Теоретические основы и технологическое применение ультразвуковой размерной обработки

Понятие и определение частоты ультразвуковых колебаний, их общая характеристика, признаки и свойства. Основные источники данных колебаний и необходимые условия для их возникновения. Особенности применения ультразвука в современных пищевых производствах.

Рубрика Производство и технологии
Вид курсовая работа
Язык русский
Дата добавления 18.06.2013
Размер файла 1,3 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Введение

Двадцать первый век - век био- и нанотехнологий, всеобщей информатизации, электроники и ультразвука.

Ультразвук представляет собой волнообразно распространяющееся колебательное движение частиц среды и характеризуется рядом отличительных особенностей по сравнению с колебаниями слышимого диапазона. В ультразвуковом диапазоне частот сравнительно легко получить направленное излучение; ультразвуковые колебания хорошо поддаются фокусировке, в результате чего повышается интенсивность ультразвуковых колебаний в определенных зонах воздействия. При распространении в газах, жидкостях и твердых телах ультразвук порождает уникальные явления, многие из которых нашли практическое применение в различных областях науки и техники.

Прошло чуть более ста лет с начала исследований в области применения ультразвуковых колебаний. Первые лабораторные работы по исследованию ультразвука были проведены великим русским ученым-физиком П.Н. Лебедевым в конце XIX, а за прошедшие сто лет развитием и применением ультразвуковых технологий занимались многие видные ученые в различных странах.

За это время в активе человечества появились десятки высокоэффективных, ресурсосберегающих и экологически безопасных ультразвуковых технологий. К их числу относятся: технологии закалки, лужения и пайки металлов, предотвращения образования накипи на теплообменных поверхностях, сверления хрупких и особо твердых материалов, сушки термолабильных веществ, экстрагирования животного и растительного сырья, растворения, стерилизации жидких веществ, мелкодисперсного распыления лекарственных препаратов, тяжелых топлив, получения эмульсий и сверхтонких суспензий, диспергирования красителей, сварки металлов и полимеров, мойки, очистки деталей без применения горючих и токсичных растворителей.

В последние годы ультразвук начинает играть все большую роль в промышленности и научных исследованиях. Успешно проведены теоретические и экспериментальные исследования в области ультразвуковой кавитации и акустических течений, позволившие разработать новые технологические процессы, протекающие при воздействии ультразвука в жидкой фазе. В настоящее время формируется новое направление химии - ультразвуковая химия, позволяющая ускорить многие химико-технологические процессы и получить новые вещества. Научные исследования способствовали зарождению нового раздела акустики - молекулярной акустики, изучающей молекулярное взаимодействие звуковых волн с веществом. Возникли новые области применения ультразвука: интроскопия, голография, квантовая акустика, ультразвуковая фазомерия, акустоэлектроника.

Наряду с теоретическими и экспериментальными исследованиями в области ультразвука выполнено много практических работ. Разработаны универсальные и специальные ультразвуковые станки, установки, работающие под повышенным статическим давлением, ультразвуковые механизированные установки для очистки деталей, генераторы с повышенной частотой и новой системой охлаждения, преобразователи с равномерно распределенным полем. Созданы и внедрены в производство автоматические ультразвуковые установки, которые включаются в поточные линии, позволяющие значительно повысить производительность труда.

Развитие и применение ультразвуковых технологий открывает в настоящее время новые перспективы в создании новых веществ и материалов, в придании известным материалам и средам новых свойств (стерильность, наноразмерность и т.п.) и поэтому требует понимания явлений и процессов, происходящих под действием ультразвука, возможностей новых технологий и перспектив их применения.

Учебное пособие призвано предоставить читателю информацию о свойствах и возможностях ультразвуковых колебаний высокой интенсивности, особенностях применения ультразвуковых колебаний для интенсификации процессов, протекающих в жидких, твердых, газообразных средах, полимерных материалах, применительно к решению проблем химической, биотехнологической, пищевой промышленности и смежных отраслей промышленности.

В курсе лекций рассматриваются вопросы получения и распространения ультразвуковых колебаний в различных средах, изучаются теоретические основы процессов, ускоряемых под воздействием ультразвуковых колебаний, исследуются практические конструкции применяемых источников ультразвуковых колебаний и ультразвуковых аппаратов, анализируются их функциональные возможности для решения практических проблем различных производств.

Большинство разработок, исследований и представленных достижений основываются на работах, проведенных авторами в лаборатории акустических процессов и аппаратов Бийского технологического института (филиала) Алтайского Государственного технического университета имени И.И. Ползунова.

Курс лекций предназначен для студентов, магистрантов, аспирантов, инженеров и технологов, разрабатывающих и эксплуатирующих современное ультразвуковое оборудование, а также специалистов, занимающихся разработкой и реализацией новых технологий.

Лекции будут полезны для всех желающих приобрести новые знания об интереснейших физических явлениях, связанных с получением и применением ультразвуковых колебаний.

Авторы выражают благодарность директору Бийского технологического института, д.т.н., профессору Леонову Геннадию Валентиновичу и декану химико - технологического факультета Бийского технологического института, к.х.н., профессору Севодину Валерию Павловичу за понимание необходимости подготовки специалистов, обладающих современными знаниями по ультразвуковым технологиям и включение в учебные планы специальностей факультета курсов, связанных с применением ультразвука.

Авторы благодарят всех сотрудников лаборатории акустических процессов и аппаратов, принимавших участие в подготовке учебного курса, изготовлении лабораторных стендов и проведении исследований, результаты которых использованы в качестве примеров, подтверждающих эффективность различных ультразвуковых технологий.

1. Ультразвуковые колебания

1.1 Природа и свойства ультразвуковых колебаний

Если в сплошной среде - газах, жидкостях или твердых телах частицы среды окажутся выведенными из положения равновесия, то упругие силы, действующие на них со стороны других частиц, будут возвращать их в положение равновесия. При этом частицы будет совершать колебательное движение. Распространение упругих колебаний в сплошной среде представляет собой волнообразный процесс.

Колебания с частотой от единиц Герц (Гц) до 20 Герц называются инфразвуковыми, при частоте от 20 Гц до 16…20 кГц колебания создают слышимые звуки. Ультразвуковые колебания соответствуют частотам от 16…20 кГц до 108 Гц, а колебания с частотой более 108 Гц получили название гиперзвуков. На рисунке 1.1 показана логарифмическая шкала частот, выполненная на основе выражения lg2f = 1, 2, 3…, n, где 1, 2, 3…, n - номера октав.

Рисунок 1.1 - Диапазоны упругих колебаний в материальных средах

Физическая природа упругих колебаний одинакова во всем диапазоне частот. Для понимания природы упругих колебаний рассмотрим их свойства.

Форма волны - это форма волнового фронта, т.е. совокупности точек, обладающих одинаковой фазой. Колебания плоскости создают плоскую звуковую волну, если излучателем служит цилиндр, периодически сжимающийся и расширяющийся по направлению своего радиуса, то возникает цилиндрическая волна. Точечный излучатель, или пульсирующий шарик, размеры которого малы по сравнению с длиной излучаемой волны, воздает сферическую волну.

Звуковые волны подразделяются по типу волн: они могут быть продольными, поперечными, изгибными, крутильными - в зависимости от условий возбуждения и распространения. В жидкостях и газах распространяются только продольные волны, в твердых телах могут возникать также поперечные и другие из перечисленных типов волн. В продольной волне направление колебаний частиц совпадает с направлением распространения волны (Рисунок 1.2, а), поперечная волна распространяется перпендикулярно направлению колебаний частиц (Рисунок 1.2, б)

a)

б)

а) движение частиц среды при распространении продольной волны; б) движение частиц среды при распространении поперечной волны.

Рисунок 1.2 - Движение частиц при распространении волны

Любая волна, как колебание, распространяющееся во времени и в пространстве, может быть охарактеризована частотой, длиной волны и амплитудой (Рисунок 3). При этом длина волны л связана с частотой f через скорость распространения волны в данном материале c: л = c/f.

ультразвуковой частота колебание пищевой

Рисунок 1.3 - Характеристики колебательного процесса

Частота - это количество колебаний, совершаемых системой в единицу времени; длина волны - это расстояние, которое проходит волна за время равное периоду колебаний T (T = 1/f), т.е. за время, затраченное на одно колебание; амплитуда колебаний - это максимальное отклонение колебательной системы от положения равновесия.

По своей физической природе звуковые и ультразвуковые колебания ничем друг от друга не отличаются. Это упругие колебания в материальных средах. Рассмотрим, какими параметрами можно охарактеризовать волну:

Длина волны л - это расстояние, которое проходит волна, пока частица среды совершает одно колебательное движение. Расстояние между соседними максимумами или минимумами возмущения считают длиной волны.

Амплитуда колебаний А - представляет собой максимальное смещение частицы из положения равновесия во время ее колебательного движения, вызванного возбуждением частиц среды.

Частота колебаний f - это число колебаний, совершаемых частицей среды за одну секунду. Единицей частоты является Герц (Гц). Для звуковых волн, генерируемых средой, характерен непрерывный ряд или диапазон частот. Самая низкая частота волны называется основной или собственной, а остальные являются гармониками или обертонами. Частота второй гармоники в два раза превышает собственную частоту системы. Аналогично частота третьей гармоники превышает ее в три раза и т.д.

Период колебаний Т - это время, необходимое частице для совершения одного колебательного движения. По определению время, за которое волна производит f колебаний, равно 1 секунде.

Колебание - это возвратно-поступательное движение из одного крайнего положения в другое и обратно через положение равновесия.

Фаза колебаний ц - это отношение смещения колеблющейся частицы в данный момент времени к его амплитудному значению. Если точки колебательного процесса находятся в одной фазе (их разность фаз составляет 2р), то расстояние между этими двумя точками равно одной длине волны л.

Скорость распространения колебаний С - это расстояние, пройденное волной за одну секунду.

Рассмотрим особенности ультразвуковых колебаний:

Обычно границей начала ультразвукового диапазона частот принято считать 16…20 кГц. Следует отметить, что столь большой диапазон выбран по той причине, что для каждого человека граница ультразвука (неслышимости звука) своя. Для некоторых это 10 кГц, для других - 20 кГц, а встречаются уникумы способные воспринимать и 25 кГц.

Еще более сложная проблема с определением верхней границы ультразвукового диапазона. Возможности человеческого уха здесь не играют роли, и приходится отталкиваться от физической природы упругих колебаний, которые могут распространяться в материальной среде при условии, длина волны больше межатомных расстояний.

Длина их волны пропорциональна 1/f. л= с /f. На основании исследований установлено существование УЗ колебаний с частотой большей, чем 100 мГц. УЗ более высокой частоты затухает настолько, что колебания поглощаются непосредственно у поверхности излучателя.

На практике используются УЗ колебания с частотой до 25 мГц [2,3]. Колебания таких высоких частот могут распространяться только в кристаллах.

Рассмотрим далее отличительные особенности ультразвуковых колебаний.

1.2 Отличительные особенности ультразвуковых колебаний

1. Ультразвуковые колебания, имея большую частоту f, в сравнении со звуковыми колебаниями при одинаковой скорости распространения, характеризуются значительно более короткими длинами волн. Ультразвуковые колебания в различных средах с длиной волны, не превышающей 1…10 мм, по своим свойствам аналогичны световым лучам. Это позволяет не только фокусировать колебания, но и формировать направленное излучение, то есть направлять энергию в нужном направлении и сосредотачивать ее в нужном объеме.

2. УЗ колебания может распространяться в любых материальных средах (в прозрачных и непрозрачных средах, проводниках и диэлектриках и т.п.), что позволяет использовать их для исследования и воздействия на полимеры, металлы, жидкости, газы и др.

3. Мощность ультразвуковых колебаний, распространяемых в средах, пропорциональна квадрату частоты, и поэтому, в отличие от мощности звуковых колебаний - очень велика. Мощность ультразвуковых колебаний может достигать сотен киловатт, а интенсивность (энергия, распространяемая через единицу площади в единицу времени) - 1…1000 Вт/см2. При таких интенсивностях ультразвукового воздействия внутри материальных тел может распространяться очень большая энергия механических колебаний. В ходе распространения волны (в колебательном процессе) возникают перепады звукового давления, превышающие десятки мПа.

Кроме того, не следует забывать, что это давление меняет свой знак, переходя в разряжение с частотой большей 20 тысяч раз в секунду.

Возможность ввода огромных энергий позволяет повышать эффективность множества различных технологических процессов, создавать новые материалы, получать новые вещества, решать многие вопросы технологического контроля и измерений. Эти свойства положены в основу применения УЗ.

1.3 Использование ультразвуковых колебаний

В настоящее время активно развивается новая область знаний - биоакустика, изучающая формы, способы и системы звукового общения. Оказывается, многие живые существа в процессе эволюции научились использовать ультразвуковые колебания для ориентации в пространстве.

Ученые выявили множество различных примеров использования ультразвука животными. Чаще всего это сигналы предупреждения об опасности, выражения угрозы, удовлетворения, победы и т.д.

Развитие биоакустики подогревается не праздным любопытством, а требованиями практики. Знания, добываемые биоакустиками, используются при проектировании новых приборов.

Примеры использования полученных знаний: охрана от птиц аэродромов, защита полей от вредителей, управление поведением стадных животных.

Наиболее широко ультразвук используется обитателями морей. Установлено, что в воде УЗ распространяется со скоростью 5300 км/ч. Ничто не может двигаться в воде быстрее, чем УЗ колебания. Если в воздухе источник мощностью в 100 кВт слышен на расстоянии 15 км, то в воде источник мощностью 1 кВт распространяется до 100 км. Вода прозрачна для ультразвука, как воздух для света. Колебания, излучаемые рыбами, креветками и другими морскими животными позволяют обнаруживать их рыбакам. Эти же излучения позволяют определять местонахождение косяка рыб и его размеры.

Многие представители животного мира имеют возможность принимать и воспроизводить УЗ. Так, например, морская свинка, сова, серая мышь, барсук, водяные жуки, некоторые ночные бабочки воспринимают звуки с частотой до 100 кГц. Собаки и лошади слышат УЗ. Летучие мыши, дельфины, киты не могут существовать без использования ультразвука - он заменяет им зрение.

Принцип ориентации летучих мышей и дельфинов - эхолокация. Летучая мышь способна обнаруживать в полете препятствия в виде проволочек диаметром 0,08 мм (в 24 раза меньше по размерам, чем допускают теоретические расчеты). Дельфин на расстоянии 20 метров безошибочно подплывает к брошенной в воду дробинке.

Механизмы эхолокации, созданные природой очень сложны и до конца не исследованы. Сегодняшний уровень техники позволяет смоделировать эхо-локатор дельфина. Но если у дельфина он весит 200 г., то созданный человеком аппарат весит более 100 кг.

1.4 Получение ультразвука человеком. Пьезоэффект

Практическое использование человеком ультразвука начато после открытия в 1880 году братьями Жаком и Пьером Кюри пьезоэлектрического эффекта («Пьезо» - по гречески «дарить»). Впервые этот эффект обнаружен у горного хрусталя (разновидности кварца).

Сущность пьезоэффекта заключается в следующем: если деформировать пластину кварца, то на ее гранях появляются противоположные по знаку электрические заряды, это явление называется прямым пьезоэффектом.

Механизм прямого пьезоэффекта объясняется возникновением и изменением дипольного момента элементарной ячейки кристаллической решетки в результате смещения зарядов под действием механического напряжения. Таким образом, на гранях пьезоэлектрического материала возникают электрические заряды.

Но оказалось, что существует и обратный пьезоэффект. Если прикладывать к пластине переменное электрическое напряжение, то кристалл начинает сжиматься и расширяться (изменять геометрические размеры), с частотой прикладываемого напряжения. Механизм обратного пьезоэффекта заключается в следующем. При действии электрического поля на элементарные заряды в ячейке, происходит их перемещение и как следствие изменение средних расстояний между ними, то есть деформация всего кристалла.

Изготовленная из пьезоэлектрического материала деталь простой геометрической формы (стержень, пластина, диск, цилиндр и т.п.) с нанесенными на ее определенные поверхности электродами называется пьезоэлементом.

Пьезоэлементы входят в состав пьезоэлектрического преобразователя. Преобразователь обеспечивает преобразование энергии электрических колебаний в энергию механических колебаний и вводит ее в обрабатывающиеся среды.

Естественный кварц дорог и поэтому были созданы искусственные пьезоматериалы на основе титаната бария и цирконата титаната свинца. У этих материалов пьезоэффект в 100 раз больше, чем у кварца.

Аналогичные материалы были обнаружены среди магнитных материалов и получили название магнитострикционных материалов.

Оказалось, что помещение магнитострикционного стержня в направленное вдоль него магнитное поле приводит к изменению геометрических размеров стержня.

На основе магнитострикционных и пьезокерамических материалов разрабатываются ультразвуковые преобразователи преобразователи - устройства, обеспечивающие преобразование энергии электрических колебаний в механические упругие колебания.

Для чего же можно использовать УЗ колебания? Одно из основных применений ультразвука связано с возможностью переноса в материальных средах огромных энергий, направленных на развитие и совершенствование промышленных технологий.

Перспективным направлением интенсификации технологических процессов является использование энергии механических колебаний ультразвуковой частоты высокой интенсивности.

Эффективность УЗ воздействий на различные технологические процессы подтверждена многочисленными исследованиями и опытом, позволившими установить следующее:

1. Применение ультразвуковых колебаний высокой интенсивности обеспечивает 10….1000 кратное ускорение процессов, протекающие между двумя или несколькими неоднородными средами (растворение, очистку, обезжиривание, дегазацию, крашение, измельчение, пропитку, эмульгирование, экстрагирование, кристаллизацию, полимеризацию, предотвращение образования накипи, гомогенизацию, эрозию, химические и электрохимические реакции и многое другое). При этом увеличивается выход полезных продуктов (например, экстрактов) и им придавались дополнительные свойства (например, биологическая активность и стерильность), а также удается получить вещества с новыми свойствами (например, тонкодисперсные эмульсии и суспензии).

2. Использование ультразвуковых колебаний позволяет осуществлять технологические процессы, не реализуемые, или сложно реализуемые, традиционными методами - обеспечивать размерную обработку (сверление, снятие фасок, выполнение пазов) хрупких и твердых материалов, таких как керамики, полупроводниковые материалы, стекло, самоцветы, ферриты, сверхтвердые сплавы и стали.

3. Ультразвуковые колебания позволяют интенсифицировать многие процессы, происходящие на границе контакта материалов (сварку полимерных материалов, склеивание, пропитку различных материалов), ускоряя технологические процессы и повышая качество получаемых изделий.

Несомненные и уникальные достоинства УЗ технологий должны были обеспечить их широчайшее использование при решении сложных проблем современных производств, ориентированных на выпуск конкурентоспособной продукции.

К сожалению, отмеченные выше достижения ультразвуковых технологий до настоящего времени мало известны широкому сообществу промышленников и достаточно редко используются в практической производственной и бытовой деятельности.

1.5 Области практического применения ультразвука

Практическое применение УЗ развивается в двух направлениях:

1. Применение волн малой интенсивности (низкоэнергетические колебания, не приводящие к необратимым изменениям в материалах и телах, через которые они распространяются) для контроля, измерений, исследований внутренней структуры материалов и изделий (уровнемеры, расходометры, анализаторы состава газов, жидкости и твердых веществ, дефектоскопы).

2. Применение высокоэнергетических колебаний - волн высокой интенсивности для активного воздействия на вещества и изменения их структуры и свойств.

1.6 Практическое применение низкоэнергетических ультразвуковых колебаний

Область применение УЗ колебаний низкой интенсивности (условно до 1 Вт/см2) очень обширна и мы поочередно рассмотрим несколько основных применений УЗ колебаний малой интенсивности.

1. УЗ приборы для контроля химических характеристик различных материалов и сред. Все они основаны на изменении скорости УЗ колебаний в среде и позволяют:

- определять концентрацию бинарных смесей;

- плотности растворов;

- степень полимеризации полимеров;

- наличие в растворах примесей, газовых пузырьков;

- определять скорости протекания химических реакций;

- жирность молока, сливок, сметаны;

- дисперсность в гетерогенных системах и др.

Разрешающая способность современных УЗ приборов 0,05%, точность измерений скорости распространения на образцах длиной 1 м составляет 0,5 -1 м/с (скорость в металле более 5000 м/с). Практически все измерения проводятся методом сравнения с эталоном.

2. Приборы для контроля физико - химических характеристик, основанные на измерении затухания ультразвука. Такие приборы позволяют осуществлять измерение вязкости, измерение плотности, состав, содержание примесей, газов и т.п. Используемые методики также основаны на методах сравнения с эталоном.

3. УЗ расходомеры жидкостей в трубопроводах. Их действие также основано на измерении скорости распространения УЗ колебаний вдоль потока жидкости и против потока. Сравнение двух скоростей позволяет определить скорость потока, а при известном сечении трубопровода расход. Пример одного из расходомеров (№15183 в Госреестре Средств Измерений) представлен на рисунке 1.4.

Рисунок 1.4 - Стационарный ультразвуковой расходомер «АКРОН»

Такой расходомер обеспечивает измерение объемного расхода и суммарного объема (количества) жидкостей, протекающих в напорных трубопроводах систем водоснабжения, канализации и нефтепродуктоснабжения без врезки в действующий трубопровод. Принцип действия расходомера заключается в измерении разности времени прохождения ультразвуковой волны по потоку и против потока контролируемой жидкости, пересчете ее в мгновенное значение расхода с последующим интегрированием.

Погрешность прибора составляет 2% от верхнего предела измерения. Верхний и нижний пределы измерения устанавливает оператор. Расходомер включает в себя блок датчиков (состоит из двух ультразвуковых датчиков и устройства для их крепления на трубе) и электронный блок, соединенные радиочастотным кабелем длиной до 50 м (стандартно - 10 м.). Датчики устанавливаются на прямолинейном участке трубопровода на наружной поверхности, очищенной от грязи, краски и ржавчины. Условие правильной установки датчиков - наличие прямого участка трубы не менее 10 диаметров трубы - перед, и 5 диаметров - после датчиков.

4. Сигнализаторы уровней

Принцип действия основан на локации уровня жидких или сыпучих материалов ультразвуковыми импульсами, проходящими через газовую среду, и на явлении отражения этих импульсов от границы раздела «газ - контролируемая среда». Мерой уровня при этом является время распространения звуковых колебаний от излучателя до контролируемой границы раздела сред и обратно до приемника. Результат измерения выводится на персональный компьютер, где все измерения запоминаются, с последующей возможностью их просмотра и анализа, а также подключения к системе автоматизированного сбора и обработки данных. Уровнемер в составе системы может включать конечные автоматы, насосы и др. устройства при уровне выше максимального и ниже минимального значения, что позволяет автоматизировать технологический процесс. Дополнительно формируется токовый выход (0,5 мА, 0-20 мА) для самопишущих приборов.

Сигнализатор уровня позволяет контролировать температуру среды в резервуарах. Основным форматом выводимых данных является расстояние от вершины резервуара до поверхности, содержащегося в нем вещества. По желанию заказчика, при предоставлении необходимой информации возможна доработка устройства для вывода высоты, массы либо объема вещества в резервуаре.

5. УЗ анализаторы состава газов основаны на использовании зависимости скорости УЗ в смеси газов от скоростей в каждом из составляющих эту смесь газов.

6. Охранные УЗ устройства основаны на измерении различных параметров УЗ полей (амплитуды колебаний при перекрытии пространства между излучателем и приемником, изменении частоты при отражении от движущегося объекта и т.п.).

7. Измерители температуры газов и пожарные сигнализаторы, основанные на изменении скорости распространения при изменении температуры среды или появления дыма.

8. Приборы ультразвукового неразрушающего контроля. Неразрушающий контроль является одним из основных технологических приёмов обеспечения качества материалов и изделий. Не одно изделие не должно эксплуатироваться без проверки. Можно проверку осуществить путем испытаний, но так можно испытать 1 - 10 изделий, но нельзя проверить 100% всех изделий, т.к. проверить - это значит испортить всё изделия. Поэтому, проверять необходимо, не разрушая.

Одни из наиболее дешевых, простых и чувствительных является УЗ метод неразрушающего контроля. Главными достоинствами по сравнению с другими методами неразрушающих испытаний являются:

- обнаружение дефектов, находящихся глубоко внутри материала, что стало возможным благодаря улучшенной проникающей способности. Ультразвуковое обследование проводится до глубины нескольких метров. Контролю подвергаются различные изделия, например: длинные стальные стержни, роторные штамповки и т.д.;

- высокая чувствительность при обнаружении чрезвычайно малых дефектов длиной несколько миллиметров;

- точное определение местоположения внутренних дефектов, оценка их размера, характеристика направления, формы и природы;

- достаточность доступа только к одной из сторон изделия;

- контроль процесса электронными средствами, что обеспечивает почти мгновенное выявление дефектов;

- объемное сканирование, что позволяет обследовать объем материала;

- отсутствие требований по мерам предосторожности, связанным со здоровьем;

- портативность оборудования.

1.7 Практическое применение высокоинтенсивных ультразвуковых колебаний

На сегодняшний день основные процессы, реализуемые и интенсифицируемые при помощи высокоэнергетических ультразвуковых колебаний, принято разделять на три основные подгруппы, в зависимости от вида среды, в которой они реализуются (рисунок 1.5).

Рисунок 1.5 - Применение высокоэнергетических ультразвуковых колебаний

В зависимости от вида среды процессы условно делятся на процессы в жидких, твердых и термопластичных материалах и газообразных (воздушных) средах. В последующих разделах будут более подробно рассмотрены процессы и аппараты для интенсификации процессов в жидких, твердых и термопластичных материалах, газообразных средах.

Далее рассмотрим примеры основных технологий, реализуемых с использованием высокоэнергетических ультразвуковых колебаний.

1. Размерная обработка.

Ультразвуковые колебания применяются для обработки хрупких и особотвердых материалов и металлов.

Основные технологические процессы, интенсифицируемые ультразвуковыми колебаниями это сверление, зенкование, нарезание резьб, волочение проволоки, полировка, шлифовка, сверление отверстий сложной формы. Интенсификация этих технологических процессов происходит благодаря наложению на инструмент ультразвуковых колебаний.

2. УЗ очистка.

Сегодня существует множество способов очистки поверхностей от различных загрязнений. УЗ очистка более быстрая, обеспечивает высокое качество и отмывает труднодоступные участки. При этом обеспечивается замена высокотоксичных, огнеопасных и дорогих растворителей обычной водой.

С помощью высокочастотных ультразвуковых колебаний производится очистка автомобильных карбюраторов и инжекторов за несколько минут.

Причина ускорения очистки в кавитации, особым явлением при котором в жидкости образуются мельчайшие газовые пузырьки. Эти пузырьки лопаются (взрываются) и создают мощные гидропотоки, которые вымывают всю грязь. На этом принципе существуют сегодня стиральные машины и малые установки мойки. Особенности реализации кавитационного процесса и его потенциальные возможности будут рассмотрены отдельно. УЗ очищает металлы от полировочных паст, прокат от окалины, драгоценные камни от полировочных мест. Очистка печатных форм, стирка тканей, мойка ампул. Очистка трубопроводов сложной формы. Кроме очистки, ультразвук способен производить удаление мелких заусенец, полировку.

Ультразвуковое воздействие в жидких средах уничтожает микроорганизмы и поэтому широко используется в медицине и микробиологии.

Возможна и другая реализация УЗ очистки.

- очистка дыма от твердых частиц в воздухе. Для этого также используется ультразвуковое воздействие на туманы и дым. Частицы в УЗ поле начинают активно двигаться, соударяются и слипаются, осаждаются на стенки. Это явление называется ультразвуковой коагуляцией и используется для борьбы с туманом на аэродромах, на дорогах и в морских портах.

3. УЗ сварка.

В настоящее время, с помощью ультразвуковых колебаний высокой интенсивности, производится сварка полимерных термопластичных материалов. Сварка полиэтиленовых тюбиков, коробок, банок обеспечивает отличную герметичность. В отличие от других способов, с помощью ультразвука можно варить загрязненные пластмассы, трубки с жидкостью и т.д. При этом содержимое стерилизуется.

С помощью ультразвуковой сварки производится сварка тончайшей фольги или проволоки к металлической детали. Причем УЗ сварка - является холодной сваркой, поскольку шов формируется при температуре ниже температуры плавления. Таким образом, соединяются сваркой алюминий, тантал, цирконий, ниобий, молибден и т.п.

В настоящее время ультразвуковая сварка нашла наибольшее применение для высокоскоростных процессов упаковки и производства полимерных упаковочных материалов.

4. Пайка и лужение

С помощью высокочастотных ультразвуковых колебаний производится пайка алюминия. С помощью УЗ можно лудить, а затем паять керамику, стекло, что ранее было невозможно. Ферриты, припайка полупроводниковых кристаллов к позолоченным корпусам реализуются сегодня с применением ультразвуковой технологии.

5. Ультразвук в современной химии

В настоящее время, как следует из литературных источников сформировано новое направление в химии - УЗ химия. Изучая химические превращения, происходящие под действием УЗ, ученые установили, что УЗ не только ускоряет окисление, но в некоторых случаях обеспечивают восстанавливающее действие. Таким образом, восстанавливается железо из окислов и солей.

Получены хорошие положительные результаты по интенсификации УЗ следующих химико-технологических процессов:

- электроосаждение, полимеризация, деполимеризация, окисление, восстановление, диспергирование, эмульгирование, коагуляция аэрозолей, гомогенизация, пропитка, растворение, распыление, сушка, горение, дубление и др.

Электроосаждение - осаждающийся металл приобретает мелкокристаллическую структуру, уменьшается пористость. Таким образом, осуществляемо меднение, лужение, серебрение. Процесс идет быстрее и качество покрытия выше, чем в обычных технологиях.

Получение эмульсий: вода и жир, вода и эфирные масла, вода и ртуть. Барьер несмешиваемости преодолевается благодаря УЗ.

Полимеризация (соединение молекул в одну) - степень полимеризации регулируется частотой УЗ.

Диспергирование - получение сверхтонких пигментов для получения красителей.

Сушка - без нагревания биологически активные вещества. В пищевой, фармакологической промышленности.

Распыление жидкостей и расплавов. Интенсификация процессов в распылительных сушках. Получение металлического порошка из расплавов. Эти распылительные устройства исключают вращающие и трущиеся детали.

УЗ усиливает эффективность горения в 20 раз жидких и твердых топлив.

Пропитка. В сотни раз быстрее проходит жидкость через капилляры пропитываемого материала. Используется при производстве рубероида, шпал, цементных плит, текстолита, гетинакса, пропитке древесины модифицированными смолами

6. УЗ в металлургии.

- Известно, что металлы при плавлении поглощают газы алюминия и его сплавы. 80% всех газов в расплавленном металле приходится на долю Н2. Это привод к ухудшению качества металла. Газы удается удалять с помощью УЗ, что позволило в нашей стране создать специальный технологический цикл и широко использовать его при производстве металлов.

- УЗ способствует закалке металлов

- В порошковой металлургии УЗ способствует слипанию частичек изготавливаемого материала. При этом отпадает необходимость в уплотнении большим давлением.

7. УЗ в горном деле.

Применение ультразвука позволяет реализовать следующие технологии:

- Удаление парафина со стенок нефтяных скважин;

- Исключение взрывов метана в шахтах за счет его распыления;

- УЗ обогащение руд (флотационный метод с применением УЗ).

8. УЗ в сельском хозяйстве.

Ультразвуковые колебания благаприятно влияют на семена и зерна перед их посадкой. Так, обработка семян томатов перед посадкой обеспечивает увеличение численности плодов, сокращает время созревания и увеличение количества витаминов.

Обработка УЗ семян дыни и кукурузы приводит к повышению урожайности на 40%.

При обработке УЗ семян можно обеспечить дезинфекцию и ввести необходи-мые микроэлементы из жидкости

9. Пищевая промышленность.

На практике уже сегодня реализуются следующие технологии:

- Обработка молока для гомогенизации стерилизации;

- Обработка для увеличения сроков хранения и качества молока в заморо-женном виде

- Получение высококачественного порошкового молока;

- Получение эмульсий для хлебопечения;

- Обработка дрожжей на 15% повышает их бродильную силу;

- Получение ароматических веществ, пюре, извлечение жира из печени;

- Выделение винного камня;

- Экстрагирование растительного и животного сырья;

- Производство духов (6…8 часов вместо года).

10. УЗ в биологии.

- Большие дозы ультразвука убивают микроорганизмы (стафилококки, стрептококки, вирусы);

- Малые интенсивности ультразвукового воздействия способствуют росту колоний микроорганизмов;

11. Влияние на человека.

Ультразвуковое воздействие с интенсивностью до 0,1…0,4 Вт/см носит лечебное воздействие. В Америке лечебным считается воздействие с интенсивностью до 0,8 Вт/см

12. В медицине.

Ультразвуковые скальпели, устройства для внешней и внутренней липосакции, лапороскопические инструменты, ингаляторы, массажеры находят самое широчайшее применение и позволяют лечить различные болезни.

Изложенный далее курс лекций предназначен для предварительного ознакомления студентов, аспирантов, инженеров и технологов различных производств с основами ультразвуковых технологий и призван дать основополагающие знания по теории формирования ультразвуковых колебаний и практике применения УЗ колебаний высокой интенсивности.

2. Источники ультразвуковых колебаний

Для реализации технологических процессов под действием ультразвуковых колебаний в различных средах необходимы источники ультразвукового излучения, способные работать в различных средах и создавать колебания с требуемыми параметрами по частоте и интенсивности. К настоящему времени создано большое количество различных источников ультразвуковых колебаний, так называемых УЗ преобразователей.

УЗ преобразователь - это устройство, обеспечивающее преобразование подводимой энергии какого либо вида в энергию УЗ колебаний. Поскольку конечным результатом преобразования является энергия механических колебаний УЗ частоты, а подводимая энергия имеет различную природу, то и классификацию преобразователей произведем с точки зрения природы подводимой энергии, преобразование которой обеспечивает формирование УЗК.

2.1 Классификация ультразвуковых преобразователей

1. Аэродинамические преобразователи обеспечивают преобразование энергии потока газа в ультразвуковые колебания газовой среды.

По характеру преобразования энергии потока газа аэродинамические преобразователи делятся на:

а) статические сирены или газоструйные излучатели; б) динамические сирены (Рисунок 2.1).

а - Статическая сирена; б - Динамическая сирена

Рисунок 2.1 - Аэродинамические преобразователи

Аналогичного по эффективности воздействия физического процесса нет в твердых телах и газовых средах.

3. Ультразвуковая кавитация порождает большое количество эффектов второго порядка, которые, в свою очередь, также обеспечивают интенсификацию протекающих технологических процессов.

Эти обстоятельства привели к тому, что ультразвуковое воздействие получило наиболее широкое распространение при реализации технологических процессов, связанных с жидким состоянием реагентов. В следующих подразделах рассмотрены примеры и особенности реализации процессов, ускоряемых под воздействием ультразвуковых колебаний в жидких средах.

3. Применение ультразвука в фармации

В фармации ультразвук находит применение в экстракции, при растворении, получении эмульсий, суспензий, изготовлении микрогранул, стерилизации и фоно-форезе, производстве ампул, т.е. там, где ультразвук непосредственно контактирует через жидкую фазу с молекулой вещества. Учитывая это, ряд авторов определяли устойчивость лекарственных средств к воздействию частотных колебаний. Химическая стабильность молекул определялась путем сравнения ИК-, УФ-спектров озвученных и исходных образцов.

Следует отметить, что ультразвук - не единственный источник образования механохимических реакций. Обычные стадии измельчения, перемешивания, растворения и т.д., широко применяемые в фармации, могут привести к первичным химическим изменениям. Поэтому, рассматривая ультразвук как фактор воздействия на среду, нельзя приписывать ему все изменения, происходящие с молекулой вещества.

Любой технологический процесс находит широкое применение в фармации, если он не нарушает химической устойчивости лекарственных веществ. С этой точки зрения ультразвуковые волны весьма специфичны. Одни препараты под их действием теряют свои свойства, другие остаются нейтральными, третьи, наоборот, становятся терапевтически более активными. Как уже отмечалось, ультразвук, проходя через любую среду, создает в ней при обычных условиях знакопеременное давление. В результате молекулы растворителя, лекарственные вещества, различные частицы и включения, находящиеся в жидкости, должны с частотой волны повторить ее движение. Большинство лекарственных веществ - это конфигурационно сложные микрообъекты, состоящие из волнообразных цепочек, колец, радикалов.

Во время прохождения ультразвука через такую молекулу ее легкая часть будет колебаться в резонансе с частотой волны, а тяжелая часть станет отставать. В результате возникнут зоны напряженности, значительные силы трения, превосходящие силы химической связи, произойдет разрыв цельной молекулы вещества.

Таким образом, в растворе могут наблюдаться явления химической деполимеризации, образование новых макрорадикалов, гомогенизация обрывков и т.д. Ультразвук ускоряет аутооксидацию ряда полифенолов, особенно процессы гидролиза, расщепления, окисления. Скорость гидролиза гликозидов, флавоноидов под влиянием ультразвука больших интенсивностей зависит от места присоединения сахарного остатка и природы флавоноида. При ультразвуковом экстрагировании полифенолов кислыми или щелочными растворителями следует учитывать, что при 50 - 60°С полный гидролиз 7-О-глюкозидов и 7-О-глюкуронидов завершается через 15-20 мин, О-глюкозидов и О-рутинозидов - через 2-2,5 мин, а О-рамнозидов, О-галактозидов - через 0,5-1,5 мин, т.е. практически в 10-15 раз быстрее, чем при обычном гидролизе.

Витамины по-разному реагируют на ультразвук. Так, аскорбиновая кислота в виде водных растворов, в сыворотке крови, молоке, пищевых продуктах окисляется. Витамины группы В (тиамин, пиридоксин, пантотеновая и никотиновая кисло-ты, биотин, инозит) полностью сохраняются при воздействии ультразвука низких частот. При озвучивании на более высоких частотах в течение 3 часов (частота 2,64 МГц, интенсивность 3 Вт/см2) отмечается лабильность тиазолового кольца, которое раскрывается в щелочной среде. Более устойчивы витамины А2, D2, B12. В присутст-вии кислорода воздуха неустойчивы к продолжительному озвучиванию при больших интенсивностях такие высокомолекулярные соединения, такие как ферменты, углеводы.

Инактивируются дрожжевая инвертаза, деполимераза, сахароза, диастаза, трипсин. Фермент рибонуклеаза также подвергается изменению, однако биологические свойства его сохраняются. Спирты окисляются, крахмал распадается до декстрина, гликоген - на редуцирующие продукты, молекулы углеводов (глюкозы, фруктозы, мальтозы, галактозы, сахарозы) - до более простых веществ. Замечено также, что чем больше исходная молекулярная масса белка, тем быстрее и глубже идет процесс ультразвуковой деполимеризации.

Природные антрахиноны из листьев и створок бобов кассии, корней и корневищ ревеня, коры крушины, сока алоэ устойчивы к воздействию ультразвука широкого диапазона частот и интенсивностсй, что обусловлено устойчивостью их ядра - хризацина. Многие антибиотики под влиянием ультразвука даже увеличивают свою антибактериальную активность: бензилпенициллин, стрептомицин, тетрациклин, мономицин и др.

Процессы растворения

Растворение - физико-химический процесс, протекающий между твердой и жидкой фазами и характеризующийся переходами твердого вещества в раствор. Растворенным веществом считается тот из компонентов, который при обычных условиях находится в агрегатном состоянии, отличном от агрегатного состояния растворителя.

В практике химико-фармацевтических фабрик, заводов, аптечных производств растворение - самый распространенный способ обработки сырья, полупродуктов, получения готовой продукции. В заводских условиях, а также в крупных аптечных учреждениях этим способом получают различные водные, спиртоводные, масляные растворы кристаллических веществ, растворы сухих и густых экстрактов, спирты, ароматные воды, растворы коллоидов, других высокомолекулярных соединений (ВМС).

Процесс растворения, завершающийся исчезновением твердой фазы, существенно отличается от процесса экстрагирования, хотя и для него характерен перенос извлекаемых веществ из пористого материала в растворитель.

При воздействии на процесс растворения ультразвуком с большой интенсивностью в жидкой среде возникают знакопеременное звуковое давление, способствующее проникновению жидкости в трещины и капилляры растворяемого вещества, а также быстрые течения: звуковой ветер, кавитация. Интенсификация процесса растворения, а равно и коэффициент диффузии зависят от значений амплитуды и частоты вынужденных колебаний жидкости. Для растворения полидисперсных взвесей лекарственных веществ, имеющих различные линейные размеры частиц, наиболее эффективно использовать импульсные широкополосные колебания, т.е. колебания большой интенсивности.

При воздействии на среду ультразвука уменьшается динамическая вязкость полярных жидкостей; микротрещины и поры, имеющиеся в твердой фазе, разветвляются, увеличиваются их размеры и глубина. Рассматривая гидродинамику среды в одиночном капилляре (трещине), можно различить три зоны: с турбулентным движением жидкости, с вязким подслоем и с диффузионным подслоем. У кромки открытой микротрещины при интенсивном движении жидкости происходят турбулизация микропотоков, а затем и срыв вихрей. Здесь процесс растворения твердой фазы лимитируется коэффициентом турбулентной диффузии. Поступающие из первой во вторую зону турбулентные пульсации осуществляют перенос основной массы растворяемого вещества. В третьей зоне массообмен обусловлен хаотическим молекулярным движением. Продольные и поперечные размеры микротрещин являются важным фактором в процессе растворения. При возникновении ультразвукового переменного давления (±5х105Па) в жидкости, находящейся в трещине, создаются колебательные тангенциальные смещения микрообъемов растворителя вдоль стенок, которые переходят в однонаправленное движение раствора. Молекулярная диффузия практически сменяется достаточно быстрым конвективным массопереносом.

Таким образом, при использовании ультразвука как средства интенсификации процесса растворения существенное значение имеют микропульсации растворителя, в особенности если длина волны равна или меньше размера твердой частицы или же линейных размеров микротрещин, пор, капилляров.

Данные свидетельствуют о том, что ультразвук на два порядка ускоряет стадию растворения растворимых веществ, в 10-30 раз - трудно и медленнорастворимых препаратов, в 3-5 раз - малорастворимых. С помощью ультразвука при обычной температуре 0-25°С) увеличивается предел растворимости в диапазоне трудно и практически нерастворимых веществ, причем концентрация насыщения может превышать известные константы в 5-30 раз.

Процессы экстрагирования

Сегодня очень многие биологически активные вещества получают из природного сырья растительного или животного происхождения. Каждый третий лекарственный препарат, из имеющихся, в арсенале современной медицины - продукт растительного происхождения. Следует также отметить, что в терапии отдельных заболеваний препараты из растений занимают доминирующее положение. Так, на долю препаратов растительного происхождения приходится 80% маточных, 77% сердечных, 72-74% отхаркивающих, противоглистных, желудочных средств.

Ультразвук в направлении от излучателя формирует во всем озвучиваемом объеме звуковой ветер, который создает общее течение (ламинарное или турбулентное), а сила ветра зависит как от интенсивности ультразвука, так и от параметров среды. В докавитационный период экстрагирования сырья наиболее четко проявляется ультразвуковой эффект. Мощные ультразвуковые волны значительно увеличивают скорость пропитки различных материалов, имеющих капиллярную структуру. Это объясняется тем, что высота подъема жидкости под действием ультразвука увеличивается и находится в прямой зависимости от диаметра капилляра и избыточного звукового давления. Звукокапиллярное давление независимо от положения источника ультразвука всегда направлено по нормали к срезу капилляра.

Время замачивания зависит от скорости вытеснения воздуха из клетки, т.е. от значения капилляропроводности сырья. Однако многие капилляры заканчиваются в пачках и фибриллах, не выходя наружу. Здесь воздух удерживается до тех пор, пока не растворится в экстрагенте. Кроме того, часть воздуха в виде воздушных пузырьков различной конфигурации остается внутри клетки.

Ультразвук, создавая звукокапиллярный эффект, не только ускоряет вытеснение таких пузырьков воздуха, но и создает условия для растворения его в жидкостях. Образуется вакуум, т.е. возникает так называемый эффект губки. В результате время замачивания сырья под действием ультразвука значительно сокращается.

На скорость процесса экстрагирования биологически активных веществ из растительного сырья с помощью ультразвука оказывают влияние факторы, зависящие как от физико-механического состояния сырья и природы растворителя, так и от параметров озвучивания. Как уже отмечалось ранее, эффективность процесса экстракции во многом зависит от морфолого-анатомического строения сырья, а в связи с этим и его дисперсности. Если, например, исходным сырьем является трава растений, имеющая тонкую рыхлую листовую пластинку с мягкими оболочками клеток и большим числом путепроводящих тканей, межклеточных пространств, то размер частиц, как правило, не играет существенной роли и может колебаться от 2 до 8 мм.

Из сырья природного происхождения ультразвуком возможно извлекать практически все известные соединения, продуцируемые растениями. При использовании ультразвука наблюдается не только значительное ускорение производственного процесса, но и увеличение по сравнению с другими способами экстрагирования выхода основного продукта. Так, озвучивание мезги сырой капусты позволяет дополнительно на 33% увеличить выход тартроновой кислоты - эффективного средства, тормозящего превращение в организме углеводов в жиры; на 18% - выход инулина из корней лопуха, из клубней топинамбура - важного источника получения D-фруктозы; на 15% - выход алкалоида платифиллина - эффективного М-холинолитического средства. Отмечено увеличение выхода некоторых эфирных и жирных масел, в том числе розового и облепихового. Трава ландыша и полыни горькой, листья мяты перечной, зверобоя, красавки, наперстянки, горицвета, цельнолистника, тысячелистника, цветы ромашки аптечной, ноготков и др. Такое сырье быстро набухает, клетки тургоризуются в течение нескольких десятков минут. Так, если для измельченной травы горицвета, чабреца, пустырника время оптимального набухания составляет в обычных условиях около 2 ч, а для корневищ с корнями валерианы, синюхи, девясила, аира и других видов сырья 6-8 ч, то при использовании ультразвука достаточно 30 мин замачивания и 10 мин озвучивания, чтобы сырье полностью набухло.

...

Подобные документы

  • Демпфирующие свойства шпиндельного узла. Теоретическое определение частоты собственных колебаний шпинделя. Расчет критической частоты вращения двухопорного шпинделя. Амплитуды соседних по периоду свободных затухающих колебаний шпиндельного узла.

    реферат [103,8 K], добавлен 24.06.2011

  • Ультразвуковая обработка поверхностей как одно из направлений существенного повышения производительности и качества механической обработки материалов. Изучение практического опыта применения ультразвука в процессах абразивной обработки и их шлифования.

    контрольная работа [25,6 K], добавлен 30.01.2011

  • Получение ультразвуковых волн. Общая характеристика ультразвуковых методов, используемых для контроля сварных соединений, их принципы и условия применения. Преимущества и недостатки ультразвукового контроля на примере стыкового сварного соединения.

    реферат [1,3 M], добавлен 12.11.2013

  • Основные причины возникновения паразитных колебаний в ротационных машинах, методы их измерения и отслеживания, применяемое при этом оборудование. Механизм диагностики и устранения паразитных колебаний. Анализ оценка точности измерительных процессов.

    дипломная работа [2,0 M], добавлен 30.04.2011

  • Понятие электрофизических и электрохимических методов обработки детали, их отличительные особенности и недостатки. Схема протекания электроэрозионной обработки, распределение импульсов и виды метода. Применение ультразвуковой и плазменной обработки.

    презентация [2,0 M], добавлен 05.11.2013

  • Оценка технического состояния газотрубопровода. Использование ультразвукового внутритрубного дефектоскопа для прямого высокоточного измерения толщины стенки трубы и обнаружения трещин на ранней стадии. Способы получения и ввода ультразвуковых колебаний.

    курсовая работа [2,9 M], добавлен 02.01.2015

  • Диапазоны частот упругих колебаний. Преломление, отражение, дифракция, рефракция акустических волн. Прием и излучение ультразвука. Ультразвук в различных средах. Отражение и рассеяние ультразвука. Применение акустических методов в неразрушающем контроле.

    контрольная работа [815,0 K], добавлен 09.11.2010

  • Общая характеристика электрохимических методов обработки, основанных на законах анодного растворения при электролизе: полирование, размерная, электроабразивная и электроалмазная обработка. Технологические возможности размерной ультразвуковой обработки.

    реферат [1,2 M], добавлен 18.01.2009

  • Составление упрощенной схемы валопровода и эквивалентных схем. Резонансные режимы работы силовой установки. Работа сил давления газов за один цикл колебаний. Определение резонансных амплитуд колебаний и дополнительных напряжений. Работа сил сопротивления.

    курсовая работа [1,2 M], добавлен 08.04.2014

  • Определение собственных частот крутильных колебаний вала с дисками. Диагностирование характеристик вала с дисками по спектру частот колебаний, моментов инерции масс дисков. Применение метода решения обратной задачи, программная реализация решения.

    дипломная работа [434,9 K], добавлен 23.10.2010

  • Возникновение вибраций при обработке резанием. Опасность резонансных режимов, наступающих при совпадении частоты собственных колебаний заготовки с частотой колебаний других звеньев технологической системы. Выбор технического ршения задачи.

    научная работа [683,7 K], добавлен 19.07.2009

  • Классификация внутритрубных дефектоскопов. Ультразвуковые внутритрубные дефектоскопы для прямого высокоточного измерения толщины стенки трубы и для обнаружения трещин на ранней стадии. Принцип действия ультразвуковых дефектоскопов и их применение.

    курсовая работа [2,9 M], добавлен 21.03.2013

  • История возникновения электрических методов обработки. Общая характеристика электроэрозионной обработки: сущность, рабочая среда, используемые инструменты. Разновидности и приемы данного типа обработки, особенности и сферы их практического применения.

    курсовая работа [34,8 K], добавлен 16.11.2010

  • Способ составления уравнения движения для жесткого ротора. Влияние на частоты колебаний ротора жесткостей горизонтальных и вертикальных опор. Рассмотрение прямой задачи по определению собственных частот колебаний ротора, ее программная реализация.

    курсовая работа [682,5 K], добавлен 28.10.2013

  • Назначение и принцип работы подшипников скольжения. Свойства политетрафторэтилена. Технология сборки подшипников скольжения. Определение зависимости предела прочности композита от амплитуды колебаний. Прочностные характеристики от амплитуды колебаний.

    дипломная работа [2,2 M], добавлен 17.05.2015

  • Основные методы непрерывного измерения: гидростатический, с использованием погруженных зондов, кондуктивный, емкостной и ультразвуковой. Природа получения ультразвука, типы и скорость ультразвуковых волн. Разработка алгоритма программного обеспечения.

    дипломная работа [1,1 M], добавлен 26.08.2010

  • Сравнительный анализ методов и технологических возможностей размерной обработки деталей. Гальванотехника, ее применение в полиграфии. Электрохимическая обработка деталей: анодное полирование и травление, анодно-гидравлическая и механическая обработка.

    реферат [620,2 K], добавлен 16.03.2012

  • Назначение и условия эксплуатации шпинтона. Гасители колебаний, предназначенные для гашения колебаний в рессорном подвешивании тележек грузовых и пассажирских вагонов. Обработка поверхностей и доведение их до нужной шероховатости и требований по точности.

    курсовая работа [1,7 M], добавлен 17.02.2013

  • Характеристики и свойства токарного станка. Расчетное значение скорости резания. Частота вращения шпинделя станка, характеристики его механизма подачи. Определение жесткости винта в осевом направлении. Расчет частоты собственных колебаний подсистемы.

    контрольная работа [376,2 K], добавлен 14.04.2011

  • Термогазодинамический расчет двигателя и динамической частоты первой формы изгибных колебаний лопатки ТВД. Расчет технологических переходов обработки основных поверхностей детали. Расчет припусков и операционных размеров на диаметральные поверхности.

    дипломная работа [2,9 M], добавлен 20.01.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.