Главные оси инерции и главные моменты инерции

Геометрические характеристики центральных осей инерции сечения: главные оси инерции и главные моменты инерции. Изменение осевых моментов инерции при повороте осей координат; определение положения осей, при котором центробежный момент равен нулю.

Рубрика Производство и технологии
Вид лекция
Язык русский
Дата добавления 30.07.2013
Размер файла 124,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Лекция

Главные оси инерции и главные моменты инерции

Как уже известно, зная для данной фигуры центральные моменты инерции , и , можно вычислить момент инерции и относительно любой другой оси.

При этом можно за основную систему осей принять такую систему, при которой формулы существенно упрощаются. Именно, можно найти систему координатных осей, для которых центробежный момент инерции равен.нулю. В самом деле, моменты инерции и всегда положительны, как суммы положительных слагаемых, центробежный же момент

может быть и положительным и отрицательным, так как слагаемые zydF могут быть разного знака в зависимости от знаков z и у для той или иной площадки. Значит, он может быть равен нулю.

Оси, относительно которых центробежный момент инерции обращается в нуль, называются главными осями инерции. Если начало такой системы помещено в центре тяжести фигуры, то это будут главные центральные оси. Эти оси мы будем обозначать и ; для них

Найдем, под каким углом наклонены к центральным осям у и z (фиг. 198) главные оси.

Рис. 1. Расчетная модель для определения положения главных осей инерции

В известном выражении для перехода от осей yz к осям , для центробежного момента инерции дадим углу значение ; тогда оси и , совпадут c главными, и центробежный момент инерции будет равен нулю:

или

откуда:

(1)

Этому уравнению удовлетворяют два значения , отличающиеся на 180°, или два значения , отличающиеся на 90°. Таким образом, это уравнение дает нам положение двух осей, составляющих между собой прямой угол. Это и будут главные центральные оси и , для которых .

Пользуясь этой формулой, можно по известным , и получить формулы для главных моментов инерции и . Для этого опять воспользуемся выражениями для осевых моментов инерции общего положения. Они определяют значения и если вместо подставить

(2)

Полученными соотношениями можно пользоваться при решении задач. Одним из главных моментов инерции является , другим .

Формулы (2) можно преобразовать к виду, свободному от значения . Выражая и через и подставляя их значения в первую формулу (2), получим, делая одновременно замену из формулы (1):

Заменяя здесь из формулы (1) дробь на

получаем

(3)

К этому же выражению можно прийти, делая подобное же преобразование второй формулы (3).

За основную систему центральных осей, от которых можно переходить к любой другой, можно взять не Оу и Oz, а главные оси и ; тогда в формулах не будет фигурировать центробежный момент инерции (). Обозначим угол, составленный осью , (Рис.2) с главной осью , через . Для вычисления , и , переходя от осей и нужно в ранее найденных выражениях для , и , заменить угол через , а , и -- через , и . В результате получаем:

По своему виду эти формулы совершенно аналогичны формулам для нормальных и касательных напряжений по двум взаимно-перпендикулярным площадкам в элементе, подвергающемся растяжению в двух направлениях. Укажем лишь формулу, позволяющую из двух значений угла выделить то, которое соответствует отклонению первой главной оси (дающей max J) от начального положения оси у:

Теперь можно окончательно формулировать, что надо сделать, чтобы получить возможность простейшим образом вычислять момент инерции фигуры относительно любой оси. Необходимо через центр тяжести фигуры провести оси Оу и Oz так, чтобы, разбивая фигуру на простейшие части, мы могли легко вычислить моменты , и после этого следует найти по формуле (14.17) величину угла и вычислить главные центральные моменты инерции и по формулам (14.18).

Рис. 2. Расчетная модель нахождения положения главных осей

Далее, можно найти момент инерции относительно любой центральной оси (Рис.2), наклоненной к под углом :

Зная же центральный момент инерции , можно сейчас же найти момент инерции относительно любой параллельной ей оси , проходящей на расстоянии (рис.2) от центра тяжести:

Во многих случаях удается сразу провести главные оси фигуры; если фигура имеет ось симметрии, то это и будет одна из главных осей. В самом деле, при выводе формулы мы уже имели дело с интегралом, представляющим собой центробежный момент инерции сечения относительно осей у и z; было доказано, что если ось Oz является осью симметрии, этот интеграл обращается в нуль.

Стало быть, в данном случае оси Оу и Oz являются главными центральными осями инерции сечения. Таким образом, ось симметрии -- всегда главная центральная ось; вторая главная центральная ось проходит через центр тяжести перпендикулярно к оси симметрии.

Пример. Найти моменты инерции прямоугольника (Рис.3) относительно осей и и центробежный момент его относительно тех же осей. центральный ось момент инерция

Рис. 3. Пример расчета моментов инерции

Центральные оси у и z как оси симметрии будут главными осями; моменты инерции сечения относительно этих осей равны:

Центральные моменты относительно повернутых осей и равны:

Центробежный момент инерции относительно осей и равен:

Координаты центра тяжести прямоугольника относительно осей и равны:

Моменты инерции относительно осей и равны:

Центробежный момент инерции равен:

Наибольшее и наименьшее значения центральных моментов инерции

Как известно, центральные моменты инерции являются наименьшими из всех моментов относительно ряда параллельных осей.

Найдем теперь крайние значения (максимум и минимум) для центральных моментов инерции. Возьмем ось , и начнем ее вращать, т. е. менять угол ; при этом будет изменяться величина

Наибольшее и наименьшее значения этого момента инерции соответствуют углу , при котором производная обращается в нуль. Эта производная равна:

Подставляя в написанное выражение и приравнивая его нулю, получаем:

отсюда

Таким образом, осями с наибольшим и наименьшим центральными моментами инерции будут главные центральные оси. Так как при повороте центральных осей сумма соответствующих моментов инерции не меняется, то

Когда один из центральных моментов инерции достигает наибольшего значения, другой оказывается минимальным, т, е. если

то

Следовательно, главные центральные оси инерции -- это такие взаимно перпендикулярные оси, проходящие через центр тяжести сечения, относительно которых центробежный момент инерции обращается в нуль, а осевые моменты инерции имеют наибольшее и наименьшее значения.

Размещено на Allbest.ru

...

Подобные документы

  • Преобразование геометрических характеристик при параллельном переносе осей. Геометрические характеристики простейших фигур и сложных составных поперечных сечений. Изменение моментов инерции при повороте осей. Главные оси инерции и главные моменты инерции.

    контрольная работа [192,8 K], добавлен 11.10.2013

  • Площадь поперечного сечения стержня. Изменение статических моментов площади сечения при параллельном переносе осей координат. Определение положения центра тяжести сечения, полукруга. Моменты инерции сечения. Свойства прямоугольного поперечного сечения.

    презентация [1,7 M], добавлен 10.12.2013

  • Напряжения и деформации при сдвиге. Расчет на сдвиг заклепочных соединений. Статический момент сечения. Моменты инерции сечений, инерции прямоугольника, круга. Крутящий момент. Определение деформаций при кручении стержней с круглым поперечным сечением.

    реферат [3,0 M], добавлен 13.01.2009

  • Оценка размеров поперечного сечения. Нахождение момента инерции относительно центральных осей. Расчет прочно-плотного заклепочного шва. Построение эпюр поперечных сил и изгибающих моментов. Проектный расчет вала при совместном действии кручения и изгиба.

    курсовая работа [535,6 K], добавлен 19.11.2012

  • Схема рычажного механизма. Классификация кинематических пар. Определение степени подвижности механизма. Синтез механизма. Силовой расчёт рычажного механизма. Определение силы полезного сопротивления. Определение сил инерции и моментов сил инерции звеньев.

    курсовая работа [2,3 M], добавлен 10.01.2009

  • Кинематический анализ мальтийского механизма. Определение угловой скорости и ускорения креста. Кинематический анализ планетарной передачи, кривошипно-ползунного механизма. Приведение моментов инерции звеньев и определение момента инерции маховика.

    контрольная работа [368,7 K], добавлен 10.10.2011

  • Условия работы, режимы и нагрузки конвейерных установок. Функциональная схема устройства плавного пуска привода. Методики расчёта нагрузок и моментов инерции электроприводов. Пример расчёта нагрузок и момента инерции однодвигательного электропривода.

    учебное пособие [1,8 M], добавлен 31.01.2014

  • Структурный анализ кривошипно-ползунного механизма. Построение планов положения, скоростей, ускорений и кинематических диаграмм. Определение результирующих сил инерции и уравновешивающей силы. Расчет момента инерции маховика. Синтез кулачкового механизма.

    курсовая работа [522,4 K], добавлен 23.01.2013

  • Расчеты значения продольной силы и нормального напряжения для ступенчатого стального бруса. Центральные моменты инерции сечения. Построение эпюры поперечных сил и изгибающих моментов от расчетной нагрузки. Определение несущей способности деревянной балки.

    контрольная работа [1,8 M], добавлен 01.02.2011

  • Структурное и кинематическое исследование рычажного механизма. Построение планов скоростей и ускорений. Анализ сил, действующих на механизм: расчет сил инерции и моментов сил инерции и ведущих звеньев. Расчет маховика. Проектирование зубчатых передач.

    курсовая работа [187,6 K], добавлен 15.08.2011

  • Структурный анализ механизма, его звенья и кинематические пары. Определение скоростей и ускорений точек звеньев и угловых скоростей звеньев. Силовой расчет рычажного механизма. Определение сил тяжести звеньев, инерции, момента инерции, реакции R34n и N5.

    курсовая работа [619,4 K], добавлен 12.11.2022

  • Определение расчетных значений изгибающих и поперечных моментов балки, высоты из условия прочности и экономичности. Расчет поперечного сечения (инерции, геометрических характеристик). Обеспечение общей устойчивости балки. Расчет сварных соединений и опор.

    курсовая работа [1023,2 K], добавлен 17.03.2016

  • Определение расчётных нагрузок, действующих на балку, расчётных усилий, построение эпюр. Подбор сечения балки. Проверка прочности, жёсткости и выносливости балки. Расчёт сварных соединений. Момент инерции сечения условной опорной стойки относительно оси.

    курсовая работа [121,4 K], добавлен 11.04.2012

  • Использования электропривода в грузоподъёмном мостовом кране: электрооборудование кузнечнопрессового цеха завода ОАО "Азовмаш" и проверка его цикличной работы на перегрузки. Моменты инерции вала, редуктора и барабана при ускорении и торможении.

    дипломная работа [184,9 K], добавлен 22.06.2009

  • Структурный и кинематический анализ рычажного механизма. Определение масс звеньев, сил тяжести и центральных моментов инерции. Проверка уравновешивающего момента по способу Жуковского. Синтез зубчатого редуктора. Проектирование кулачкового механизма.

    курсовая работа [749,5 K], добавлен 23.07.2013

  • Расчет размеров и параметров рычажного механизма. Построение диаграммы приведенных моментов инерции, приведенных моментов сил, работы движущих сил и сил сопротивления, изменения кинетической энергии. Характеристики закона движения на фазе приближения.

    курсовая работа [1,4 M], добавлен 25.11.2010

  • Характеристика задач динамического анализа. Определение параметров динамической модели. Математические способы определения сил и моментов сил. Приведение масс и моментов инерции. Математическое уравнение и особенности описания режимов движения механизма.

    презентация [104,5 K], добавлен 24.02.2014

  • Схема балочной клетки нормального типа. Расчёт балки настила. Схема балочной клетки усложнённого типа. Подбор сечения, момент инерции, погонная расчётная и нормативная нагрузка. Расчёт второстепенной балки. Момент сопротивления сечения.

    курсовая работа [593,8 K], добавлен 26.01.2011

  • Кинематическое исследование рычажного механизма. Силы реакции и моменты сил инерции с использованием Метода Бруевича. Расчет геометрических параметров зубчатой передачи. Синтез кулачкового механизма с вращательным движением и зубчатого редуктора.

    курсовая работа [1,3 M], добавлен 10.01.2011

  • Техническая характеристика стана ХПТ-55. Расчет станины рабочей клети. Моменты инерции сечений. Расчет валков на прочность и жесткость. Схема действия сил на рабочий валок и эпюры изгибающих и крутящих моментов. Расчет подушек валков, напряжение изгиба.

    курсовая работа [332,7 K], добавлен 26.11.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.