Теоремы о взаимности работ и Максвелла–Мора
Теорема о взаимности работ, расчет зависимости между деформациями в различных сечениях балки. Зависимость количества энергии деформации от конечных значений сил и прогибов. Теорема Максвелла-Мора о прогибе балки в точке приложения сосредоточенной силы.
Рубрика | Производство и технологии |
Вид | лекция |
Язык | русский |
Дата добавления | 30.07.2013 |
Размер файла | 75,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Лекция
Теоремы о взаимности работ и Максвелла - Мора
Пользуясь понятием о потенциальной энергии, можно установить следующую зависимость между деформациями в различных сечениях балки.
Если к балке, нагруженной силой приложить затем статически силу в сечении 2, то к прогибу точки приложения силы от этой же силы прибавится (Рис.1) прогиб от силы , равный ; первый значок у буквы у указывает точку, для которой вычисляется прогиб; второй - обозначает силу, вызывающую этот прогиб.
Рис.1. Расчетная схема к теореме о взаимности работ
Полная работа внешних сил составится из трех частей: работы силы на вызванном ею прогибе , т. е. , работы силы на вызванном ею прогибе ее точки приложения , т. е. , наконец, работы силы на прогибе ее точки приложения от силы , т. е. .
Таким образом, накопленная в стержне при действии обеих сил энергия будет равна:
Это количество энергии деформации зависит лишь от конечных значений сил и прогибов и не зависит от порядка нагружения.
Если к балке, загруженной силой , приложить затем силу то, повторив цепь вычислений, получим:
Сравнивая оба значения U, получаем:
т. е. работа силы (или первой группы сил) на перемещениях, вызванных силой (второй группой сил), равна работе силы на перемещениях, вызванных силой .
Это и есть теорема о взаимности работ. Ее можно сформулировать и иначе: работа первой силы () при действии второй () равна работе второй силы при действии первой.
Теорема Максвелла-Мора. Прогиб балки в точке приложения сосредоточенной силы Р равен:
аналогичное выражение мы имеем и для угла поворота с заменой производной на . Выясним, что представляют собой эти производные.
Если на балке расположена какая угодно нагрузка из сосредоточенных сил , , ,..., моментов , ,..., сплошных нагрузок ,..... то момент М(х) в любом сечении такой балки выражается линейной функцией от нагрузок:
Рис.2. Частная расчетная модель метода Максвелла - Мора.
Коэффициенты , ,..., , …, , ... являются функциями пролета балки, расстояний точек приложения сил и моментов от опор и абсциссы х взятого сечения. Пусть мы отыскиваем прогиб точки приложения силы ; тогда
так как , ,..., , ,..., ,..., , ,..., , …, , ... при этом дифференцировании постоянны. Но можно рассматривать как численную величину момента М в любом сечении балки от действия так называемой единичной нагрузки, т. е. силы ; действительно, подставляя в формулу вместо его частное значение, единицу, и приравнивая все остальные нагрузки нулю, получаем .
Например, для балки, изображенной на Рис 2, а, изгибающий момент равен:
Производная
;
но это как раз и будет выражение изгибающего момента нашей балки, если мы ее нагрузим силой 1, приложенной в той же точке В, где расположена сила Р (Рис.2, б), и направленной в ту же сторону.
Аналогично, производная изгибающего момента М (х) по паре сил численно представляет собой изгибающий момент от пары с моментом, равным единице, приложенной в том же сечении, где имеется пара , и направленной в ту же сторону. Таким образом, вычисление производных изгибающего момента можно заменить вычислением изгибающих моментов от единичной нагрузки. Эти моменты мы будем обозначать буквой .
Таким образом, для отыскания перемещения (прогиба или угла поворота) любого сечения балки, вне зависимости от того, приложена или не приложена в этом сечении соответствующая сила, необходимо найти выражение для изгибающего момента М от заданной нагрузки и момента от соответствующей единичной нагрузки, приложенной в сечении, где ищем перемещение ; тогда это перемещение выразится формулой
Эта формула была предложена Максвеллом в 1864 г. и введена в практику расчета О. Мором в 1874 г. Если мы в полученном выражении под подразумеваем прогиб, то момент надо вычислять от сосредоточенной единичной силы, приложенной в той точке, где мы отыскиваем прогиб; при вычислении же угла поворота в качестве единичной нагрузки прикладывается пара сил с моментом, равным единице.
Для примера рис.2 имеем:
(рис.2,а)
(рис.2, б)
Знак плюс означает, что направление перемещения совпадает с направлением единичной нагрузки, знак минус - наоборот.
Если при определении изгибающих моментов придется делить балку на участки, то соответственно и интеграл в формуле распадется на сумму интегралов.
Сравнивая формулу Кастильяно с формулой Мора, нетрудно заметить, что они отличаются лишь одним множителем. В теореме Кастильяно или , в теореме Мора .
Следовательно, производная от изгибающего момента по обобщенной силе - это то же самое, что изгибающий момент от силы .
Метод Верещагина. Способ Максвелла-Мора в значительной степени вытеснил на практике непосредственное применение теоремы Кастильяно. В справочниках обычно приводятся таблицы интегралов для наиболее часто встречающихся типов нагрузки.
Наш соотечественник А.Н. Верещагин в 1924 г. предложил упрощение вычислений. Так как единичной нагрузкой бывает обычно либо сосредоточенная сила, либо пара сил, то эпюра оказывается ограниченной прямыми линиями. Тогда вычисление при любом очертании эпюры М можно произвести следующим образом. Пусть эпюра М (Рис.3) имеет криволинейное очертание, а эпюра -- прямолинейное. Произведение Mdx можно рассматривать, как элемент площади эпюры М, заштрихованный на чертеже. балка деформация прогиб максвелл
Так как ордината равна
,
то произведение
,
а весь интеграл
представляет собой статический момент площади эпюры М относительно точки А, умноженный на .
Рис.3. Расчетная модель метода Верещагина.
Но этот статический момент равен всей площади эпюры М, умноженной на расстояние от ее центра тяжести до точки А. Таким образом,
но величина равна ординате эпюры под центром тяжести эпюры М. Отсюда
и искомое перемещение равно
Таким образом, для определения перемещения надо вычислить -- площадь эпюры М, умножить ее на ординату эпюры от единичной нагрузки под центром тяжести площади и разделить на жесткость балки.
Определим этим способом угол поворота сечения D балки, изображенной на Рис.4, а; Балка загружена моментом М, приложенным в сечении В к консоли АВ. Эпюра М показана на Рис.4, б. Прикладываем в сечении D единичную пару, выбирая ее направление произвольно (Рис.4, в). Эпюра моментов от единичной нагрузки показана на рис.4, г. Так как М на участках DC и СВ равен нулю, то остается лишь один интеграл для участка АВ.
Рис.4. Иллюстрация метода Верещагина: а) расчетная схема б)грузовая эпюра в)фиктивное состояние г) эпюра моментов от единичного момента
Площадь равна ; ордината эпюры под центром тяжести площади равна отсюда искомый угол поворота равен
Знак плюс показывает, что вращение происходит по направлению единичной пары, т. е. по часовой стрелке.
Размещено на Allbest.ru
...Подобные документы
Определение суммарных величин изгибающих моментов от сосредоточенных сил и равномерно распределенной нагрузки. Построение линий влияния поперечной силы в сечениях. Проверка сечения балки по условиям прочности. Обеспечение местной устойчивости балки.
курсовая работа [1,4 M], добавлен 25.10.2014Выбор конструктивного оформления и размеров сварных соединений. Ориентировочные режимы сварки. Расчет геометрических характеристик сечений, усадочной силы, продольного укорочения и прогибов балки, возникающих при сварке швов балки двутаврового сечения.
практическая работа [224,3 K], добавлен 27.01.2011Экспериментальное определение максимальных прогибов и напряжений при косом изгибе балки и их сравнение с аналогичными расчетными значениями. Схема экспериментальной установки для исследования косого изгиба балки. Оценка прочности и жесткости балки.
лабораторная работа [176,9 K], добавлен 06.10.2010Внешние и внутренние силы при растяжении (сжатии), потенциальная энергия деформации. Механическая энергия. Закон сохранения механической энергии. Закон минимума потенциальной энергии деформации. Статически непреодолимые задачи при растяжении и сжатии.
реферат [359,8 K], добавлен 26.01.2009Расчетная схема сварной подкрановой балки. Расчет конструкции и краткая технология изготовления балки. Построение линий влияния и определение величины изгибающего момента для различных сечений балки от веса тяжести. Конструирование опорных узлов балки.
курсовая работа [835,8 K], добавлен 05.03.2013Определение расчетных значений изгибающих и поперечных моментов балки, высоты из условия прочности и экономичности. Расчет поперечного сечения (инерции, геометрических характеристик). Обеспечение общей устойчивости балки. Расчет сварных соединений и опор.
курсовая работа [1023,2 K], добавлен 17.03.2016Требования к способам и технологии сварки. Процесс проектирования конструкции балки: подбор стали, определение из условия прочности сечения профилей. Расчет расхода сварочного материала. Основные правила техники безопасности при проведении работ.
курсовая работа [545,5 K], добавлен 03.04.2011Определение нагрузки и расчетных усилий, воспринимаемых балками настила до и после реконструкции здания. Подбор сечения балки настила. Усиление балки увеличением сечения. Расчет поясных швов и опорного узла. Проверка прочности и жесткости усиленной балки.
контрольная работа [49,2 K], добавлен 20.01.2015Компоновка и подбор сечения балки. Проверка жесткости и устойчивости балки. Проверка местной устойчивости элементов балки. Конструирование укрупнительного стыка балки и сопряжения балки настила с главной балкой. Компоновка сечения сквозной колонны.
курсовая работа [322,2 K], добавлен 23.06.2019Расчет прокатной балки настила, главной балки, центрально-сжатой колонны, оголовка, планок, базы колонны. Расчетный максимальный изгибающий момент в середине пролета. Общая устойчивость главной балки. Определение предельно допустимого прогиба балки.
курсовая работа [592,2 K], добавлен 06.04.2015Исходные данные для проектирования. Расчет настила, балки настила, главной балки, укрепительного стыка главной балки, колонны. Схема расположения основной ячейки. Определение грузовой площади. Проверка на прочность и устойчивость стенки балки и колонны.
курсовая работа [336,5 K], добавлен 21.05.2010Теоретические основы создания балки. Построение эпюр и подбор сечений, оценка их экономичности. Создание балки из конкретного металла с заданными характеристиками. Раскрытие статической неопределимости. Расчет нагрузки на элементы и размеров рам.
курсовая работа [994,2 K], добавлен 27.07.2010Конструирование опорных частей балки с экспериментальным мониторингом сохраняемости геометрии при естественном старении. Расчет внутренних силовых факторов. Определение высоты балки из условия жесткости. Подбор геометрических размеров сечения балки.
курсовая работа [299,2 K], добавлен 17.06.2013Порядок составления расчетной схемы балки, уравнения моментов. Построение эпюры крутящих моментов. Нахождение силы из условия прочности швов при срезе, определение диаметра пальца. Вычисление общего КПД привода, его структура и ступени, недостатки.
контрольная работа [978,5 K], добавлен 25.02.2011Основные размеры балки, технические требования к ее изготовлению, комплектность, маркировка, транспортирование и хранение изделия. Методы контроля сварки, радиационный метод определения качества сварных швов. Расчет, проверка элементов подкрановой балки.
курсовая работа [593,2 K], добавлен 15.05.2010Описание и конструктивно-технологические характеристики сборочного узла хвостовой балки мотогондолы самолета. Проектирование сборочной оснастки, технические условия на сборку хвостовой балки. Методы сборки, базирования и обеспечения взаимозаменяемости.
курсовая работа [37,9 K], добавлен 11.01.2011Рассмотрение использования двутавровой балки в широких пролетах промышленных объектов. Описание конструкции сварной подкрановой балки со свободно опертыми концами. Расчёт эквивалентного напряжения в сечении, поясных швов. Конструирование опорных узлов.
курсовая работа [1,5 M], добавлен 29.04.2015Основные критерии классификации стальной балки. Анализ технологичности конструкции сварного узла. Расчет размеров двутавровой балки. Технические условия на изготовление сварного узла. Выбор основного и сварочного материала, вида сварки и оборудования.
курсовая работа [1,2 M], добавлен 12.05.2016Общий метод определения перемещений. Линейно-деформируемая система. Работа внешних и внутренних сил вспомогательного состояния на перемещениях, вызванных действием сил грузового состояния. Формула Мора. Способ перемножения эпюр. Правило Верещагина.
реферат [2,0 M], добавлен 06.11.2008Понятие и расчет коэффициента Пуассона как зависимости между продольными и поперечными деформациями элемента. Вычисление модуля Юнга как физической величины, характеризующей свойства материала сопротивляться растяжению/сжатию при упругой деформации.
презентация [207,4 K], добавлен 10.10.2015