Прямой поперечный изгиб стержня

Модели прямого поперечного изгиба стержня; зависимость между интенсивностью нагрузки, изгибающим моментом и поперечной силой. Распределение нормальных и касательных напряжений по контуру сечения балки; рациональные формы поперечных сечений при изгибе.

Рубрика Производство и технологии
Вид лекция
Язык русский
Дата добавления 30.07.2013
Размер файла 221,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Лекция

Прямой поперечный изгиб стержня

При прямом поперечном изгибе в сечениях стержня возникает изгибающий момент Мх и поперечная сила Qy (рис. 1), которые связаны с нормальными и касательными напряжениями

Рис. 1. Связь усилий и напряжений

Рис. 2. Модели прямого поперечного изгиба: а) сосредоточенная сила, б) распределенная

Выведенная в случае чистого изгиба стержня формула для прямого поперечного изгиба, вообще говоря, неприменима, поскольку из-за сдвигов, вызываемых касательными напряжениями , происходит депланация поперечных сечении (отклонение от закона плоских сечений). Однако для балок с высотой сечения h<l/4 (рис. 2) погрешность невелика и ее применяют для определения нормальных напряжений поперечного изгиба как приближенную. При выводе условия прочности при чистом изгибе использовалась гипотеза об отсутствии поперечного взаимодействия продольных волокон. При поперечном изгибе наблюдаются отклонения от этой гипотезы:

а) в местах приложения сосредоточенных сил. Под сосредоточенной силой напряжения поперечного взаимодействия могут быть достаточно велики и во много раз превышать продольные напряжения , убывая при этом, в соответствии с принципом Сен-Венана, по мере удаления от точки приложения силы;

б) в местах приложения распределенных нагрузок. Так, в случае, приведенном на рис. 2, б, напряжения от давления на верхние волокна балки . Сравнивая их с продольными напряжениями , имеющими порядок

,

приходим к выводу, что напряжения при условии, что h2 <<l2, так как .

Получим формулу для касательных напряжений . Примем, методика расчета нормальных напряжений известна, что касательные напряжения равномерно распределены по ширине поперечного сечения (рис. 3). Эта предпосылка выполняется тем точнее, чем уже поперечное сечение стержня. Точное решение задачи для прямоугольного поперечного сечения показывает, что отклонение от равномерного распределения , зависит от отношения сторон b/h. При (b/h) =1,0 оно составляет 12,6%, при (b/h) =0,5 -- только 3,3%.

Рис. 3. Расчетная модель поперечного прямого изгиба

Непосредственное определение напряжений затруднительно, поэтому находим равные им (вследствие закона парности) касательные напряжения , возникающие на продольной площадке с координатой у элемента длиной dz, вырезанного из балки, (рис. 3). Сам элемент показан на рис. 4. От этого элемента продольным сечением, отстоящим от нейтрального слоя на у, отсекаем верхнюю часть, заменяя действие отброшенной нижней части касательными напряжениями (индекс гу в дальнейшем опускаем), равнодействующая которых показана на рис. 5. Здесь, согласно второй предпосылке

Рис. 4. Расчетный элемент бруса

Рис. 5. Фрагмент расчетного элемента бруса

по ширине элемента b. Нормальные напряжения и , действующие на торцевых площадках элемента, также заменим их равнодействующими

,

.

Согласно первой предпосылке нормальные напряжения определяются уже известным способом, , где --статический момент отсеченной части площади поперечного сечения относительно оси Ох.

Рассмотрим условие равновесия элемента (рис. 5) составив для него уравнение статики :

откуда после несложных преобразований, учитывая, что

получаем формулу для касательных напряжений при нормальном поперечном изгибе призматического стержня которая называется формулой Журавского.

Рис. 6. Распределение касательных напряжений по контуру прямоугольного сечения

В этой формуле by -- ширина сечения в том месте, где определяются касательные напряжения, а статический момент, подставляемый в эту формулу, может быть вычислен как для верхней, так и для нижней части (статические моменты этих частей сечения относительно его центральной оси Ох отличаются только знаком, так как статическим момент всего сечения равен нулю).

В качестве примера применения формулы Журавского построим эпюру касательных напряжений для случая прямоугольного поперечного сечения балки (рис. 6.). Учитывая, что для этого сечения

Получаем

где F = bh--площадь прямоугольника.

поперечный нагрузка изгибающий момент

Как видно из формулы, касательные напряжения по высоте сечения меняются по закону квадратической параболы, достигая максимума на нейтральной оси

Сделаем несколько замечаний, касающихся расчетов на прочность при прямом поперечном изгибе. В отличие от простых видов деформации, когда в поперечных сечениях стержня возникает лишь один силовой фактор, к которым относятся и изученные выше растяжение (сжатие) и чистый изгиб, прямой поперечный изгиб должен быть отнесен к сложным видам деформации. В поперечных сечениях стержня при поперечном изгибе возникают два силовых фактора: изгибающий момент Мх и поперечная сила Qy (рис. 7), напряженное состояние является упрощенным плоским, при котором в окрестности произвольно выбранных точек поперечного сечения действуют нормальные и касательные напряжения. Поэтому условие прочности для таких точек должно быть сформулировано на основе какого-либо уже известного критерия прочности.

Однако учитывая, что наибольшие нормальные напряжения возникают в крайних волокнах, где касательные напряжения отсутствуют (рис. 7), а наибольшие касательные напряжения во многих случаях имеют место в нейтральном слое, где нормальные напряжения равны нулю, условия прочности в этих случаях формулируются раздельно по нормальным и касательным напряжениям

Рис. 7. Распределение нормальных и касательных напряжений по контуру сечения

Рис. 8. К сравнительной оценке модулей напряжения

Покажем, что доминирующая роль в расчетах на прочность балки, подвергнутой поперечному изгибу, будет принадлежать расчету по нормальным напряжениям. Для этого оценим порядок max и max на примере консольной балки, показанной на рис. 8:

так как

Тогда

откуда max <<max, а поскольку то доминирующим в этом случае будет расчет по нормальным напряжениям и условие прочности, например, для балки из пластичного материала, работающей на прямой изгиб, как и в случае чистого изгиба будет иметь вид:

Рациональные формы поперечных сечений при изгибе

Наиболее рациональным следует признать сечение, обладающее минимальной площадью при заданной нагрузке (изгибающем моменте) на балку. В этом случае расход материала на изготовление балки, будет минимальным. Для получения балки минимальной материалоемкости нужно стремиться к тому, чтобы по возможности наибольший объем материала работал при напряжениях, равных допускаемым или близким к ним. Прежде всего рациональное сечение балки при изгибе должно удовлетворять условию равнопрочности растянутой и сжатой зон балки. Иными словами необходимо, чтобы наибольшие напряжения растяжения (max ) н наибольшие напряжения сжатия (max ) одновременно достигали допускаемых напряжений и .

Поэтому для балки из пластичного материала (одинаково работающего на растяжение и сжатие: ), условие равнопрочности выполняется для сечений, симметричных относительно нейтральной оси. К таким сечениям относится, например, прямоугольное сечение (рис. 9, а), при котором обеспечено условие равенства . Однако в этом случае материал, равномерно распределенный по высоте сечения, плохо используется в зоне нейтральной оси. Чтобы получить более рациональное сечение, необходимо возможно большую часть материала переместить в зоны, максимально удаленные от нейтральной оси. Таким образом, приходим к рациональному для пластичного материала сечению в форме симметричного двутавра (рис. 9, б), у которого возможно большая часть материала сосредоточена на полках (горизонтальных массивных листах), соединенных стенкой (вертикальным листом), толщина которой назначается из условий прочности стенки по касательным напряжениям, а также из соображений ее устойчивости. К двутаврому сечению близко по критерию рациональности так называемое коробчатое сечение (рис. 9, в).

Рис. 9. Распределение нормальных напряжений в симметричных сечениях

Рассуждая аналогично, приходим к выводу, что для балок из хрупкого материала наиболее рациональным будет сечение в форме несимметричного двутавра, удовлетворяющего условию равнопрочности на растяжение и сжатие (рис. 10):

которое вытекает из требования

Рис. 10. Распределение напряжений несимметричного профиля сечения балки

Рис. 11. Используемые профили сечений: а) двутавр, б) швеллер, в) неравнобокий уголок, г) равнобокий уголок

Идея рациональности поперечного сечения стержней при изгибе реализована в стандартных тонкостенных профилях, получаемых методами горячего прессования или прокатки из рядовых и легированных конструкционных высококачественных сталей, а также алюминия и алюминиевых сплавов, получивших широкое распространение в строительстве, машиностроении, авиационном машиностроении. Широко распространены показанные на рис. 11: а -- двутавр, б -- швеллер, в -- неравнобокий уголок, г -- равнобокий уголок. Реже встречаются тавр, таврошвеллер, зетовый профиль и др. Употребляются также холодногнутые замкнутые сварные профили (рис. 12).

Рис. 12. Замкнутые сварные профили

Поскольку по соображениям технологии сортамент стандартных профилей по размерам ограничен (например, наибольший прокатный двутавр согласно ГОСТ 8239--72 имеет высоту 550 мм), то для больших пролетов приходится применять составные (сварные или клепаные) балки.

Размещено на Allbest.ru

...

Подобные документы

  • Площадь поперечного сечения стержня. Изменение статических моментов площади сечения при параллельном переносе осей координат. Определение положения центра тяжести сечения, полукруга. Моменты инерции сечения. Свойства прямоугольного поперечного сечения.

    презентация [1,7 M], добавлен 10.12.2013

  • Анализ конструктивных особенностей стального стержня переменного поперечного сечения, способы постройки эпюры распределения нормальных и касательных напряжений в сечении балки. Определение напряжений при кручении стержней с круглым поперечным сечением.

    контрольная работа [719,5 K], добавлен 16.04.2013

  • Определение геометрических характеристик сечения тонкостенного подкрепленного стержня. Расчет нормальных напряжений в подкрепляющих элементах. Распределение напряжений по контуру. Определение потока касательных сил от перерезывающей силы, по контуру.

    курсовая работа [2,2 M], добавлен 22.04.2012

  • Анализ напряженно-деформированного состояния стержня с учётом собственного веса при деформации растяжения, кручения и плоского поперечного изгиба. Определение касательных напряжений. Полный угол закручивания сечений. Прямоугольное поперечное сечение.

    контрольная работа [285,0 K], добавлен 28.05.2014

  • Методика и основные этапы расчета стержня. Построение эпюры нормальных напряжений. Определение параметров статически неопределимого стержня. Вычисление вала при кручении. Расчет консольной и двухопорной балки. Сравнение площадей поперечных сечений.

    контрольная работа [477,1 K], добавлен 02.04.2014

  • Геометрические характеристики плоских сечений, зависимость между ними. Внутренние силовые факторы; расчеты на прочность и жесткость при растяжении-сжатии прямого стержня, при кручении прямого вала. Определение прочности перемещений балок при изгибе.

    контрольная работа [1,9 M], добавлен 20.05.2012

  • Определение размеров деталей или внешних нагрузок, при которых исключается возможность появления недопустимых с точки зрения нормальной работы конструкции деформаций. Напряжения в точках поперечного сечения при изгибе с кручением. Расчет на прочность.

    курсовая работа [1017,9 K], добавлен 29.11.2013

  • Изгиб вызывается внешними силами, направленными перпендикулярно продольной оси стержня, а также парами внешних сил, плоскость действия которых проходит через эту ось. Внутренние силы в поперечных сечениях изгибаемых стержней определяются методом сечений.

    реферат [1,1 M], добавлен 13.01.2009

  • Определение расчетной нагрузки и реакции опор. Построение эпюры поперечных сил методом характерных точек. Определение необходимого осевого момента сопротивления из условия прочности, оценка рациональной формы поперечного сечения в опасном сечении балки.

    контрольная работа [290,8 K], добавлен 09.08.2010

  • Экспериментальное определение максимальных прогибов и напряжений при косом изгибе балки и их сравнение с аналогичными расчетными значениями. Схема экспериментальной установки для исследования косого изгиба балки. Оценка прочности и жесткости балки.

    лабораторная работа [176,9 K], добавлен 06.10.2010

  • Совместное действие изгиба с кручением. Определение внутренних усилий при кручении с изгибом. Расчет валов кругового (кольцевого) поперечного сечения на кручение с изгибом. Определение размера брусьев прямоугольного сечения на кручение с изгибом.

    курсовая работа [592,6 K], добавлен 11.09.2014

  • Расчет закрепленного вверху стального стержня, построение эпюры продольных усилий, перемещений поперечных сечений бруса. Выбор стальной балки двутаврового поперечного сечения. Построение эпюры крутящих, изгибающих моментов в двух плоскостях для вала.

    контрольная работа [1,1 M], добавлен 06.08.2013

  • Определение допустимого параметра нагрузки и расчет перемещения свободного конца консольного стержня переменного сечения. Выбор размеров поперечных сечений балки. Вычисление угла поворота свободного конца вала. Условия прочности заклепочного соединения.

    контрольная работа [1,1 M], добавлен 26.05.2014

  • Оценка размеров поперечного сечения. Нахождение момента инерции относительно центральных осей. Расчет прочно-плотного заклепочного шва. Построение эпюр поперечных сил и изгибающих моментов. Проектный расчет вала при совместном действии кручения и изгиба.

    курсовая работа [535,6 K], добавлен 19.11.2012

  • Построение эпюр нормальных и поперечных сил, изгибающих и крутящих моментов. Напряжения при кручении. Расчет напряжений и определение размеров поперечных стержней. Выбор трубчатого профиля стержня, как наиболее экономичного с точки зрения металлоёмкости.

    контрольная работа [116,5 K], добавлен 07.11.2012

  • Физико-механические свойства материала подкрепляющих элементов, обшивок и стенок тонкостенного стержня. Определение распределения перерезывающей силы и изгибающего момента по длине конструкции. Определение потока касательных усилий в поперечном сечении.

    курсовая работа [7,5 M], добавлен 27.05.2012

  • Описание и назначение технических характеристик фюзеляжа самолета. Возможные формы поперечного сечения. Типовые эпюры нагрузок, действующих на фюзеляж. Расчет напряженно-деформированного состояния. Сравнительный весовой анализ различных форм сечений.

    курсовая работа [4,2 M], добавлен 13.10.2017

  • Расчетные формулы для кручения стержня в форме тонкостенного профиля, с круговым и не круглым поперечным сечением. Определение величин полярного момента инерции сечения и сопротивления. Эпюра касательных напряжений для бруса прямоугольного сечения.

    презентация [515,8 K], добавлен 21.02.2014

  • Определение расчетных значений изгибающих и поперечных моментов балки, высоты из условия прочности и экономичности. Расчет поперечного сечения (инерции, геометрических характеристик). Обеспечение общей устойчивости балки. Расчет сварных соединений и опор.

    курсовая работа [1023,2 K], добавлен 17.03.2016

  • Проверка прочности ступенчатого стержня при деформации растяжение и сжатие. Расчет балки на прочность при плоском изгибе. Определение статически определимой стержневой системы, работающей на растяжение. Сравнение прочности балок различных сечений.

    контрольная работа [1,4 M], добавлен 18.05.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.