Применение вариационных методов
Особенности раскрытия статической неопределимости для балки при помощи теоремы Кастильяно. Динамика расчета эпюр и моментов по методу Верещагина. Общий план решения статически неопределимой задачи. Характеристика направлений и условий деформаций балок.
Рубрика | Производство и технологии |
Вид | лекция |
Язык | русский |
Дата добавления | 30.07.2013 |
Размер файла | 126,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Применение вариационных методов
Раскрытие статической неопределимости для балки, может быть произведено и при помощи теоремы Кастильяно.
«Лишнюю» опорную реакцию В (Рис.1, а) заменяем «лишней» неизвестной силой В, действующей вместе с заданной нагрузкой q на основную статически определимую балку АВ (фиг. 361, б).
Рис.1. Исходная, а) и основная -- б) расчетные схемы
Дифференцируя по силе В потенциальную энергию, и вычисляя таким образом прогиб , следует приравнять нулю.
(1)
Остается вычислить М и , установить пределы интеграла и взять его.
Будем считать, что сечение балки не меняется по длине. Тогда уравнение (1) примет вид:
или
Отсюда
Далее решение не отличается от описанного в способе сравнения деформаций.
Раскрытие статической неопределимости возможно выполнить также и по теореме Мора. При решении по Мору, кроме первого состояния нагружения основной балки заданной нагрузкой и лишней неизвестной силой (Рис.2, а), следует показать ту же балку во втором состоянии загружения -- силой (Рис.2,б).
Вычисления при обозначениях, принятых на Рис. 2, дают:
а) исходная модель, б) фиктивная модель нагружения, в) грузовая эпюра моментов, г) эпюра моментов от реакции В, д) единичная эпюра моментов
Рис.2. Решение методом Мора и Верещагина
т.е. то же, что и при использовании теоремой Кастильяно.
При решении того же примера по способу Верищагина к двум схемам состояний загружения (Рис.2 а и б) следует построить эпюры моментов: от нагрузки q (Рис.2, в) от силы B (Рис.2 г), и от силы (Рис.2, д).
Величина моментных площадей:
от нагрузки q:
от нагрузки В:
Ординаты эпюр единичной нагрузки:
для умножения на
:
для умножения на
:
Прогиб в точке В
Отсюда
Совпадение результатов расчета опорной реакции очевидно.
Выбор лишней неизвестной и основной системы.
В предыдущем примере мы выбрали за лишнюю неизвестную реакцию В. Мы могли бы выбрать и момент . Соответственно изменилась бы основная система и ход решения. Окончательный же результат, конечно, получился бы прежним. Возьмем за лишнюю неизвестную опорный момент (Рис.3, а). Какой будет основная система? Чтобы получить ее, надо отбросить то опорное закрепление, которое создает момент , т. е. защемление конца А. Чтобы на конце А не было опорного момента, там следует поставить шарнирно-неподвижную опору.
Основной системой будет балка, изображенная на Рис.3, б. Загрузим ее внешней нагрузкой и опорным моментом (фиг. 363, в).
Чтобы эти балки работали одинаково, надо для балки Рис.3, в написать дополнительное условие, что сечение А под действием изображенных нагрузок не может поворачиваться; накладываем это ограничение на перемещение, соответствующее выбранной лишней неизвестной:
Далее, применив для решения уравнения теорему Кастильяно, имеем
а) заданное. б) основная, в) эквивалентная
Рис.3. Расчетные схемы
следовательно,
Для нахождения М и выразим реакцию В основной системы через и произведем все обычные вычисления:
.
находим:
Отсюда
,
т. е. той же величине, которая была получена раньше. Дальнейший ход решения не отличается от разобранного выше.
Решение той же основной системы (Рис.4, а) с применением способа Верещагина потребует изображения второго состояния загружения основной системы моментом (Рис.4, б) и построения эпюр изгибающего момента: от заданной нагрузки q (Рис.4, в), от момента (Рис.4, г) и от единичной нагрузки; (Рис.4, д). Вычисляем :
а)исходная схема, б) нагружение единичным моментом, в) грузовая эпюра, г) моментная эпюра, д) единичная эпюра моментов
Рис.4. Динамика расчета по методу Верещагина:
Как видно, уравнение для определения полностью совпадает с найденным по теореме Кастильяно.
Сравнивая два варианта решения поставленной задачи с лишней неизвестной В и с лишней неизвестной , видим, что при применении способа Кастильяно первый вариант менее сложен по вычислениям. Это объясняется тем, что основной системой в первом варианте является балка, защемленная одним концом, во втором же -- балка на двух опорах; для второй -- вычисления сложнее. Таким образом, лишнюю неизвестную и, следовательно, основную систему надо выбирать с таким расчетом, чтобы выкладки (вычисление изгибающих моментов и т. д.) были проще.
Если бы мы выбрали за лишнюю неизвестную реакцию А, то основную систему следовало бы так устроить, чтобы опора А не давала возможности поворота сечения и горизонтальных перемещений, но допускала бы вертикальные движения.
За лишнюю неизвестную нельзя брать лишь ту реакцию, при отбрасывании которой мы получим изменяемую, неустойчивую основную систему.
Общий план решения статически неопределимой задачи
Таким образом, общий метод решения, статически неопределимых задач распадается на ряд отдельных этапов. В двух предыдущих лекциях приведены два варианта решения задачи: с лишней реакцией В и с лишней реакцией . Для развертывания добавочного условия даны также два варианта решения: способом сравнения деформаций и с применением теоремы. Кастильяно. Если бы число реакций статически неопределимой балки было нe четыре, как в рассмотренном примере, а больше, то соответственно увеличилось бы число лишних неизвестных; загрузив основную систему внешней нагрузкой и этими лишними неизвестными, мы можем написать дополнительные условия, ограничивающие деформации балки в тех сечениях, где эти лишние реакции приложены. Таким путем будет получено столько же дополнительных уравнений, сколько лишних неизвестных. Следовательно, общий метод определения добавочных опорных реакций в статически неопределимых балках основан на том, что якая дополнительная опора, вводя лишнюю неизвестную реакцию, в то же время накладывает дополнительное ограничение в основной статически определимой системе на перемещение, соответствующее лишней неизвестной реакции. Выражая уравнением это ограничение, получаем столько дополнительных уравнений, сколько добавлено новых опорных закреплений.
Определение деформаций статически неопределимых балок
После того, как определены опорные реакции, построены эпюры изгибающих моментов и поперечных сил, подобраны сечения статически неопределимой балки, определение ее деформаций ничем не отличается от таких же вычислений для статически определимой балки. Необходимо лишь отметить, что в этом случае мы будем иметь избыточное число уравнений для определения постоянных интегрирования. Этот избыток равен числу лишних неизвестных. Избыточные уравнения при правильно найденных реакциях обратятся в, тождества, ибо они уже и были использованы при нахождении лишних неизвестных. Так для балки, с левым (А), жестко защемленным и правым (В), шарнирно-опертыми концами с пролетом l, получим следующее дифференциальное уравнение изогнутой оси:
статистический балка деформация
Интегрируем:
(а)
(b)
Постоянных интегрирования две, условий же для их определения можно написать три, а именно:
в точке А при прогиб и угол поворота ;
В х=0 у = 0.
Третье из этих уравнений обратится в тождество, ибо оно уже было нами использовано при составлении дополнительного уравнения, из которого мы нашли для В значение . Заметим, что мы могли бы использовать уравнение изогнутой оси балки для нахождения лишней неизвестной. Приняв за лишнюю неизвестную реакцию В, составим и проинтегрируем дифференциальное уравнение изогнутой оси; получим формулы (а) и (b).
Используя граничные условия в точках А и В, получим три уравнения, из которых найдем реакцию В и постоянные интегрирования С и D.
Размещено на Allbest.ru
...Подобные документы
Кинематический анализ статически определимых стержневых систем, проектирование их поэтажных схем. Вычисление степени статической неопределимости. Расчет опорных реакций и усилий в стержнях. Построение эпюр участков, моментов, поперечных и продольных сил.
контрольная работа [3,6 M], добавлен 07.02.2014Анализ напряженно-деформированного состояния элементов стержневой статически неопределимой системы. Определение геометрических соотношений из условия совместности деформаций элементов конструкции. Расчет балки на прочность, усилий в стержнях конструкции.
курсовая работа [303,5 K], добавлен 09.11.2016Теоретические основы создания балки. Построение эпюр и подбор сечений, оценка их экономичности. Создание балки из конкретного металла с заданными характеристиками. Раскрытие статической неопределимости. Расчет нагрузки на элементы и размеров рам.
курсовая работа [994,2 K], добавлен 27.07.2010Выбор материала, его характеристик и допускаемых напряжений. Расчет прочности и жесткости балок и рам, ступенчатого стержня и стержня постоянного сечения, статически неопределимой стержневой системы при растяжении-сжатии и при кручении. Построение эпюр.
курсовая работа [628,4 K], добавлен 06.12.2011Построение эпюр для консольных балок. Величина максимального изгибающего момента. Момент сопротивления круглого поперечного сечения относительно центральной оси и прямоугольника относительно нейтральной оси. Поперечные силы и изгибающие моменты.
курсовая работа [63,3 K], добавлен 13.03.2011Общий метод определения перемещений. Линейно-деформируемая система. Работа внешних и внутренних сил вспомогательного состояния на перемещениях, вызванных действием сил грузового состояния. Формула Мора. Способ перемножения эпюр. Правило Верещагина.
реферат [2,0 M], добавлен 06.11.2008Эпюры внутренних усилий. Составление уравнения равновесия и определение опорных реакций. Определение внутренних усилий и построение эпюр. Расчетная схема балки. Значения поперечных сил в сечениях. Определение значений моментов по характерным точкам.
контрольная работа [35,9 K], добавлен 21.11.2010Построение эпюр внутренних силовых факторов. Выбор коэффициентов, учитывающих концентрацию напряжений, размеры вала, качество обработки поверхности, упрочняющую технологию. Конструирование участка вала. Раскрытие статической неопределимости рамы.
курсовая работа [2,3 M], добавлен 10.06.2015Сущность и содержание метода предельного равновесия, особенности и условия его практического применения для расчета машиностроительных конструкций, основные требования к пластичности материала. Расчет предельного момента и равновесия для сечения балки.
контрольная работа [28,2 K], добавлен 11.10.2013Решение задачи определения напряженно-деформированного состояния сооружения, ее этапы. Особенности статически определимой системы. Определение опорных реакций. Внутренние усилия стержневой системы. Алгоритм метода простых сечений. Метод вырезания узла.
лекция [75,6 K], добавлен 24.05.2014Системы подвижных взаимосвязанных и параллельных сил. Методы расчета на подвижную нагрузку. Построение линий влияния усилий простой балки в статически определимых системах. Построение линий влияния при узловой передаче нагрузки, определение усилий.
презентация [136,2 K], добавлен 24.05.2014Проверка прочности ступенчатого стержня при деформации растяжение и сжатие. Расчет балки на прочность при плоском изгибе. Определение статически определимой стержневой системы, работающей на растяжение. Сравнение прочности балок различных сечений.
контрольная работа [1,4 M], добавлен 18.05.2015Порядок составления расчетной схемы балки, уравнения моментов. Построение эпюры крутящих моментов. Нахождение силы из условия прочности швов при срезе, определение диаметра пальца. Вычисление общего КПД привода, его структура и ступени, недостатки.
контрольная работа [978,5 K], добавлен 25.02.2011Определение суммарных величин изгибающих моментов от сосредоточенных сил и равномерно распределенной нагрузки. Построение линий влияния поперечной силы в сечениях. Проверка сечения балки по условиям прочности. Обеспечение местной устойчивости балки.
курсовая работа [1,4 M], добавлен 25.10.2014Особенности силового расчета механизма. Анализ метода подбора электродвигателя и расчета маховика. Построение кривой избыточных моментов. Характеристика и анализ схем механизмов поршневого компрессора. Основные способы расчета моментов инерции маховика.
контрольная работа [123,0 K], добавлен 16.03.2012Виды нагрузок, типы опор и балок. Шарнирно-неподвижная опора: схематическое устройство и условное обозначение. Растяжение-сжатие прямого бруса. Плоские и пространственные статистические определяемые рамы. Построение эпюр изгибающих и крутящих моментов.
реферат [407,8 K], добавлен 11.10.2013Эпюры изгибающих моментов ступенчатого вала в вертикальной и горизонтальной плоскости. Влияние изменения длины стойки на величину допускаемой нагрузки. Удельная потенциальная энергия деформаций стального кубика. Сопротивление поперечного сечения балки.
контрольная работа [875,5 K], добавлен 29.11.2013Рассмотрение теоретических вопросов, связанных с расчетом балки на прочность при прямом изгибе. Способы определения напряжения в поперечном сечении. Расчет балки с двусвязным поперечным сечением аналитическим способом и с помощью программы APM Beam.
курсовая работа [1,6 M], добавлен 19.05.2019Определение расчётных нагрузок, действующих на балку, расчётных усилий, построение эпюр. Подбор сечения балки. Проверка прочности, жёсткости и выносливости балки. Расчёт сварных соединений. Момент инерции сечения условной опорной стойки относительно оси.
курсовая работа [121,4 K], добавлен 11.04.2012Нахождение наибольшего напряжения в сечении круглого бруса и определение величины перемещения сечения. Построение эпюр крутящих моментов по длине вала. Подбор стальной балки по условиям прочности. Определение коэффициента полезного действия передачи.
контрольная работа [520,8 K], добавлен 04.01.2014