Технологии импульсного воздействия на материал

Электрогидравлическая технология: общая характеристика, принципы и условия практического применения, Принципиальная схема электрогидравлической установки. Электроэрозионная обработка материалов, ее физические основы и оценка эффективности на сегодня.

Рубрика Производство и технологии
Вид лекция
Язык русский
Дата добавления 22.07.2013
Размер файла 261,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

????????? ?? http://www.allbest.ru/

22

????????? ?? http://www.allbest.ru/

Технологии импульсного воздействия на материал

Введение

Технологии с использованием импульсных сильных токов относятся наряду со взрывными (использование взрывчатки) к высокоскоростным, при которых реализуется интенсивное силовое воздействие на обрабатываемый объект. Часто объекту при этом сообщается большая скорость, что открывает новые технологические возможности.

Например, появление пластических свойств у хрупких материалов (сплавы молибдена).

К технологиям, использующим сильные импульсные токи, принадлежат электрогидравлическая (сильноточный разряд в воде), электроэрозионная и магнитно-импульсная обработка материалов (создание сильного импульсного магнитного поля и организация силового действия этого поля на обрабатываемый объект).

Рассмотрим электрофизические основы технологии.

1. Электрогидравлическая технология

Основные сведения

При импульсном электрическом разряде в жидкости происходит быстрое выделение энергии в канале разряда. В результате давление в канале разряда значительно превышает внешнее, канал быстро расширяется, что приводит к возникновению ударной волны и потоков жидкости.

Ударная волна представляет собой скачек плотности среды, распространяющейся от канала со скоростью, превышающей звуковую. Давление на фронте ударной волны в жидкости может достигать десятков килобар. Воздействие этого давления на обрабатываемый объект может вызывать структурную перестройку материала объекта (дробление хрупких материалов, деформацию, упрочнение поверхности и т.д.). Потоки жидкости, распространяющиеся со скоростью 10103 м/с, передают кинетическую энергию обрабатываемому объекту, вызывая, как и ударная волна, его механические изменения.

Механические проявления импульсного разряда в жидкости принято называть электрогидравлическим эффектом, а установки с использованием этого эффекта электрогидравлическими. В качестве рабочей среды в таких установках используется, как правило, техническая вода.

Обычно электрогидравлическая установка состоит из накопителя энергии НЭ (рис. 1), зарядного устройства ЗУ и технологического блока ТБ, содержащего некоторый объем жидкости, систему электродов, между которыми создается импульсный разряд, и обрабатываемый объект, располагаемый вблизи канала разряда К.

Рис. 1. Принципиальная схема электрогидравлической установки

Накопитель энергии, как правило, представляет собой батарею импульсных конденсаторов высокого напряжения емкостью С. Конденсаторная батарея соединяется с электродной системой в технологическом блоке через разрядник Р, наличие которого позволяет зарядить емкость С до требуемого напряжения от зарядного устройства ЗУ со сравнительно небольшим током. Соединение накопителя энергии с технологическим блокам выполняется малоиндуктивным, для чего используются специальные коаксиальные кабели высокого напряжения. Применение коаксиальных кабелей помимо уменьшения индуктивности разрядной цепи ослабляет электромагнитные поля вблизи работающей установки.

Разрядник Р может быть управляемым или неуправляемым. Он представляет собой, как правило, двухэлектродный или трехэлектродный (тригатрон) воздушный искровой промежуток, в некоторых случаях помещаемый в звукоизолирующем корпусе. В установках с большой частотой следования разрядов промежуток разрядника продувается сжатым воздухом, а электроды охлаждаются водой.

Наличие технологического блока характерно для установок, предназначенных для обработки транспортабельных деталей или материалов (например, деталей в машиностроении и металлообработке, сырья в горнорудной промышленности и промышленности строительных материалов и т.д.) В таких электрогидравлических установках, как установки для бурения, разрушения негабаритных кусков горных пород, для эхолокации водоемов, технологический блок отсутствует и вместо него используется перемещаемая электродная система, погружаемая в скважину, заполненную жидкостью, или в водоем.

Принцип работы типичной гидравлической установки поясняют графики изменения во времени основных электрических параметров, приведенные на рис. 2.

Рис. 2. Изменение напряжения на конденсаторе Uc, на канале разряда Uk, разрядного тока i и мощности Р во времени t

До момента t1 происходит зарядка накопителя: напряжение на конденсаторе С растет до U1= 10105 B. В момент t1 накопитель подключается к искровому промежутку в жидкости и начинается процесс электрического пробоя промежутка. По завершении пробоя в момент t2 наступает канальная стадия разряда. Напряжение uс за время t2  t1 несколько падает (до Uпр) из-за стекания заряда с конденсатора С вследствие электропроводности среды в промежутке. Если при пробое ток i, протекающий через промежуток, растет незначительно, то по завершении пробоя он резко возрастает. Обычно ток в течение канальной стадии имеет форму, близкую к синусоидальной с большим затуханием.

Форма напряжения на промежутке uk отражает нелинейность сопротивления канала разряда. Импульс мощности P, развиваемой в канале, имеет форму, близкую к треугольной.

В тех случаях, когда потери энергии за время пробоя t2  t1 в промежутке недопустимо велики или при рабочем напряжении не обеспечивается стабильный пробой промежутка при требуемом расстоянии между электродами, перед каждым разрядом электроды закорачиваются тонкой проволочкой, которая взрывается под действием тока.

При разряде или электрическом взрыве проволочки в жидкости возникают ударная волна давления и пульсирующая по размерам газовая полость, изменение положения которых относительно оси канала во времени показано на рис. 13.3, а соответственно кривыми 1 и 2.

Канал разряда в начале процесса расширяется с максимальной скоростью. После прекращения протекания тока полость канала разряда вследствие инерционности окружающей среды продолжает расширяться, достигает предельных размеров и затем начинает сжиматься. При расширении полости температура и давление в ней падают, а при сжатии повышаются, что приводит к затухающим пульсациям полости. Обычно период колебаний полости на несколько порядков превышает длительность разряда. Максимальные размеры полости в зависимости от выделившейся энергии при разряде и от условий протекания гидродинамических процессов в технологическом блоке составляют от нескольких сантиметров до десятков сантиметров.

В случае применения взрывающейся проволочки картина механических проявлений несколько изменяется (рис. 13.3, б). С момента подключения накопителя t1 начинается разогрев проволочки и происходит сравнительно медленное увеличение ее диаметра. К моменту начала электрического взрыва t3 от отдельных участков проволочки отделяются слабые ударные волны, распространяющиеся со скоростью, близкой к скорости звука. В момент завершения взрыва t4 возникает мощная ударная волна, обгоняющая ранее возникшие, и далее процесс протекает также, как и при разряде вследствие пробоя промежутка.

Рис. 3. Изменение положения ударной волны (кривые 1) и границы газовой полости (кривые 2) при разряде в жидкости, вызванном пробоем (а) и взрывом проводника (б)

Из-за потерь энергии в соединительных проводах и элементах накопителя, в канале разряда и в газовой полости только незначительная часть накопленной энергии подводится при пробое промежутка или взрыве проволочки к объекту обработки. Однако при разряде в жидкости достигаются высокие концентрации энергии и скорости обработки, что и определяет области применения электрогидравлических установок. Это прежде всего высокоскоростное деформирование металлов, разрушение и дробление хрупких материалов, очистка металлических деталей от формовочных смесей, окалины, эхолокация водоемов и т.п.

Технологические применения разряда в жидкости

Как уже отмечалось, технологии с применением электрического разряда в жидкости относятся к высокоскоростным. Этим и определяется их преимущество.

Можно назвать ряд технологических процессов, которые либо нашли применение, либо перспективны. Среди них отметим следующие:

Рис. 4. Типичные электрогидравлические технологические процессы:

а) штамповка; б) дробление хрупких материалов (щебень, гранит и т.д.);

в) разрушение некондиционных железобетонных изделий;

г) разрушение камней в почках человека

штамповка деталей из труднодеформируемых материалов или сложной конфигурции. Штамповка осуществляется в устройстве, схематично показанном на рис. 4, а. Листовая заготовка вместе с матрицей помещается в бак с водой. Над заготовкой размещается электродная система. В результате разряда в жидкости механическое воздействие ударной волны и потоков жидкости на заготовку приводит к ее деформации. Перемещаясь при каждом разряде к матрице на некоторое расстояние, в конце обработки заготовка принимает форму матрицы. Для того, чтобы в процессе обработки заготовка плотно прилегала к матрице, образуя изделие, воздух из пространства между заготовкой и матрицей откачивается. Как видно из рисунка, при электрогидравлической штамповке реализуется экономия на оснастке: для приготовления детали требуется только матрица. Пуансон, необходимый при традиционной штамповке отсутствует.

дробление хрупких материалов (строительных материалов, геологических проб, некондиционного бетона, негабаритов и т.д.) (рис. 4, б, в). При этом порция обрабатываемого материала помещается в сосуд, заполняемый водой. В сосуде имеется один (рис. 4, б) или несколько (рис. 13.4, в) электродов, с которых развивается разряд на дно камеры или на арматуру разрушаемого железобетона. После серии разрядов бетон разрушается, извлекаются продукты обработки и цикл повторяется.

очистка литья от формовочной земли. При этом удается проводить очистку в формах сложной формы и существенно улучшить условия труда.

очистка поверхностей от окалины, минеральных отложений и т.д.

разрушение камней в почках человека без хирургического вмешательства, путем концентрации ударных волн в требуемом месте. При этом пациент помещается в ванне в водой (рис. 4, г). Следящая ка правило рентгеновская система обеспечивает излучение разряда в момент, когда разрушаемый камень оказывается в фокусе концентрирующей системы. Раздробленный камень выводится из организма естественным путем.

активизация нефтяных скважин.

эхолокация водоемов и многие другие.

3. Электроэрозионная обработка материалов

Основные сведения

Под электроэрозионной обработкой понимают обработку металлов с использованием электрической эрозии, возникающей при организации импульсного разряда между обрабатываемой деталью и специальным электродом-инструментом. Электроэрозионная обработка производится с целью придания детали требуемой формы (размерная обработка), упрочнения поверхности или нанесения на нее защитного покрытия.

Принципиальная схема обработки детали на электроэрозионном станке показана на рис. 5. При обработке используется собственно станок 1 с рабочей ванной 2, в которой находится стол 3 для установки электрода-изделия 4 с перемещением по двум координатам; 5  регулятор подачи электрода-инструмента; 6 источник питания генератор импульсов; 7  система снабжения рабочей жидкостью, состоящая из насосов, фильтров, бака и т.п.; 8 электрод-инструмент.

Рис. 5. Электроэрозионный станок со вспомогательными устройствами энергопитания и снабжения рабочей жидкостью

Источник питания 6 преобразует переменный ток промышленной частоты в импульсный с регулируемыми частотой следования импульсов от сотен до сотен тысяч герц, амплитудой от долей до тысяч ампер, скважностью от 1,01 до 510, длительностью импульса от долей до нескольких тысяч микросекунд. Изменением указанных параметров устанавливается технологический режим обработки.

Регулятор 5 подачи осуществляет автоматическое изменение положения одного из электродов с целью поддержания заданного межэлектродного зазора, изменяющегося благодаря эрозии материала электродов.

Система снабжения 7 служит для урегулирования расхода и очистки рабочей жидкости, подаваемой с целью облегчения удаления продуктов процесса и охлаждения непосредственно в межэлектродный промежуток (рабочую зону) и в ванну 2 станка.

Различают два вида электроэрозионной обработки: электроискровую и электроимпульсную.

Электроискровая обработка производится короткими импульсами тока (менее 100 мкс). Условно такие разряды называют искровыми, из чего следует и название обработки.

Электроимпульсная обработка характеризуется более длительными импульсами тока (более 100 мкс), при которых разряд по своим характеристикам приближается к дуговому: с характерными зонами и столбом канала, для которого характерны малые градиенты напряжения.

Принцип реализации электроэрозионной обработки основан на тепловом действии канала разряда на обрабатываемую деталь. В канале разряда, включая приэлектродную зону, за короткое время выделяется энергия, нагревая газовую среду канала (в основном пары металла) до температуры в несколько тысяч градусов. За счет теплопроводности из зоны разряда формируется тепловой поток, который быстро нагревает непосредственно примыкающий к месту разряда металл заготовки, плавит и частично испаряет некоторое количество металла, образуя эрозионную лунку. Для организации разряда с нужными параметрами и эвакуации продуктов эрозии (пара и частиц расплавленного металла) разряд производится в технологической жидкости (керосин, масло, вода).

На рис. 6 показаны открытая (а) и закрытая (б) рабочие зоны электроэрозионного станка.

электрогидравлический физический электроэрозионный

Рис. 6. Схема открытой (а) и закрытой (б) рабочей зоны при единичном разряде: 1 анод; 2 катод; 3 канал разряда; 4 рабочая среда; 5 газовый пузырь; 6 пузырьки пара или газа; 7 твердые частицы; 8 продукты пиролиза

Напряжение источника питания электроэрозионных установок составляет обычно несколько десятков вольт (в некоторых случаях сотни вольт), поэтому расстояние между обрабатываемой деталью 2 и электродом-инструментом 1 составляет микроны. Электрод-инструмент выполняется подвижным. Разряды возникают в тех местах, где расстояние между электродом и деталью минимально. Образовавшаяся лунка приводит к увеличению расстояния, и разряд при следующем импульсе происходит в другом месте. Таким образом, постепенно обрабатывается вся поверхность между электродом и деталью, электрод 1 медленно вводится в отверстие, образующееся в детали 2. Продукты эрозии 7 (мелкие затвердевшие частицы материала, как детали, так и электрода), продукты пиролиза 8 выносятся жидкостью 4 из отверстия.

Главными преимуществами электроэрозионной обработки являются возможность обработки металлов с любой прочностью, включая высокопрочные сплавы, а также возможность изготовления отверстий, линий разреза сложной конфигурации. Например, используя электрод в форме спирали, возможно изготовить отверстие повторяющее форму электрода в заготовке, обладающей любой прочностью. Никакими другими технологическими приемами аналогичную операцию выполнить невозможно.

Важной особенностью электроэрозионной обработки является простота регулирования выделяемой в разряде энергии путем изменения емкости источника питания. Тем самым обеспечивается желаемый режим: грубый (обдирочный) или более мягкий, с более гладкой поверхностью обрабатываемой детали (финишные режимы).

Электроэрозионная обработка как технологический процесс впервые была изобретена в СССР в 1943 г. Изобретателями этого вида обработки являются Б.Р. и Н.И. Лазаренко. Приоритет СССР был признан в 1946 г. во Франции, Англии, США, Швеции, Швейцарии, что последовало после постановления Совнаркома СССР в 1945 г. о патентовании за рубежом этого изобретения (были такие порядки!).

В течение десятилетий ведущие организации СССР (АН Молдовы, Кишинев; ЭНИМС, Москва и др.) занимали передовые позиции, как в области разработки технологии, изучении процессов, так и по производству серийного оборудования, электроэрозионных станков, машин. В основном для отражения проблем электроэрозионной обработки был основан издающийся в Кишиневе академический журнал «Электронная обработка материалов».

В настоящее время электроэрозионная технология широко распространена. Без электроэрозионных станков невозможно современное производство многих приборов, инструмента, изделий из твердых сплавов, фильер, матриц, пуансонов и многого другого.

Физические основы электроэрозионной обработки металлов

Не вдаваясь в подробности электрического пробоя коротких промежутков в жидкости и динамики перехода к искровой или дуговой формам разряда, можно представить следующую картину разряда.

Между катодом 1 и анодом 2 в течение некоторого времени, равного длительности импульса тока существует канал разряда. При этом в нем выделяются зоны прианодного 3 и прикатодного 5 падений напряжений, а также пламенный столб 4.

В прикатодной области протяженностью порядка 105104 см создается высокая напряженность электрического поля, достаточная для термоавтоэлектронной эмиссии из катода. Она равна ~106 В/см. В прикатодной области электроны на 23 длинах свободного пробега должны набрать энергию, достаточную для ударной ионизации молекул газа (пара) на границе плазменного столба, где необходимая концентрация носителей заряда для обеспечения тока поддерживается термической ионизацией.

В прикатодной области ток в основном сосредоточен в катодных пятнах (ток на одно пятно 15 А), беспорядочно двигающихся по опорной зоне на катоде. Поперечные размеры опорной зоны зависят от тока: при большом токе опорная зона разряда велика, с уменьшением тока она сужается.

На поверхность катода воздействует поток положительных ионов, излучение. Поступает энергия и за счет теплопроводности из канала разряда. Прикатодное падение напряжения Uк зависит от материала катода, и для большинства металлов оно составляет 1520 В. Примерно половина мощности, равной Uкi, всеми механизмами передачи энергии (бомбардировка ионами, теплопроводностью и т.д.), поступает в виде теплового потока qк на поверхность катода в опорной зоне канала разряда qа.

Прианодная область также состоит из анодных пятен. В ней падение напряжения составляет 35 В. Анод подвергается бомбардировке злектронами и отрицательными ионами, а также воздействию теплового потока.

Сопоставляя тепловые потоки на анод и катод, можно отметить, что при коротких импульсах поток на катод выше, и эрозия катода более существенна, чем анода. Поэтому электроискровая обработка обычно проводится при отрицательной полярности обрабатываемой детали. При больших длительностях соотношение обратное, и при электроимпульсной обработке деталь имеет, как правило, положительную полярность.

Тепловая мощность, подводимая к электродам из канала, составляет 103104 Вт, что при малых размерах опорной зоны дает плотность теплового потока 1091010 Вт/м2.

Энергия, поступающая в электрод, нагревает материал. Поскольку тепловые процессы инерционны, то за счет теплопроводности сравнительно медленно повышается температура на некоторой глубине от поверхности материала.

Если проследить во времени динамику повышения температуры по глубине электрода, то можно установить следующие закономерности.

В начале процесса нагревается по мере поступления энергии поверхностный тонкий слой. Температура его повышается, достигая температуры плавления; начинается фазовый переход, требующий сравнительно блдьшей энергии. Граница между твердым и жидким металлом удаляется от поверхности электрода.

Так как тепло поступает с поверхности и к границе плавления транслируется через жидкий металл, то жидкий металл нагревается вплоть до температуры испарения. С поверхности жидкого металла начинается испарение, и верхняя граница жидкого металла также смещается вглубь электрода.

Следует отметить, что такая картина тепловых процессов довольно условна, она близка к наблюдаемым при сравнительно медленных процессах (при электроимпульсной обработке). При быстрых процессах наблюдаются перегревы как твердой, так и жидкой фаз. Чем короче процесс, тем большая роль испарения в эрозии материала.

После окончания импульса тока (прекращения действия теплового потока) процесс продвижения границ плавления и испарения может некоторое время продолжаться за счет тепловой энергии, содержащейся в жидкой фазе, которая может иметь температуру, большую температуры плавления (а поверхностные слои большую, чем температура кипения).

Как уже отмечалось, электроэрозионная обработка проводится в жидкой среде. Возникновение канала разряда и его существование вызывает разложение и испарение среды, сопровождающееся механическими эффектами, в частности, движением массы жидкости, окружающей возникший газовый пузырь.

Обычно газовый пузырь, образованный при разряде, совершает пульсирующие движения, пока полностью не захлопнется.

Потоки жидкости, а также взрывное расширение нагретого материала приводит к тому, что большая часть расплавленного металла выбрасывается в окружающую жидкость в виде мелких по форме близких к сферическим частицам. Естественно, часть расплавленного металла кристаллизуется. В результате на электроде образуется лунка с валообразным наростом по краям за счет кристаллизации и с плоским дном. На дне имеется некоторый слой перекристаллизованного материала, который по своей структуре отличается от исходного материала. На этом эффекте основан такой вид электроэрозионной обработки, как упрочнение поверхности.

Размещено на Allbest.ru

...

Подобные документы

  • История возникновения электрических методов обработки. Общая характеристика электроэрозионной обработки: сущность, рабочая среда, используемые инструменты. Разновидности и приемы данного типа обработки, особенности и сферы их практического применения.

    курсовая работа [34,8 K], добавлен 16.11.2010

  • Классификация физико-химических способов обработки материалов. Электроэрозионная обработка металлов. Размерная электрохимическая обработка. Ультразвуковая, светолучевая и электроннолучевая обработка материалов. Комбинированные методы обработки металлов.

    реферат [7,3 M], добавлен 29.01.2012

  • Общая характеристика, технологический процесс производства и нанесения лакокрасочных материалов. Принципиальная технологическая схема азеотропной системы. Ассортимент лакокрасочных материалов: полимерные красочные составы; лаки и эмалевые краски; олифы.

    курсовая работа [62,1 K], добавлен 15.09.2010

  • Условия эксплуатации пуансона. Оценка воздействия технологических факторов на свойства материалов. Требования, предъявляемые к материалу. Технология термической обработки пуансона из чугуна ЧХ16М2 на ЗАО РЗ "СИТО". Проверочный расчёт оборудования.

    дипломная работа [2,5 M], добавлен 11.06.2013

  • Исторические сведения о возникновении керамических материалов, область их применения. Основные физико-химические свойства керамики, применяемые сырьевые материалы. Общая схема технологических этапов производства керамических материалов, ее характеристика.

    курсовая работа [74,2 K], добавлен 02.03.2011

  • Понятие и общая характеристика легкоплавких металов на основе пяти наиболее распространенных их представителей: свинца, цинка, ртути, олова и лития. Основные физические и химические свойства данных металлов, сферы их практического применения на сегодня.

    реферат [704,1 K], добавлен 21.05.2013

  • Оптимизация тепловой обработки сырья при производстве строительных изделий, деталей и материалов; физико-химические превращения в обрабатываемом материале. Способы теплового воздействия на продукцию, определение наиболее эффективного режима установки.

    курсовая работа [259,8 K], добавлен 26.12.2010

  • Конструктивная схема типового электрогидравлического рулевого привода с указанием его основных параметров. Осуществление вывода аналитических выражений для расчёта сил, действующих на поршень золотникового распределителя. Анализ полученных результатов.

    курсовая работа [745,4 K], добавлен 18.04.2019

  • Типы композиционных материалов: с металлической и неметаллической матрицей, их сравнительная характеристика и специфика применения. Классификация, виды композиционных материалов и определение экономической эффективности применения каждого из них.

    реферат [17,4 K], добавлен 04.01.2011

  • Роль химии в химической технологии текстильных материалов. Подготовка и колорирование текстильных материалов. Основные положения теории отделки текстильных материалов с применением высокомолекулярных соединений. Ухудшение механических свойств материалов.

    курсовая работа [43,7 K], добавлен 03.04.2010

  • Общее представление о композиционных материалах, их характеристика, разновидности и отличительные свойства, области и особенности практического применения. Установление уровня развития техники и анализ применимости прогрессивных решений на сегодня.

    дипломная работа [306,9 K], добавлен 12.03.2011

  • Физические принципы, используемые при получении материалов: сепарация, центрифугирование, флотация, газлифт. Порошковая металлургия. Получение и формование порошков. Агрегаты измельчения. Наноматериалы. Композиционные материалы.

    реферат [292,6 K], добавлен 30.05.2007

  • Виды поверхностной лазерной обработки. Лазерное легирование, наплавка, маркировка, гравировка, характеристика процессов. Эксплуатационные показатели материалов после поверхностной обработки. Способы подачи легирующего элемента в зону воздействия.

    реферат [1,2 M], добавлен 19.04.2016

  • Изготовление сварных конструкций. Проектирование технологии и организации сборочно-сварочных работ. Основной материал для изготовления корпуса, оценка его свариваемости. Выбор способа сварки и сварочных материалов. Определение параметров режима сварки.

    курсовая работа [447,5 K], добавлен 26.01.2013

  • История плазменной сварки, ее сущность и физические основы. Общая схема и технологические особенности плазменной сварки, Область применения, необходимое оборудование для производства сварочных швов. Преимущества и недостатки этого метода сварки.

    реферат [307,5 K], добавлен 14.09.2015

  • История развития ООО "УРСА Серпухов". Общая характеристика предприятия как одного из самых известных брендов строительных материалов. Ассортимент продукции, технологическая схема производства. Требования, предъявляемые к сырью, контроль качества.

    отчет по практике [579,7 K], добавлен 09.08.2015

  • Схема механической обработки поверхности заготовки на круглошлифовальных станках. Схема нарезания резьбы резьбовым резцом. Обработка поверхностей заготовок деталей с периодически повторяющимся профилем. Физическая сущность обработки металлов давлением.

    курсовая работа [415,9 K], добавлен 05.04.2015

  • Характеристика модели женского жакета. Пакет материалов, применяемых при изготовлении. Схема сборки и степень готовности жакета. Выбор оборудования. Разработка технологической последовательности обработки. Экономическая оценка применяемых методов.

    курсовая работа [256,0 K], добавлен 30.05.2012

  • Характеристика способов изготовления трубчатой заготовки из полимерных материалов. Разновидности и конструкция головок экструзионно-выдувных агрегатов. Использование заготовок с программным изменением толщины стенок. Принципиальная схема выдувной машины.

    реферат [1,6 M], добавлен 28.01.2010

  • История происхождения фартука как символа домашней одежды. Последовательность проектирования фартука, выбор материалов, методы обработки деталей и узлов. Технология изготовления проектируемого объекта. Возможные дефекты деталей и обработки изделия.

    курсовая работа [7,3 M], добавлен 26.11.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.