Свойства металлов

Характерные химические и физические свойства присущие металлам. Электронная структура атомов. Виды твердых растворов. Состав, микроструктура, свойства, маркировка по ГОСТу и применение обыкновенных серых чугунов. Назначение, состав и строение стали.

Рубрика Производство и технологии
Вид контрольная работа
Язык русский
Дата добавления 10.06.2013
Размер файла 2,0 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

1. Назовите характерные свойства присущие металлам, чем они обусловлены

металл чугун сталь

Химические свойства.

В соответствии с местом, занимаемым в периодической системе элементов, различают металлы главных и побочных подгрупп. Металлы главных подгрупп (подгруппы а) называются также непереходными. Эти металлы характеризуются тем, что в их атомах происходит последовательное заполнение s-и p-электронных оболочек. В атомах металлов побочных подгрупп (подгруппы б), называемых переходными, происходит достраивание d- и f-оболочек, в соответствии с чем их делят на d-группу и две f-группы - лантаноиды и актиноиды. В подгруппы а входят 22 металла: Li, Na, К, Rb, Cs, Fr (I a); Be, Mg, Ca, Sr, Ba, Ra (II a); Al, Ga, In, Tl (III a); Ge, Sn, Pb (IV a); Sb, Bi (V a); Po (VI a). В подгруппы б входят: 1) 33 переходных металла d-группы [Сu, Ag, Аи (I б); Zn, Cd, Hg (II б); Sc, Y, La, Ac (III 6); Ti, Zr, Hf, Ku (IV б); V, Nb, Та, элемент с Z = 105 (V б); Сr, Mo, W (VI б); Mn, Тс, Re (VII б); Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, Pt (VIII б)]; 2) 28 металлов f-группы (14 лантаноидов и 14 актиноидов).

Электронная структура атомов некоторых d-элементов имеет ту особенность, что один из электронов внешнего уровня переходит на d-подуровень. Это происходит при достройке этого подуровня до 5 или 10 электронов. Поэтому электронная структура валентных подуровней атомов d-элементов, находящихся в одной подгруппе, не всегда одинакова. Например, Cr и Мо (подгруппа VI б) имеют внешнюю электронную структуру соответственно 3d54s1 и 4d55s1, тогда как у W она 5d46s2. В атоме Pd (подгруппа VIII 6) два внешних электрона «перешли» на соседний валентный подуровень, и для атома Pd наблюдается d10 вместо ожидаемого d8s2.

Металлам присущи многие общие химические свойства, обусловленные слабой связью валентных электронов с ядром атома: образование положительно заряженных ионов (катионов), проявление положительной валентности (окислительного числа), образование основных окислов и гидроокисей, замещение водорода в кислотах и т.д. Металлические свойства элементов можно сравнить, сопоставляя их электроотрицательность [способность атомов в молекулах (в ковалентной связи) притягивать электроны, выражена в условных единицах]; элементу присущи свойства металла тем больше, чем ниже его электроотрицательность (чем сильнее выражен электроположительный характер).

Если расположить металлы в последовательности увеличения их нормальных потенциалов, получим так называемый ряд напряжений или ряд активностей. Рассмотрение этого ряда показывает, что по мере приближения к его концу - от щелочных и щёлочноземельных металлам к Pt и Аи - электроположительный характер членов ряда уменьшается. Металлы от Li по Na вытесняют Н2 из Н2О на холоду, а от Mg по Тl - при нагревании. Все металлы, стоящие в ряду выше Н2, вытесняют его из разбавленных кислот (на холоду или при нагревании). Металлы, стоящие ниже Н2, растворяются только в кислородных кислотах (таких, как концентрирированная H2SO4 при нагревании или HNO3), a Pt, Аи - только в царской водке (Ir нерастворим и в ней).

Металлы от Li no Na легко реагируют с О2 на холоду; последующие члены ряда соединяются с О2 только при нагревании, a Ir, Pt, Аи в прямое взаимодействие с О2 не вступают. Окислы металлов от Li no Al и от La no Zn трудно восстановимы; по мере продвижения к концу ряда восстановимость окислов увеличивается, а окислы последних его членов разлагаются на металлы и О2 уже при слабом нагревании. О прочности соединений металлов с кислородом (и др. неметаллами) можно судить и по разности их электроотрицательностей: чем она больше, тем прочнее соединение.

Физические свойства.

Большинство металлов кристаллизуется в относительно простых структурах - кубических и гексагональных ЛГУ, соответствующих наиболее плотной упаковке атомов (рисунок 1). Лишь небольшое число металлов имеет более сложные типы кристаллических решёток. Многие металлы в зависимости от внешних условий (температуры, давления) могут существовать в виде двух или более кристаллических модификаций.

Рисунок 1. Атомно-кристаллическое строение металлов

Электрические свойства. Удельная электропроводность металлов при комнатной температуре у~10-6-10-4 ом-1 см-1, тогда как у диэлектриков, например, у серы, у~10-17 ом-1 см-1. Промежуточные значения у соответствуют полупроводникам. Характерным свойством металлов как проводников электрического тока является линейная зависимость между плотностью тока и напряжённостью приложенного электрического поля. Носителями тока в металлах являются электроны проводимости, обладающие высокой подвижностью. Согласно квантово-механическим представлениям, в идеальном кристалле электроны проводимости (при полном отсутствии тепловых колебаний кристаллической решётки) вообще не встречают сопротивления на своём пути. Существование у реальных металлов электросопротивления является результатом нарушения периодичности кристаллической решётки. Эти нарушения могут быть связаны как с тепловым движением атомов, так и с наличием примесных атомов, вакансий, дислокаций и др. дефектов в кристаллах. На тепловых колебаниях и дефектах (а также друг на друге) происходит рассеяние электронов.

При нагревании металлов до высоких температур наблюдается «испарение» электронов с поверхности металлов (термоэлектронная эмиссия). Эмиссия электронов с поверхности металлов происходит также под действием сильных электрических полей ~ 107 в/см в результате туннельного просачивания электронов через сниженный полем потенциальный барьер. В металлах наблюдаются явления фотоэлектронной эмиссии, вторичной электронной эмиссии и ионно-электронной эмиссии. Перепад температуры вызывает в металлах появление электрического тока или разности потенциалов

Тепловые свойства. Теплоёмкость металлов обусловлена как ионным остовом (решёточная теплоёмкость Ср), так и электронным газом (электронная теплоёмкость Сэ). Хотя концентрация электронов проводимости в металлах очень велика и не зависит от температуры, электронная теплоёмкость мала и у большинства металлов наблюдается только при температурах в несколько градусов кельвина. Теплопроводность металлов осуществляется главным образом электронами проводимости.

Магнитные свойства. Переходные металлы с недостроенными f- и d-электронными оболочками являются парамагнетиками. Некоторые из них при определённых температурах переходят в магнитоупорядоченное состояние. Магнитное упорядочение существенно влияет на все свойства металлов, в частности на электрические свойства: в электросопротивление вносит вклад рассеяние электронов на колебаниях магнитных моментов. Гальваномагнитные явления при этом также приобретают специфические черты.

Магнитные свойства остальных металлов определяются электронами проводимости, которые вносят вклад в диамагнитную и парамагнитную восприимчивости металлов, и диамагнитной восприимчивостью ионного состава. Магнитная восприимчивость X большинства металлов относительно мала (X ~ 10-6) и слабо зависит от температуры.

Механические свойства. Многие металлы обладают комплексом механических свойств, обеспечивающим их широкое применение в технике, в частности в качестве конструкционных материалов. Это, в первую очередь, сочетание высокой пластичности со значит, прочностью и сопротивлением деформации, причём соотношение этих свойств может регулироваться в большом диапазоне с помощью механических и термических обработки металлов, а также получением сплавов различного состава.

Исходной характеристикой механических свойств металлов является модуль упругости G, определяющий сопротивление кристаллической решётки упругому деформированию и непосредственно отражающий величину, сил связи в кристалле. В монокристаллах эта величина, как и остальные механические характеристики, анизотропна и коррелирует с температурой плавления металла (например, средний модуль сдвига G изменяется от 0,18-1011 эрг/см3 для легко плавкого Na до 27*1011 эрг/см3 для тугоплавкого Re).

Сопротивление разрушению или пластической деформации идеального кристалла примерно 10-1 G. Но в реальных кристаллах эти характеристики, как и все механические свойства, определяются наличием дефектов, в первую очередь дислокация.

2. Что называют твердыми растворами, и каких видов они бывают?

Чистые металлы в большинстве случаев не обеспечивают требуемого комплекса механических и технологических свойств и поэтому редко применяются для изготовления изделий. Некоторое применение имеет, например, медь, главным образом для изготовления проводников электричества. В большинстве случаев в технике применяют сплавы.

Металлическим сплавом называется вещество, состоящее из двух более элементов (металлов или металлов с металлоидами), или обладающее металлическими свойствами. Обычным способом приготовление сплавов является сплавление, но иногда применяют спекание, электролиз или возгонку.)

В большинстве случаев входящие в сплав элементы в жидком состоянии полностью растворимы друг в друге, т. е. представляют собой жидкий раствор, в котором атомы различных элементов более или менее равномерно перемешаны друг с другом (рисунок 2, а). В твердом виде сплавы способны образовывать твердые растворы, химические соединения, механические смеси (рисунок 2, б, в, г).

Рисунок 2 - Структура и строение элементарной ячейки пространственной кристаллической решетки различных сплавов из 2 металлов А и В:

- атомы металла А; - атомы металла В.

Твердый раствор. Во многих сплавах при переходе в твердое состояние (при кристаллизации) сохраняется однородность распределения атомов различных элементов и, следовательно, сохраняется и растворимость. Образовавшийся в этом случае кристалл (зерно) называется твердым раствором.

Микроструктура твердого раствора в условиях равновесия представляет собой совершенно однородные и одинаковые по составу зерна и похожа на структуру чистого металла (рисунок 2, б). Твердый раствор, как и чистый металл, имеет одну кристаллическую решетку. Различие состоит только в том, что в кристаллической решетке чистого металла все узлы заняты атомами одного элемента, а в твердом растворе -- атомами различных элементов, образующих этот твердый раствор.

Классификация сплавов твердых растворов

По степеням растворимости компонентов различают твердые растворы:

- с неограниченной растворимостью компонентов;

- с ограниченной растворимостью компонентов.

При неограниченной растворимости компонентов кристаллическая решетка компонента растворителя по мере увеличения концентрации растворенного компонента плавно переходит в решетку растворенного компонента, т.е. растворимость твердого раствора, полученного при любом количественном соотношении элементов.

Для образования растворов с неограниченной растворимостью необходимы:

1. изоморфность (однотипность) кристаллических решеток компонентов;

2. близость атомных радиусов компонентов, которые не должны различаться более чем на 8-13%;

3. близость физико-химических свойств подобных по строению валентных оболочек атомов.

При ограниченной растворимости компонентов возможна концентрация растворенного вещества до определенного предела. При дальнейшем увеличении концентрации однородный твердый раствор распадается с образованием двуфазной смеси.

По характеру распределения атомов растворенного вещества в кристаллической решетке растворителя различают твердые растворы:

· замещения;

· внедрения;

· вычитания.

В растворах замещения в кристаллической решетке растворителя часть его атомов замещена атомами растворенного компонента (рисунок 3, а). Замещение осуществляется в случайных местах, поэтому такие растворы называют неупорядоченными твердыми растворами.

При образовании растворов замещения периоды решетки изменяются в зависимости от разности атомных диаметров растворенного элемента и растворителя. Если атом растворенного элемента больше атома

Рисунок 3 - Расположение атомов в твёрдых растворах:

а - твёрдый раствор замещения; б - твёрдый раствор внедрения;

- атом компонента растворителя;

- атом растворенного компонента.

растворителя, то элементарные ячейки увеличиваются, если меньше - сокращаются. В первом приближении это изменение пропорционально концентрации растворенного компонента. Изменение параметра решетки при образовании твердых растворов важно, т.к. это определяет изменение свойств. Уменьшение параметра ведет к большему упрочнению, чем его увеличение.

Твердые растворы внедрения образуются внедрением атомов растворенного элемента в поры кристаллической решетки растворителя (рисунок 3,б).

Образование таких растворов возможно, если атомы растворенного элемента имеют малые размеры. Такими являются элементы, находящиеся в начале периодической системы Менделеева - C, H, N, B. Размеры атомов превышают размеры межатомных промежутков в кристаллической решетке металла, это вызывает искажение решетки и это вызывает напряжения. Концентрация таких растворов не превышает 2-2,5%.

Твердые растворы вычитания или растворы с дефектной решеткой, образуются на базе химических соединений, при этом возможна не только замена одних атомов в узлах кристаллической решетки другими, но и образование пустых, не занятых атомами, узлов в решетке.

К химическому соединению добавляют один из входящих в формулу элементов, его атомы занимают нормальное положение в решетке соединения, а места атомов другого элемента остаются незанятыми.

3. Опишите взаимодействие компонентов в диаграмме состояния Cu-Ag. Укажите основные линии диаграммы, структуру во всех областях диаграммы и превращения, в результате которых она образуется. Построить с применением правила фаз кривую охлаждения для сплава, содержащего 30% Ag. Укажите фазы, их химический состав и количественное соотношение при 800С

Диаграмма состояния Ag-Cu (рисунок 5) относится к системам эвтектического типа с ограниченной растворимостью компонентов друг в друге. Для эвтектической температуры даны значения 778 - 779 С, а для эвтектической концентрации - значения 39,8; 39,9; 40,4; 40,9 % Cu. Температура эвтектического равновесия Ж = (Ag) + (Cu) составляет 781С. Эвтектика содержит 39,8 % (ат.) Cu. Максимальная растворимость Cu в Ag равнв 13,6% (ат.), а максимальная растворимость Ag в Cu - 4,9% (ат.).

Рисунок 3 - Диаграмма состояния Ag-Cu.

Рисунок 4

Фазовые превращения для сплава 30%Ag+70%Cu (по массе) при охлаждении:

1. ED

Жидкая фаза, количество фаз - 1, число степеней свободы ? 2

2. DC

Выделение твердого раствора серебра в меди из жидкой фазы, количество фаз - 2, число степеней свободы - 1.

3. CB

Эвтектическая реакция, выделение эвтектики из жидкой фазы с полным исчезновением жидкой фазы, количество фаз - 3, число степеней свободы - 0.

4. BA

Охлаждение двухфазной смеси серебра и меди: зерен, состоящих из твердого раствора серебра в меди (будет происходить выделение серебра из твердого раствора серебра в меди в связи с уменьшением растворимости серебра в меди при уменьшении температуры) и зерен, состоящих из эвтектики.

При температуре для данного сплава будет сосуществовать жидкая фаза и твердая фаза - твердый раствор серебра в меди. Состав фаз и их количество определим по правилу рычага.

Рисунок 5

Состав жидкой фазы отвечает точке K: 33% Cu (по массе), состав твердого раствора серебра в меди соответствует точке M: 92% Cu (по массе).

Количество жидкой фазы:

Количество твердой фазы (Тв. р-р Ag в Cu):

4. Охарактеризуйте обыкновенные серые чугуны, их состав, микроструктуру, свойства, применение и маркировку по ГОСТу

К чугунам относятся сплавы железа с углеродом, содержание которого превышает 2,14%, В этих сплавах обычно присутствует также кремний и некоторые количества марганца, серы и фосфора, а иногда и другие элементы, вводимые как легирующие добавки для придания чугуну определенных свойств. К числу таких легирующих элементов можно отнести никель, хром, магний и др.

В зависимости от структуры чугуны подразделяют на белые и серые. В белых чугунах весь углерод связан в химическое соединение карбид железа Fe3C - цементит. В серых чугунах значительная часть углерода находится в структурно-свободном состоянии в виде графита. Если серые чугуны хорошо поддаются механической обработке, то белые обладают очень высокой твердостью и режущим инструментом обрабатываться не могут. Поэтому белые чугуны для изготовления изделий применяют крайне редко, их используют главным образом в виде полупродукта для получения так называемых ковких чугунов. Получение белого или серого чугуна зависит от его состава и скорости охлаждения.

В зависимости от структуры чугуны классифицируют на высокопрочные (с шаровидным графитом) и ковкие. По степени легирования чугуны подразделяют на простые, низколегированные (до 2,5% легирующих элементов), среднелегированные (2,5- 10% легирующих элементов) и высоколегированные (свыше 10% легирующих элементов). Шире всего используют простые и низколегированные серые литейные чугуны.

Чугун получил широкое распространение как конструкционный материал в машиностроительной, металлургической и других отраслях промышленности в связи с рядом преимуществ перед Другими материалами, среди которых в первую очередь надлежит упомянуть следующие: невысокая стоимость, хорошие литейные свойства. Изделия, изготовленные из него, имеют достаточно высокую прочность и износостойкость при работе на трение и характеризуются меньшей, чем сталь чувствительностью к концентраторам напряжений. Наряду с перечисленными преимуществами изделия из серого литейного чугуна хорошо обрабатываются режущим инструментом. Последнее вместе с хорошими литейными свойствами позволяет оценить чугун как весьма технологичный материал.

Главный процесс, формирующий структуру чугуна, - процесс графитизации (выделение углерода в структурно-свободном виде), так как от него зависит не только количество, форма и распределение графита в структуре, но и вид металлической основы (матрицы) чугуна. В зависимости от степени графитизации матрица может быть перлитно-цементитной (П -f- Ц), перлитной (П), перлитно-ферритной (П Ч- Ф) и ферритной (Ф). Цементит перлита называют эвтектоидным, остальной цементит - структурно-свободным. Некоторые элементы, вводимые в чугун(в порядке силы действия: С, Si, Ni, Co, Cu), способствуют графитизации, другие - препятствуют(S, V, Cr, Sn, Mo, Mn). Наибольшее графитизирующее действие оказывают углерод и кремнии, наименьшее - кобальт и медь.

Наиболее сильно задерживают процесс графитизации (оказывают отбеливающее действие) сера, ванадий, олово. Поэтому в серых литейных чугунах всегда содержится значительное количество кремния.

Серый чугун -- наиболее широко применяемый вид чугуна (машиностроение, сантехника, строительные конструкции) -- имеет включения графита пластинчатой формы. Для деталей из серого чугуна характерны малая чувствительность к влиянию внешних концентраторов напряжений при циклических нагружениях и более высокий коэффициент поглощения колебаний при вибрациях деталей (в 2--4 раза выше, чем у стали). Важная конструкционная особенность серого чугуна -- более высокое, чем у стали, отношение предела текучести к пределу прочности на растяжение. Наличие графита улучшает условия смазки при трении, что повышает антифрикционные свойства чугуна. Свойства серого чугуна зависят от структуры металлической основы, формы, величины, количества и характера распределения включений графита. Перлитный серый чугун имеет высокие прочностные свойства и применяется для цилиндров, втулок и др. нагруженных деталей двигателей, станин и т.д. Для менее ответственных деталей используют серый чугун с ферритно-перлитной металлической основой.

Серый чугун благодаря хорошим литейным свойствам и достаточной механической прочности является одним из распространенных литейных сплавов. Из серого чугуна получают методом отливки всевозможные заготовки, применяемые в различных областях машиностроения и быта. Серый чугун представляет собой сплав железа с углеродом и кремнием. Кроме того, в нем присутствуют в небольших количествах марганец, фосфор, сера и другие элементы (Табл. 1).

Таблица 1 - Химический состав серого чугуна

Углерод

Кремний

Марганец

Фосфор

Сера

Хром

Никель

Железо

3,2-3,5

2,3-2,6

0,5-0,8

0,15-0,60

до 0,12

0,01-0,02

0,05-0,1

остальное

Углерод в расплавленном чугуне находится в растворенном состоянии в виде мельчайших частиц, равномерно распределенных по всей массе сплава. В процессе затвердевания жидкого чугуна происходит выделение углерода из раствора. В твердом чугуне углерод может находиться в виде химического соединения F3C (цементита) следующего состава: 6,67% С и 93,33 % Fe.

Цементит образуется при быстром охлаждении чугуна и представляет собой очень твердое и хрупкое соединение белозеркального цвета в изломе.

Когда чугун охлаждается медленно, углерод из раствора выделяется в виде пластинчатого (чешуйчатого) графита. Чугуны с пластинчатым графитом в изломе имеют серый цвет. Выделяясь в виде пластинок разных размеров и форм, малопрочный графит как бы ослабляет сплав, придавая серому чугуну хрупкость и снижая его механические свойства. Чем крупнее пластинки графита, тем чугун получается более хрупким и с более низкими механическими свойствами. Выделение углерода из раствора в виде свободного графита и в виде химического соединения цементита происходит не полностью, часть его до 0,04% остается в растворенном состоянии в металлической части чугуна, называемой ферритом.

Феррит представляет собой почти чистое железо и имеет низкую твердость и прочность, но высокую вязкость.

Перлит образуется из феррита и мелких зерен цементита с общим содержанием углерода 0,87%. Сочетая свойства феррита и цементита, перлит обладает высокими механическими свойствами.

Кремний, находящийся в чугуне, способствует выделению углерода (графитизации) и, снижая твердость, улучшает литейные свойства. Марганец препятствует графитизации, увеличивая стойкость цементита, несколько улучшает литейные и механические свойства чугуна.

Фосфор и сера в машиностроительном литье являются вредными примесями. Фосфор придает чугуну хладноломкость (хрупкость), несколько увеличивая его жидкотекучесть. Чугуны с высоким содержанием фосфора применяют для художественного литья, где не требуется высокая прочность. В машиностроительных сортах качественного чугуна содержание фосфора не должно превышать 0,20%. Сера препятствует выделению графита и придает чугуну красноломкость, т. е. способность образовывать трещины при повышенных температурах. Содержание серы в чугуне не должно превышать 0,12%.

За последнее время в литейном производстве находят все более широкое применение высокопрочные марки чугуна, полученные путем добавки (модифицирования) в жидкий чугун магния, церия, силикокальция и других присадок. Присадки способствуют образованию в чугуне графита шаровидной формы, что значительно повышает его механические свойства.

Все серые чугуны, применяемые в промышленности, маркируются в зависимости от механических свойств согласно ГОСТ 3443--57 и ГОСТ 1412--54.

Марка серого чугуна, например СЧ 18--36, расшифровывается следующим образом: буквы СЧ -- серый чугун, первая цифра указывает на предел прочности при растяжении для данного чугуна, а вторая -- предел прочности при изгибе. Высокопрочные чугуны, например ВЧ 60--2, маркируются по ГОСТ 7293-- 54 (буквы ВЧ обозначают высокопрочный чугун, первые две цифры указывают предел прочности при растяжении, а последняя -- величину относительного удлинения).

Чугун маркируется буквами СЧ и цифрами, первая из которых характеризует предел прочности чугуна данной марки при растяжении, вторая - при изгибе (кг/мм2). Наибольшее распространение получили чугуны марок: СЧ12-28; СЧ15-32; СЧ18-36; СЧ 21-40; СЧ 24-44; СЧ 28-48; СЧ 32-52; СЧ 38-60, причем первые пять марок имеют перлитно-ферритную металлическую основу, последние три - перлитную. Прочность серых чугунов всех марок при сжатии значительно превышает прочность при растяжении. Например, для чугуна марки СЧ 24-44, имеющего предел прочности при растяжении 24 кгс/мм2, предел прочности при сжатии составляет 85 кгс/мм2. Для увеличения прочности чугуна графитовым включением придают шарообразную форму путем введения магния в ковш перед разливкой. При этом чугун приобретает и некоторую пластичность. Высокопрочные чугуны маркируют буквами ВЧ и цифрами, первая из которых характеризует временное сопротивление чугуна при растяжении (кгс/мм2), вторая - относительное удлинение (%). Например, ВЧ 60-2 или ВЧ 40-10.

Диаграмма состояния сплавов системы железо -- графит характеризует образование структур чугуна, в котором весь углерод находится в свободном состоянии в виде графита, т. е. нет цементита и структура феррито-графитная (рис. 5, а).

Однако практика производства чугунных отливок показывает, что, кроме белых и феррито-графитных чугунов, в реальных условиях получаются чугуны, в структуре которых имеются и графит, и цементит, т. е. часть углерода находится в свободном, а часть -- в связанном состоянии.

Рисунок 6. Микроструктура чугунов.

а - серый ферритный, б - серый феррито-перлитный, в - серый перлитный, г - половинчатый со структурой перлит+цементит (вторичный) + графит, Ч500

В производственных условиях получают чугуны со следующими структурами:

1. Феррит + перлит + графит (серый феррито-перлитный чугун). Структура таких чугунов показана на рис. 5, б. Поскольку перлит состоит из феррита и цементита, следовательно, в этом чугуне есть и цементит, и графит.

2. Перлит + графит (серый перлитный чугун). Структура такого чугуна показана на рис. 5, в; в этом чугуне, поскольку в перлит входит цементит, имеется цементит и графит.

3. Перлит + цементит -f- графит (рис. 5, г) или перлит + ледебурит + графит. Ледебурит состоит из цементита и перлита. В этих чугунах также имеется и цементит, и графит (такие чугуны называют половинчатыми).

Кристаллизация указанных структур не может быть объяснена только одной из рассмотренных диаграмм состояний (Fe -- Fe3C или железо--графит). При образовании этих структур идет смешанная кристаллизация по обеим системам: графитной (Fe -- С) и цементитной (Fe -- Fe3C).

Это объясняется так: кристаллизация начинается по графитной системе и выделяется какое-то количество графита, но для того, чтобы все время выделялся графит, требуется весьма замедленное охлаждение, при этом, чем ниже температура, тем скорость охлаждения, необходимая для кристаллизации графита, должна быть меньше, так как с понижением температуры скорость всех диффузионных процессов, в том числе и кристаллизации графита, уменьшается.

Если при какой-то температуре скорость охлаждения больше скорости, обеспечивающей выделение графита, то выделение графита полностью или частично прекращается, сплав по отношению к условиям кристаллизации графита оказывается переохлажденным, что способствует выделению цементита. Это означает, что кристаллизация с графитной системы переходит на цементитную, т. е. процесс кристаллизации становится смешанным.

5. Расшифровать марку стали Ст. 5 сп. Укажите её назначение

Ст5 - сталь углеродистая обыкновенного качества. Механические свойства при Т=20 oС Ст5сп: В = 500 - 640 МПа; = 19%

Используется для деталей клепанных конструкций, болтов, гаек, ручек, тяг, ходовых валиков, втулок, цапф, рычагов, упоры, штырей, пальцев, стержней, звездочек, и других деталей, работающие в интервале от 0 до +425 град С; поковок сечением до 800 мм. Ниже приведен химический состав стали.

Таблица 2 - Химический состав стали Ст 5 пс, сп. по ДСТУ 2651

С

Mn

Si

S

P

0,28 - 0,37

0,50 - 0,80

пс = 0,05 - 0,15

сп = 0,15 - 0,30

? 0,050

? 0,040

При обозначении марок стали могут быть указаны: группы, по которым сталь поставляется («А» - по механическим свойствам, «Б» - по химическому составу, «B» - по механическим свойствам и дополнительным требованиям по химическому составу); методу производства («М» - мартеновский, «Б» - бессемеровский, «K» - кислородно-конвертерный); дополнительные индексы («сп» - спокойная сталь, «пс» - полуспокойная Сталь, «кп» - кипящая сталь). В группе «А» индекс «М» часто опускается, но имеется в виду сталь мартеновская, а при отсутствии индексов «сп», «пс», «кп» имеется в виду сталь спокойная. Буквы Ст обозначают сталь, цифры - условный номер марки и не указывают массовое содержание углерода.

Спокойная сталь является более качественной, но по стоимости она на 12...15 % дороже кипящей. Полуспокойная сталь занимает по свойствам промежуточное положение между спокойной и кипящей сталью, но в результате и незначительного расхода раскислителей стоимость ее меньше, чем спокойной.

Итак Ст5 сп: Ст - сталь, 5 - номер марки, сп - спокойная.

Механические характеристики стали зависят также от формы и толщины проката. Углеродистые стали обыкновенного качества применяют без термообработки.

По качеству стали, классифицируют на обыкновенного качества, качественные, высококачественные. Под качеством стали понимается совокупность свойств, определяемых металлургическим процессом ее производства. Однородность химического состава, строения и свойства стали, а также её технологичность во многом зависят от содержания газов (водорода, кислорода) и вредных примесей - серы и фосфора. Стали обыкновенного качества бывают только углеродистыми (до 0,5% С), качественные и высококачественные - углеродистыми и легированными.

По степени раскисления и характеру затвердевания стали классифицируют на спокойные, полуспокойные и кипящие.

Спокойные стали раскисляют марганцем, кремнием и алюминием. Они содержат мало кислорода и затвердевают спокойно без газовыделения. Кипящие стали раскисляют только марганцем. Перед разливкой в них содержится повышенное количество кислорода, который при затвердевании, частично взаимодействуя с углеродом, удаляется в виде СО. Выделение пузырей СО создает впечатление кипения стали, с чем и связано ее название. Полуспокойные стали по степени раскисления занимают промежуточное положение между спокойными и кипящими.

Стали обыкновенного качества выпускают в виде проката (прутки, балки, листы, уголки, трубы, швеллеры и т.п.) в нормализованном состоянии. В углеродистых сталях обыкновенного качества допускается содержание вредных примесей, а также газонасыщенность и загрязнённость неметаллическими включениями. И в зависимости от назначения и комплекса свойств подразделяют на группы: А, Б, В.

Углеродистые стали обыкновенного качества (всех трех групп) предназначены для изготовления различных металлоконструкций, а также слабонагруженных деталей машин и приборов. Эти стали, используются, когда работоспособность деталей и конструкций обеспечивается жесткостью. Углеродистые стали обыкновенного качества широко используются в строительстве при изготовлении железобетонных конструкций. Способностью к свариванию и к холодной обработке давлением отвечают стали групп Б и В номеров 1-4, поэтому из них изготавливают сварные фермы, различные рамы и строительные металлоконструкции, кроме того, крепежные изделия, часть из которых подвергается цементации.

Низкоуглеродистые стали отличаются малой прочностью и высокой пластичностью в холодном состоянии. Эти стали в основном производят в виде тонкого листа и используют после отжига или нормализации для холодной штамповки с глубокой вытяжкой. Они легко штампуются из-за малого содержания углерода и незначительного количества кремния, что и делает их очень мягкими. Их можно использовать в автомобилестроении для изготовления деталей сложной формы. Глубокая вытяжка из листа этих сталей применяется при изготовлении консервных банок, эмалированной посуды и других промышленных изделий.

Высокоуглеродистые стали 5 и 6, (в частности Ст5) а также с повышенным содержанием марганца в основном используют для изготовления пружин, рессор, высокопрочной проволоки и других изделий с высокой упругостью и износостойкостью. Их подвергают закалке и среднему отпуску на структуру троостит в сочетании удовлетворительной вязкостью и хорошим пределом выносливости.

Размещено на Allbest.ru

...

Подобные документы

  • Определение температуры закалки, охлаждающей среды и температуры отпуска деталей машин из стали. Превращения при термической обработке и микроструктура. Состав и группа стали по назначению. Свойства и применение в машиностроении органического стекла.

    контрольная работа [1,3 M], добавлен 28.08.2011

  • Классификация чугунов по составу и технологическим свойствам. Температуры эвтектического и эвтектоидного превращений. Процесс образования графита в сплавах железа с углеродом. Схема образования структур при графитизации. Специальные свойства чугунов.

    презентация [7,7 M], добавлен 14.10.2013

  • Маркировка, химический состав и механические свойства хромистых чугунов. Основные легирующие элементы, стойкость чугунов в коррозии. Литая структура чугунов с карбидами. Строение евтектик белых износостойких чугунов, области применения деталей из них.

    курсовая работа [435,0 K], добавлен 30.01.2014

  • Характеристика высокопрочного и ковкого чугуна, специфические свойства, особенности строения и применение. Признаки классификации, маркировка, строение, свойства и область применения легированных сталей, требования для разных отраслей использования.

    контрольная работа [110,2 K], добавлен 17.08.2009

  • Классификация, маркировка, состав, структура, свойства и применение алюминия, меди и их сплавов. Диаграммы состояния конструкционных материалов. Физико-механические свойства и применение пластических масс, сравнение металлических и полимерных материалов.

    учебное пособие [4,8 M], добавлен 13.11.2013

  • Эксплуатационные свойства металлов. Классификация металлических материалов. Черные и цветные металлы, их сплавы. Стали для режущих и измерительных инструментов. Стали и сплавы со специальными свойствами. Сплавы алюминия и меди. Сплавы с "эффектом памяти".

    курсовая работа [1,6 M], добавлен 19.03.2013

  • Анализ влияния микроструктуры графита на свойства чугунов. Графит и механические свойства отливок. Расчет зависимости параметра формы от минимального размера учитываемых включений. Гистограмма распределения параметра формы по количеству включений.

    курсовая работа [2,6 M], добавлен 08.02.2013

  • Механические свойства металлов, основные методы их определения. Технологические особенности азотирования стали. Примеры деталей машин и механизмов, подвергающихся азотированию. Физико-химические свойства автомобильных бензинов. Марки пластичных смазок.

    контрольная работа [1,1 M], добавлен 25.09.2013

  • Направления и этапы исследований в сфере строения и свойств металлов, их отражение в трудах отечественных и зарубежных ученых разных эпох. Типы кристаллических решеток металлов, принципы их формирования. Основные физические и химические свойства сплавов.

    презентация [1,3 M], добавлен 29.09.2013

  • Физические свойства металлов. Способность металлов отражать световое излучение с определенной длиной волны. Плотность металла и температура плавления. Значение теплопроводности металлов при выборе материала для деталей. Характеристика магнитных свойств.

    курс лекций [282,5 K], добавлен 06.12.2008

  • Классификация металлов: технические, редкие. Физико-химические свойства: магнитные, редкоземельные, благородные и др. Свойства конструкционных материалов. Строение и свойства сталей, сплавов. Классификация конструкционных сталей. Углеродистые стали.

    реферат [24,1 K], добавлен 19.11.2007

  • Физико-механические свойства термореактивных пластмасс. Свойства и применение пластмассы с порошковыми и волокнистыми наполнителями, стекловолокнита и асботекстолита. Назначение и химический состав стали 4XB2C, ее механические и технологические свойства.

    контрольная работа [696,9 K], добавлен 05.11.2011

  • Строение и свойства стали, исходные материалы. Производство стали в конвертерах, в мартеновских печах, в дуговых электропечах. Выплавка стали в индукционных печах. Внепечное рафинирование стали. Разливка стали. Специальные виды электрометаллургии стали.

    реферат [121,3 K], добавлен 22.05.2008

  • Состав и свойства пластмасс. Композиционные материалы с неметаллической матрицей. Резиновые материалы: общая характеристика, свойства и назначение. Клеящиеся материалы и герметики. Сущность и виды каучуков. Понятие, виды и физические свойства древесины.

    реферат [27,1 K], добавлен 18.05.2011

  • Понятие о металлах, особенности их атомного строения, физико-механические, химические и технологические свойства. Сплавы золота, серебра, титана, платины и палладия, нержавеющая сталь; их характеристики и применение в ортопедической стоматологии.

    презентация [433,4 K], добавлен 01.12.2013

  • История открытия нержавеющей стали. Описание легирующих элементов, придающих стали необходимые физико-механические свойства и коррозионную стойкость. Типы нержавеющей стали. Физические свойства, способы изготовления и применение различных марок стали.

    реферат [893,5 K], добавлен 23.05.2012

  • Фазы в железоуглеродистых сплавах: аустенит, феррит, цементит. Структурные составляющие в сталях. Микроструктура стали и схема ее зарисовки. Схема строения перлита. Микроструктура углеродистых сталей после отжига. Состав и структура эвтектоидной стали.

    реферат [960,5 K], добавлен 12.06.2012

  • Свойства и микроструктура циркониевого электрокорунда. Технологический процесс плавки электрокорунда, особенности структуры, физические и химические свойств, изменения в зависимости от скорости охлаждения расплава. Фазовые равновесия в электрокорунде.

    курсовая работа [1,8 M], добавлен 14.01.2011

  • Классификация и маркировка сталей, чугунов, цветных, твердых сплавов и композиционных материалов. Анализ конструкции и технология производства механической пружины. Особенности работы упругих элементов. Рессорно-пружинные и теплоустойчивые стали.

    курсовая работа [60,5 K], добавлен 13.01.2011

  • Технологические функции бурового раствора. Коллоидно-химические свойства буровых растворов. Основные свойства дисперсных систем. Химические реагенты обработки буровых растворов. Требования к тампонажному раствору. Утяжелители для тампонажных растворов.

    реферат [28,6 K], добавлен 15.11.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.