°C

Литейные латуни

ЛС59-1Л

200

20

80

Втулки, арматура, фасонное литье

ЛМцС58-2-2

350

8

80

Антифрикционные детали --

подшипники, втулки

ЛМцЖ55-3-1

500

10

100

Гребные винты, лопасти, их

обтекатели, арматура, работающая

до 300 °С

ЛА67-2,5

400

15

90

Коррозионностойкие детали

ЛАЖМц-66- 6-3-2

650

7

160

Червячные винты, работающие в тяжелых условиях

ЛСбЗ-З и др. Латуни поставляют в виде полуфабрикатов - проволоки, прутков, лент, полос, листов, труб и других видов прокатных и прессованных изделий. Латуни широко применяют в общем и химическом машиностроении.

Бронзы. Сплавы меди с оловом, алюминием, кремнием, марганцем, свинцом, бериллием называют бронзами. В зависимости от введенного элемента бронзы называют оловянными, алюминиевыми и т.д.

Бронзы обладают высокой стойкостью против коррозии, хорошими литейными и высокими антифрикционными свойствами и обрабатываемостью резанием. Для повышения механических характеристик и придания особых свойств бронзы легируют железом, никелем, титаном, цинком, фосфором. Введение марганца способствует повышению коррозионной стойкости, никеля - пластичности, железа -- прочности, цинка -улучшению литейных свойств, свинца -- улучшению обрабатываемости.

Механические свойства бронз

Марка

Предел прочности

ув, МПа

Относительное удлинение дв, %

Твердость,

НВ

Назначение

БрОЦНЗ-

7-5-1

5

60

Детали арматуры (клапаны,

задвижки, краны), работающие

на воздухе, в пресной воде, масле,

топливе, паре и при температуре

250?С

БрОЦС5-

5-5

180

4

60

Антифрикционные детали и

арматура

БрАЖ9-4

БрАЖ9-4Л

500-700350-450

4-68-12

16090-100

Арматура трубопроводов для

различных сред (кроме морской

воды) при температуре до 250°С

БрАМц9-2Л

400

20

80

Детали, работающие в морской воде (винты, лопасти)

БрБ2

900-1000

2-4

70-90

Пружины, пружинящие контакты

приборов и т.п.

БрАМц10-2

БрОФ10-1

500

250

12

1-2

110

100

Подшипники скольжения

Бронзы маркируют буквами Бр, правее ставят элементы, входящие в бронзу: О -- олово, Ц -- цинк, С -- свинец, А -- алюминий, Ж -- железо, Мц -- марганец и др. Затем ставят цифры, обозначающие среднее содержание элементов в процентах (цифру, обозначающую содержание меди в бронзе, не ставят). Например, марка БрОЦС5-5-5 означает, что бронза содержит олова, свинца и цинка по 5%, остальное - медь (85%).

Оловянные бронзы содержат в среднем 4--6% олова, имеют высокие механические (дв= 150-350 МПа; д=3-5%; твердость НВ 60-90), антифрикционные и антикоррозионные свойства; хорошо отливаются и обрабатываются резанием. Для улучшения качества в оловянные бронзы вводят свинец, повышающий антифрикционные свойства и обрабатываемость; цинк, улучшающий литейные, механические и антифрикционные свойства.

Различают деформируемые и литейные оловянные бронзы. Деформируемые бронзы поставляются в виде полуфабрикатов (прутки, проволоки, ленты, полосы) в нагартованном (твердом) и отожженном (мягком) состояниях. Эти бронзы применяют для вкладышей подшипников, втулок деталей приборов и т.д. Литейные оловянные бронзы содержат большое количество олова (до 15%), цинка (4-1.0%), свинца (3-6%), фосфора (0,4--1,0%). Литейные бронзы применяют для получения различных фасонных отливок. Высокая стоимость и дефицитность олова - основной недостаток оловянных бронз.

Безоловянные бронзы содержат алюминий, железо, марганец, бериллий, кремний, свинец или различное сочетание этих элементов.

Алюминиевые бронзы содержат 4-- 11% алюминия. Алюминиевые бронзы имеют высокую коррозионную стойкость, хорошие механические и технологические свойства. Эти бронзы хорошо обрабатываются давлением в горячем состоянии, а при содержании алюминия до 8% - и в холодном состоянии. Бронзы, содержащие 9-11% алюминия, а также железо, никель, марганец, упрочняются термической обработкой (закалка и отпуск). Наиболее поддающаяся закалке БрАЖН 10-4-4 после закалки (980°С) и отпуска (400°С) повышает твердость с НВ 170-200 до НВ 400.

Марганцовистые бронзы (БрМ Ц5) имеют сравнительно невысокие механические свойства, но обладают высокой пластичностью и хорошей сопротивляемостью коррозии, а также сохраняют механические свойства при повышенных температурах.

Свинцовистые бронзы (БрСЗО) отличаются высокими антикоррозионными свойствами и теплопроводностью (в четыре раза большей, чем у оловянных бронз); применяют для высоконагруженных подшипников с большими удельными давлениями.

Бериллиевые бронзы (БрБ2) после термообработки имеют высокие механические свойства, например у БрБ2 ув= 1250 МПа, НВ350, высокий предел упругости, хорошую коррозионную стойкость, теплостойкость. Из бериллиевых бронз изготовляют детали особо ответственного назначения.

Кремнистые бронзы (БрКН1-3, БрКМцЗ-1) применяют как заменители дорогостоящих бериллиевых бронз.

Сплавы меди с никелем. Медноникелевые сплавы -- это сплавы на основе меди, в которых основным легирующим компонентом является никель. По назначению их подразделяют на конструкционные и электротехнические сплавы.

Куниалu (медь -никель -алюминий) содержат 6--13% никеля, 1,5-3% алюминия, остальное -- медь. Куниали подвергают термической обработке (закалка - старение). Куниали служат для изготовления деталей повышенной прочности, пружин и ряда электромеханических изделий.

Нейзильберы (медь - никель - цинк) содержат 15% никеля, 20% цинка, остальное - медь. Нейзильберы имеют приятный белый цвет, близкий кцвету серебра. Они хорошо сопротивляются атмосферной коррозии; применяют в приборостроении и производстве часов.

Мельхиоры (медь -- никель и небольшие добавки железа и марганца до 1 %) обладают высокой коррозионной стойкостью, в частности в морской воде. Их применяют для изготовления теплообменных аппаратов, штампованных и чеканных изделий.

Капель (медь - никель 43% -- марганец 0,5%) - специальный сплав с высоким удельным электросопротивлением, используемый в электротехнике для изготовления электронагревательных элементов.

Константан (медь -- никель 40% -- марганец 1,5%) имеет такое же назначение, как и манганин.

ТИТАН, МАГНИЙ И ИХ СПЛАВЫ

Получение титана. Титан -- серебристо-белый металл с высокой механической прочностью и высокой коррозионной и химической стойкостью. Для производства титана используют рутил, ильменит, титанит и другие руды, содержащие 10--40% двуокиси титана TiO2. После обогащения концентрат титановых руд содержит до 65% TiO2 . ТiO2 и сопутствующие окислы железа разделяют восстановительной плавкой. В процессе плавки окислы железа и титана восстанавливаются, в результате чего получают чугун и титановый шлак, в котором содержится до 80--90% TiO2. Титановый шлак хлорируют, в результате чего титан соединяется с хлором в четыреххлористый титан TiCl4. Затем четыреххлористый титан нагревают в замкнутой реторте при температуре 950--1000°С в среде инертного газа (аргон) вместе с твердым магнием. Магний отнимает хлор, превращаясь в жидкий MgCl2, а твердые частицы восстановленного титана спекаются в пористую массу, образуя титановую губку. Путем сложных процессов рафинирования и переплава их титановой губки получают чистый титан. Технически чистый титан содержит 99,2-99,65% титана.

Свойства и применение титана. Прочность технически чистого титана зависит от степени его чистоты и соответствует прочности обычных конструкционных сталей. По коррозионной стойкости титан превосходит даже высоколегированные нержавеющие стали.

Для получения сплавов титана с заданными механическими свойствами его легируют алюминием, молибденом, хромом и другими элементами. Главное преимущество титана и его сплавов заключается в сочетании высоких механических свойств (ув? 1500 МПа; д=10-15%) и коррозионной стойкости с малой плотностью.

Алюминий повышает жаропрочность и механическую прочность титана. Ванадий, марганец, молибден и хром повышают жаропрочность титановых сплавов. Сплавы хорошо поддаются горячей и холодной обработке давлением, обработке резанием, имеют удовлетворительные литейные свойства, хорошо свариваются в среде инертных газов. Сплавы удовлетворительно работают при температурах до 350--500°С.

Механические свойства титановых сплавов

Марка

Термическая обработка

Предел прочности ув, МПа

Относительное удлинение дв,%

Твердость, НВ

ВТ5

Отжиг при 750°С

750-900

10-15

240-300

ВТ8

Закалка 900-950°С + старение при 500°С

1000-1150

3-6

310-350

ВТ 14

Закалка 870°С + старение при 500°С

1150-1400

6-10

340-370

По технологическому назначению титановые сплавы делят на деформируемые и литейные, а по прочности - натри группы: низкой (ув =300-700 МПа), средней (ув=700-1000 МПа) и высокой (ув более 1000 МПа) прочности .

Первая группа - сплавы под маркой ВТ1.

Вторая группа - ВТЗ, ВТ4, ВТ5 и др.,

Третья группа - ВТ6, ВТ14, ВТ15(после закалки и старения).

Для литья применяют сплавы, аналогичные по составу деформируемым сплавам (ВТ5Л, ВТ14Л), а также специальные литейные сплавы. Литейные сплавы имеют более низкие механические свойства, чем соответствующие деформируемые. Титан и его сплавы, обработанные давлением, выпускают в виде прутков, листов и слитков. Титановые сплавы применяют в авиационной и химической промышленности.

Получение магния. Магний - самый легкий из технических цветных металлов, его плотность 1740 кг/м3, температура плавления 650°С. Технически чистый магний - непрочный металл с низкой тепло- и электропроводностью. Для улучшения прочностных свойств в магний добавляют алюминий, кремний, марганец, тори и, церий, цинк, цирконий и подвергают термообработке.

Для производства магния используют преимущественно карналлит (MgCl2* КС1*6Н20), магнезит (MgCO3), доломит (CaCO3-MgCO3) и отходы ряда производств, например титанового. Карналлит подвергают обогащению, в процессе которого отделяют КС1 и нерастворимые примеси путем перевода в водный MgC12 и КС1. После получения в вакуумкристаллизаторах искусственного карналлита его обезвоживают и электролитическим путем получают из него магний, который затем подвергают рафинированию. Технически чистый магний (первичный) содержит 99,8-99,9% магния. Маркировка и химический состав магниевых сплавов для фасонного литья и, слитков, предназначенных для обработки давлением, регламентируются стандартами.

Свойства и применение магния. В зависимости от способа получения изделий магниевые сплавы делят на литейные и деформируемые.

Литейные магниевые сплавы применяют для изготовления деталей литьем. Их маркируют буквами МЛ и цифрами, обозначающими порядковый номер сплава, например МЛ5. Отливки из магниевых сплавов иногда подвергают закалке с последующим старением. Некоторые сплавы МЛ применяют для изготовления высоконагруженных деталей в авиационной промышленности: картеры, корпуса приборов, фермы шасси и т.п.

Деформируемые магниевые сплавы предназначены для изготовления полуфабрикатов (листов, прутков, профилей) обработкой давлением. Их маркируют буквами МА и цифрами, обозначающими порядковый номер сплава, например МА5. Сплавы МА применяют для изготовления различных деталей в авиационной промышленности. Ввиду низкой коррозионной стойкости магниевых сплавов изделия и детали из них подвергают оксидированию с последующим нанесением лакокрасочных покрытий.

ОЛОВО, СВИНЕЦ, ЦИНК И ИХ СПЛАВЫ

цветной металл производство

Олово -- блестящий белый металл, обладающий низкой температурой плавления (231°С) и высокой пластичностью. Применяется в составе припоев, медных сплавов (бронза) и антифрикционных сплавов (баббит).

Свинец -- металл голубовато-серого цвета, обладает низкой температурой плавления (327°С) и высокой пластичностью. Входит в состав медных сплавов (латунь, бронза), антифрикционных сплавов (баббит) и припоев.

Цинк -- светло-серый металл с высокими литейными и антикоррозионными свойствами, температура плавления 419°С. Входит в состав медных сплавов (латунь) и твердых припоев.

Припои. Припой -- это металлы или сплавы, используемые при пайке в качестве связки (промежуточного металла) между соединяемыми деталями. Припои имеют более низкую температуру плавления, чем соединяемые металлы. Незначительный нагрев соединяемых металлов, а вследствие этого отсутствие изменения структуры металла являются основным преимуществом пайки в сравнении со сваркой.

По температуре расплавления припои подразделяют на легкоплавкие (145--450°С), среднеплавкие (450--1100°С) и высокоплавкие 1100--1850°С). К легкоплавким относят оловянно-свинцовые (ПОС), оловянные, малосурьмянистые и сурьмянистые (ПОССу) и другие припои; медно-цинковые (латуни) относят к среднеплавким (905-985°С), а многокомпонентные на основе железа--к высокоплавким (1190--1480°С).

Оловянно-свинцовые припои широко применяют во всех отраслях промышленности. Для снижения охрупчивания олова при низких температурах в состав припоев вводят сурьму. Оловянно-свинцовые припои имеют низкую коррозионную стойкость во влажной среде. В этих условиях паяные соединения необходимо защищать лакокрасочными покрытиями.

Оловянные припои имеют высокую прочность, пластичность и коррозионную стой кость. Их применяют при пайке радиотехнической и электронной аппаратуры.

Медно-цинковые припои (латуни) широко применяют для пайки большинства металлов Для повышения прочности паяных соединений в медно-цинковые припои вводят олово, никель и марганец. Добавки олова понижают температуру плавления латуни, повышают коррозионную стойкость и улучшают жидкотекучесть припоя.

При пайке сложных изделий со швами на вертикальной стенке применяют пастообразные и порошковые припои. Легкоплавкие пастообразные припои состоят обычно из трех частей: порошкообразного припоя, флюса и загустителя. Так, пасту состава: припой Пор ПОССу-30-2 (70%), вазелин (20%), бензойная кислота (1,2%), аммоний хлористый (1,2%) и эмульгатор ОП-7 (0,6%) -- применяют для пайки стальных, медных и никелевых изделий.

Тугоплавкие порошкообразные припои применяют для пайки твердосплавных пластин при производстве режущего инструмента. Состав припоя: ферромарганец (40%), ферросилиций (10%), чугунная стружка (20%), медная стружка (5%), толченое стекло (15%) -- плавится при температуре 1190-1300°С.

Применение цинка. Цинк имеет хорошую коррозионную стойкость в атмосферных условиях и в пресной воде. Поэтому цинк служит для хорошей антикоррозионной защиты кровельного железа и изделий из него.

Чистый цинк (марок ЦВО, ЦВ1) применяют в полиграфической и автомобильной промышленности; цинк марки ЦВОО- в электротехнике для изготовления источников постоянного тока.

Для получения фасонных отливок применяют сплавы ЦАМ с алюминием (4%), медью (0,5-3,5%) и магнием (0,1%). Из сплавов ЦАМ благодаря их легкоплавкости и жидкотекучести литьем под давлением получают отливки, не требующие дополнительной обработки поверхности. Деформируемые цинковые сплавы ЦАМ9-1,5, содержащие алюминий (9-11%), медь (1-2%), магний (0,05%), применяют для получения биметаллической антифрикционной ленты со сталью и алюминием.

АНТИФРИКЦИОННЫЕ СПЛАВЫ

Требования к сплавам. Антифрикционные сплавы предназначены для повышения долговечности трущихся поверхностей машин и механизмов. Трение происходит в подшипниках скольжения между валом и вкладышем подшипника. Поэтому для вкладыша подшипника подбирают такой материал, который предохраняет вал от износа, сам минимально изнашивается, создает условия для оптимальной смазки и уменьшает трение. Исходя из этих требован и и, антифрикционный материал представляет собой сочетания достаточно прочной и пластичной основы, в которой имеются опорные (твердые) включения. При трении пластичная основа частично изнашивается, а вал опирается на твердые включения. В этом случае трение происходит не по всей поверхности подшипника, а смазка удерживается в изнашивающихся местах пластичной основы,

Антифрикционными сплавами служат сплавы на основе олова, свинца, меди или алюминия, обладающие специальными антифрикционными свойствами. Антифрикционные свойства сплавов проявляются при трении в подшипниках скольжения. Это, в первую очередь, низкий коэффициент трения, хорошая прирабатываемость к сопрягаемой детали, высокая теплопроводность, способность удерживать смазку и др. Из антифрикционных сплавов наиболее широко применяют баббит, бронзу, алюминиевые сплавы, чугун и металлокерамические материалы.

Антифрикционные сплавы хорошо прирабатываются в парах трения благодаря мягкой основе-- олову, с винцу или алюминию. Более твердые металлы (цинк, медь, сурьма), вкрапленные в мягкую основу, способны выдерживать большие нагрузки. После приработки и частичной деформации мягкой основы в ней образуются углубления, способные удерживать смазку, необходимую для нормальной работы пары.

Сплавы. Баббиты-- антифрикционные материалы на основе олова или свинца. Их применяют для заливки вкладышей подшипников скольжения, работающих при больших окружных скоростях и при переменных и ударных нагрузках. По химическому составу баббиты классифицируют на три группы: оловянные (Б83, Б88), оловянно-свинцовые (БС6, Б16) и свинцовые (БК.2, БКА). Последние не имеют в своем составе олова.

Лучшими антифрикционными свойствами обладают оловянные баббиты.

Баббиты на основе свинца имеют несколько худшие антифрикционные свойства, чем оловянные, но они дешевле и менее дефицитны. Свинцовые баббиты применяют в подшипниках, работающих в легких условиях. В марках баббитов цифра показывает содержание олова. Например, баббит БС6 содержит по 6% олова и сурьмы, остальное - свинец.

Дня оловянных и оловянно-фосфористых бронз характерны высокие антифрикционные свойства: низкий коэффициент трения, небольшой износ, высокая теплопроводность, что позволяет подшипникам, изготовленным из этих материалов, работать при высоких окружных скоростях и нагрузках.

Алюминиевые бронзы, используемые в качестве подшипниковых сплавов, отличаются большой износостойкостью, но могут вызвать повышенный износ вала. Их применяют вместо оловянных и свинцовых баббитов и свинцовых бронз.

Свинцовые бронзы в качестве подшипниковых сплавов могут работать в условиях ударной нагрузки.

Латуни по антифрикционным свойствам уступают бронзам. Их используют для подшипников, работающих при малых скоростях и умеренных нагрузках.

Из-за дефицитности олова и свинца применяют сплавы на менее дефицитной основе, например алюминиевые сплавы. Алюминиевые сплавы обладают хорошими антифрикционными свойствами, высокой теплопроводностью, хорошей коррозионной стойкостью в масляных средах и достаточно хорошими механическими и технологическими свойствами. Их применяют в виде тон кого слоя, нанесенного на стальное основание, т.е. в виде биметаллического материала..

Металлокерамические сплавы получают прессованием и спеканием порошков бронзы или железа с графитом (1-4%). Пористость сплава 15-30%. После спекания сплавы пропитывают минеральными маслами, смазками или маслографитовой эмульсией. Сплавы хорошо прирабатываются к валу, а наличие смазки в порах способствует снижению износа подшипника.

Размещено на Allbest.ru

...

Подобные документы

  • Эксплуатационные свойства металлов. Классификация металлических материалов. Черные и цветные металлы, их сплавы. Стали для режущих и измерительных инструментов. Стали и сплавы со специальными свойствами. Сплавы алюминия и меди. Сплавы с "эффектом памяти".

    курсовая работа [1,6 M], добавлен 19.03.2013

  • Характеристики физико-механических свойств меди. "Водородная болезнь" меди. Полигонизация, повышение электропроводности. Структура и свойства латуней. Деформируемые и литейные оловянные бронзы. Двойные и дополнительно легированные алюминиевые бронзы.

    лекция [138,9 K], добавлен 29.09.2013

  • Достоинства алюминия и его сплавов. Малый удельный вес как основное свойство алюминия. Сплавы, упрочняемые термической обработкой. Сплавы для ковки и штамповки. Литейные алюминиевые сплавы. Получение алюминия. Физико-химические основы процесса Байера.

    курсовая работа [2,7 M], добавлен 05.03.2015

  • Алюминий и его сплавы. Характеристика и классификация алюминиевых сплавов. Деформируемые, литейные и специальные алюминиевые сплавы. Литые композиционные материалы на основе алюминиевого сплава для машиностроения. Состав промышленных дюралюминов.

    курсовая работа [2,8 M], добавлен 15.01.2014

  • Цветная металлургия как наиболее конкурентоспособная отрасль промышленности России, инвестиционная политика. Цветные металлы и сплавы: медь, алюминий, цинк, магний; их технологические и механические свойства, применение в промышленности и строительстве.

    реферат [28,2 K], добавлен 05.12.2010

  • Сплавы на основе железа как основной конструкционный материал. Процесс производства олова из руд и россыпей. Состав полученного оловянного концентрата. Состав и свойства некоторых сплавов олова. Основные аллотропические модификации олова, его изотопы.

    реферат [86,1 K], добавлен 14.11.2010

  • Сущность пластической деформации металлов и влияние на неё химического состава, структуры, температуры нагрева, скорости и степени деформации. Определение легированных сталей, их состав. Литейные сплавы на основе алюминия: их маркировка и свойства.

    контрольная работа [38,4 K], добавлен 19.11.2010

  • Понятие о металлах, особенности их атомного строения, физико-механические, химические и технологические свойства. Сплавы золота, серебра, титана, платины и палладия, нержавеющая сталь; их характеристики и применение в ортопедической стоматологии.

    презентация [433,4 K], добавлен 01.12.2013

  • Железоуглеродистые сплавы, физические и химические свойства, строение, полиморфные превращения; производство чугуна и доменный процесс. Термическая обработка стали: отжиг, отпуск, закалка. Медь и её сплавы, область применения, оксиды и гидрооксиды.

    курсовая работа [1,6 M], добавлен 17.10.2009

  • Производственные сферы, в которых применяются сплавы свинца. Извлечение оксида свинца из колошниковой пыли. Процесс рафинирования цинка для обработки остатков. Комплексная переработка содержащих свинец техногенных отходов медеплавильных предприятий Урала.

    курсовая работа [95,0 K], добавлен 11.10.2010

  • Основные методы и виды гальванических покрытий на алюминий и его сплавы. Анализ схемы предварительной подготовки алюминия, а также его сплавов. Цинкатный и станнатный растворы. Непосредственное нанесение гальванических покрытий на алюминий и сплавы.

    реферат [26,8 K], добавлен 14.08.2011

  • Обзор состава простых конструкционных сталей. Получение чугуна и легированных сталей. Характерные особенности медно-никелевых сплавов. Применение алюминиевых бронз, нейзильбера, мельхиора в народном хозяйстве. Механические свойства сплавов меди с цинком.

    презентация [3,3 M], добавлен 06.04.2014

  • Понятие и общая характеристика легкоплавких металов на основе пяти наиболее распространенных их представителей: свинца, цинка, ртути, олова и лития. Основные физические и химические свойства данных металлов, сферы их практического применения на сегодня.

    реферат [704,1 K], добавлен 21.05.2013

  • Общая характеристика и механические свойства титана как металла. Оценка главных преимуществ и недостатков титановых сплавов, сферы их практического применения и значение в кораблестроении. Батискаф "Алвин": история проектирования и построения, проблемы.

    реферат [161,2 K], добавлен 19.05.2015

  • Тенденции и динамика производства меди. Технологический процесс производства меди, ее классификация, маркировка, свойства и область применения. Классификация и марки медных сплавов. Конъюнктура международного и отечественного рынка меди и сплавов.

    реферат [53,4 K], добавлен 15.12.2012

  • Система алюминий-магний (Al-Mg) как одна из самых перспективных при разработке свариваемых сплавов, основные недостатки и преимущества данной группы. Сплавы алюминия с прочими элементами, их основные характеристики. Области применения алюминиевых сплавов.

    контрольная работа [24,6 K], добавлен 21.01.2015

  • Механические свойства, обработка и примеси алюминия. Классификация и цифровая маркировка деформируемых алюминиевых сплавов. Характеристика литейных алюминиевых сплавов системы Al–Si, Al–Cu, Al–Mg. Технологические свойства новых сверхлегких сплавов.

    презентация [40,6 K], добавлен 29.09.2013

  • Условия эксплуатации и особенности литейных свойств сплавов. Механические свойства стали 25Л, химический состав и влияние примесей на ее свойства. Последовательность изготовления отливки. Процесс выплавки стали и схема устройства мартеновской печи.

    курсовая работа [869,1 K], добавлен 17.08.2009

  • Химико-физические свойства медных сплавов. Особенности деформируемых и литейных латуней - сплавов с добавлением цинка. Виды бронзы - сплавов меди с разными химическими элементами, главным образом металлами (олово, алюминий, бериллий, свинец, кадмий).

    реферат [989,4 K], добавлен 10.03.2011

  • Титан и его распространенность в земной коре. История происхождения титана и его нахождение в природе. Сплавы на основе титана. Влияние легирующих элементов на температуру полиморфного превращения титана. Классификация титана и его основных сплавов.

    реферат [46,4 K], добавлен 29.09.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.